首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The germination behaviour of five Helianthemum species (H. almeriense, H. appeninum, H. cinereum, H. hirtum, H. squamatum) has been studied under controlled conditions. Constant 15, 20 or 25 °C and alternating 25/15 °C temperature regimes and 16/8 h light/dark photoperiod conditions were used. Presowing treatments applied were manual scarification, boiling water, hot water, dry heat and sulphuric acid. Germination values recorded were final germination percentage and germination rate expressed as days to reach 50% of the final germination percentage (T50). Incubation temperature had no significant effect on final germination percentage for untreated seeds of the five Helianthemum species. However, variation due to temperature was significant for scarified seeds, with the lowest germination percentage attained at 25 °C. In all Helianthemum species studied, the highest germination percentages were obtained by manual scarification of seeds. Germination rate of scarified seeds decreased as germination temperature increased. The different presowing treatments investigated allowed some germination in some species, but none were any better than manual scarification. The high germination among most species studied, following mechanical rupture of the seed coat, shows that the mechanism of dormancy lies in the seed coat. The physical dormancy caused by impermeable seed-coat appears to be the main reason of poor germination of untreated seeds of Helianthemum species studied.  相似文献   

2.
Seeds ofAcacia origena,A. pilispinaandPterolobium stellatumhave a hard seed coat that hampers imbibition of water and prevents maximum, uniform and rapid germination. Therefore, the seeds were subjected to different treatments involving mechanical scarification, concentrated sulphuric acid and boiling water to break the dormancy imposed by the hard seed coat. To determine the effects of different constant temperature regimes on germination, scarified seeds were incubated on a thermogradient at 10, 15, 20, 25 and 30°C. Germination of scarified seeds was also tested in light and dark. Mechanical scarification resulted in 100% germination for theAcaciaspecies and 94% forP. stellatum. ForA. origena, sulphuric acid treatments for 60, 90 and 120 min resulted in significantly higher per cent germination (>95%) than all the other treatments. ForA. pilispina, sulphuric acid treatments for 45 and 60 min, as well as immersing seeds for 1 min in hot water, gave significantly higher per cent germination (97%) than all the other treatments. ForP. stellatum, mechanical scarification and all the acid treatments applied resulted in significantly higher per cent germination (>85%) than the control and all hot water treatments. All seeds ofP. stellatumimmersed in hot water, even for 1 min, rotted soon after sowing, indicating that they are sensitive to high temperatures. Scarified seeds of the twoAcaciaspecies germinated to a higher degree (≥90%) between 10 and 30°C, while germination of scarified seeds ofP. stellatumranged from 48 to 82% between 10 and 30°C. Scarified seeds of the three species germinated to a large extent (>70%) both in light and dark, indicating that seeds do not require light for germination.  相似文献   

3.
Soil salinity is a major abiotic stress influencing plant productivity worldwide. Schinopsis quebracho colorado is one of the most important woody species in the Gran Chaco, an arid and salt-prone subtropical biome of South America. To gain a better understanding of the physiological mechanisms that allow plant establishment under salt conditions, germination and seedling growth of S. quebracho colorado were examined under treatment with a range of NaCl solutions (germination: 0–300 mmol l−1 NaCl; seedling growth: 0–200 mmol l−1 NaCl). The aim was to test the hypothesis that S. quebracho colorado is a glycophite that shows different salt tolerance responses with development stage. Proline content, total soluble carbohydrates and Na+, K+ and Cl concentrations in leaves and roots of seedlings, and the chlorophyll concentration and relative water content of leaves were measured. Germination was not affected by 100 mmol l−1 NaCl, but decreased at a concentration of 200 mmol l−1. At 300 mmol l−1 NaCl, germination did not occur. Seedling growth decreased drastically with increasing salinity. An increase in NaCl from 0 to 100 mmol l−1 also significantly reduced the leaf relative water content by 22% and increased the proline concentration by 60% in roots. In contrast, total soluble carbohydrates were not significantly affected by salinity. Seedlings showed a sodium exclusion capacity, and there was an inverse correlation between Cl concentration and the total chlorophyll concentration. S. quebracho colorado was more tolerant to salinity during germination than in the seedling phase. The results suggest that this increased tolerance during germination might, in part, be the result of lower sensitivity to high tissue Na+ concentrations. The significant increment of proline in the roots suggests the positive role of this amino acid as a compatible solute in balancing the accumulation of Na+ and Cl as a result of salinity. These results help clarify the physiological mechanisms that allow establishment of S. quebracho colorado on salt-affected soils in arid and semi-arid Gran Chaco.  相似文献   

4.
Opuntia tomentosa seeds have physiological dormancy and a permeable but hard funicular envelope that restricts water uptake and embryo growth. Dormancy break, germination, and changes in the funiculus were compared in laboratory-stored seeds and in those buried for 7 months at different microsites and later exhumed and stored in the laboratory. The funicular envelopes of both lots were examined with a scanning electron microscope (SEM). Seeds in both lots were: scarified with H2SO4 (0, 45, 60 and 90 min), treated with gibberellins (0, 1000 and 2000 ppm) and germinated at the same ages (0, 2, 4, 7, and 10 months after exhumation) at 24 °C. Light effect was determined at 24 °C and 20–35 °C. In laboratory-stored seeds germination was low. Exhumed seeds germinated in ~50%, the remaining ones required scarification and gibberellins, but lost dormancy two months later. Gibberellins reduced germination heterogeneity, and scarification reduced germination; the adverse effect of scarification was offset by gibberellins. Exhumed seeds germinated mainly in darkness at 20–35 °C and partially in far red light at both temperatures. SEM showed that fungi eroded the funiculus reducing its resistance. O. tomentosa could form a seed bank, ensuring its survival under heterogeneous environments.  相似文献   

5.
The objectives of this study were to determine the composition, density and spatial distribution of the soil seed bank of woody species, as well as their regeneration pattern in two different land use systems, controlled (ranch) and open grazing, in an Acacia woodland of the Rift Valley in Ethiopia. We also compared the species composition of the soil seed bank and the above-ground vegetation to find out if differences exist in the soil seed bank and advance regeneration between the two land use systems. The germination requirements of seeds of the woody species were also investigated under laboratory conditions. Acacia senegal, Acacia seyal, Acacia tortilis, Dichrostacys cinerea and Balanites aegyptiaca were encountered in the above-ground vegetation in both systems. Seeds of only A. tortilis (90±32 seeds m−2) from the ranch, and A. senegal (5±3 seeds m−2) and A. tortilis (72±34 seeds m−2) from the open system were found in the soil seed bank along transects with patchy horizontal pattern. The two systems were not significantly different in density of soil seed banks of A. senegal andA. tortilis . Jaccard's similarity index showed that only a few woody species were common in the soil seed flora and above ground vegetation. However, all of the species accumulated seeds (58±43–331±130 seeds m−2) in/on the soil under the canopy. Very large numbers of seeds of A. tortilis (19382±9722 seeds m−2) and D. cinerea (1278±494 seeds m−2) were also found in barns. Most of the seeds recovered from the soil samples (60–80%) were found in the litter layer. Acid and mechanical scarification improved legume germination (36–99% and 60–99%, respectively) over boiling water (0–48%). Treatment means differed significantly for all the legumes (p<0·001) but not for Balanites. Height and diameter class distribution of regeneration of A. tortilis and D. cinerea in both systems and A. senegal in the open system had a negative exponential correlation (rs=−0·5, −0·25 and −0·86, respectively). A. seyal and B. aegyptiaca showed poor regeneration. Horizontal distribution of advance regeneration of all the species was patchy. Advance regeneration of A. seyal, A. tortilis and B. aegyptiaca were not significantly different, while that of A. senegal and D. cinerea were significantly different between the two systems. Poor representation of species in the soil seed bank along transects and in the different height and diameter classes may be attributed to the low density of mature trees as well as the mode and strategy of seed dispersal. Ungulate and wind dispersed species (e.g. A. senegal, A. tortilis and D. cinerea) were highly favoured. Patchiness in the distribution of seeds and advance regeneration was also a result of endozoochory. Dispersal of non-ungulate dispersed seeds (A. senegal, A. seyal and B. aegyptiaca) was restricted to the canopy zone. Piles of seeds ofA. tortilis and D. cinerea that were found in barns were a result of consumption of their pods by cattle. High concentration of seeds in the litter layer may be due to low soil disturbance and larger size of seeds. The height and diameter class distribution of A. senegal (in the open system), A. tortilis and D. cinerea also indicated that the species have good regeneration. Results from the germination tests indicated that seeds of the legumes require pre-sowing treatments to give a rapid, uniform and improved germination. Intervention through artificial regeneration should be employed to improve the density and regeneration capacity of those species with hampered regeneration at both systems.  相似文献   

6.
The effects of temperature, water stress, hydration–dehydration cycles and seed priming on the germination of Callitris verrucosa and Callitris preissii, two Australian semi-arid coniferous tree species, were investigated. Optimum germination occurred at 18°C, with a minimum germination time of 8–9 days for both species. At this temperature, germination was inhibited at osmotic potentials lower than −1·0 MPa, but the capacity to germinate at low osmotic stress increased as the temperature decreased. Seed priming and hydration–dehydration cycles did not reduce seed viability, and Callitris seeds appear to retain the physiological changes induced by short-term hydration, as the time to the onset of germination was decreased to about 3 days. The capacity of Callitris seeds for incremental germination is likely to increase overall germination success in a low rainfall environment.  相似文献   

7.
We investigated the effects of soil water potential (SWP) and temperature on seed germination of six coexisting species of an inter-tropical desert. These species include three life-forms; the shrubs Cercidium praecox andProsopis laevigata ; the columnar succulents Neobuxbaumia tetetzo and Pachycereus hollianus; and the arborescent semi-succulents Beaucarnea gracilis and Yucca periculosa. In the six species germinability increased and germination time and speed of germination (t50) decreased as SWP decreased. The SWP treatments were 0 MPa, −0·12 MPa, −0·2 MPa, −0·41 MPa and −0·66 MPa. There was, however, a SWP threshold below which germination time and t50increased and germinability decreased. The shrubs had the highest germinability whereas the columnar succulents had the lowest. The shrubs also had shorter germination time andt50 than arborescent semi-succulents whereas seeds of the columnar succulents were indeterminate. In all species except P. laevigata germinability increased and the germination time and t50decreased as temperature increased. The temperature treatments were 12°C, 20°C and 26°C. The shrubs had the shortest t50and germination time and the highest germinability at all temperatures. Arborescent semi-succulents had the lowest germinability and longest germination time and t50at the three temperatures treatments. Our results support the hypothesis that in desert environments different plant life-forms utilise different germination strategies to persist.  相似文献   

8.
Cactus seedlings often establish under nurse plants which modify environmental conditions by increasing moisture and decreasing solar radiation, which may cause beneficial and detrimental effects, respectively, on seedling growth. Three soil moisture treatments (5%, 25% and 60%) and two solar radiation levels (100% exposure=243 μmol m−2 s−1, and 40%=102 μmol m−2 s−1) were used in a factorial design to analyze seedling growth response of three rare cactus species (Mammillaria pectinifera, Obregonia denegrii and Coryphantha werdermannii). The variables evaluated were relative growth rate (RGR), root/shoot ratio (R/S), and K (RGRroots/RGRshoot), obtained from an initial seedling harvest (6-month-old seedlings) and a final harvest 6 months after treatment application. All three species had slow RGRs (0.002–0.012 g g−1 day−1). O. denegrii had the lowest RGR values, but was the only species for which R/S and K varied with soil moisture. While all seedlings responded markedly to soil moisture, no response was observed to radiation treatments. The latter might have been related to the relatively low solar radiation levels present in the greenhouse. Yet, our results suggest that the main benefit nurse plants offer to seedlings is the increase in soil moisture.  相似文献   

9.
Microcoleus vaginatus isolated from a desert algal crust of Shapotou was cultured in BG-11 medium containing 0.2 mol l−1 NaCl or 0.2 mol l−1 NaCl plus 100 mg l−1 sucrose, extracellular polymeric substances (EPS) or hot water-soluble polysaccharides (HWP), respectively. Photosynthetic oxygen evolution rates, photosystem II activity (Fv/Fm) and dark respiration of NaCl-stressed cells were enhanced significantly by the added sucrose or EPS under salt stress conditions (0.2 mol l−1 NaCl). Compared with cells treated with salt alone, sodium contents in cells reduced significantly; the content of cellular total carbohydrate did not change, and intracellular sucrose, water-soluble sugar increased significantly following the addition of exogenous carbohydrates. Sucrose synthase (SS) activity of NaCl-stressed cells increased following the addition of sucrose, and sucrose phosphate synthase (SPS) activity of NaCl-stressed cells increased following the addition of exogenous sucrose, EPS or HWP compared with cells stressed with NaCl only. The results suggested that the extruded EPS might be re-absorbed by cells of M. vaginatus as carbon source, they could increase salt tolerance of M. vaginatus through the changes of carbohydrate metabolism and the selective uptake of sodium ions.  相似文献   

10.
Understanding and quantifying sediment load is important in catchments draining highly erodible materials that eventually contribute to siltation of downstream reservoirs. Within this context, the suspended sediment transport and its temporal dynamics have been studied in the River Isábena (445 km2, south-central Pyrenees, Ebro basin) by means of direct sampling and turbidity recording during a 3-year dry period. The average flood-suspended sediment concentration was 8 g l− 1, with maximum instantaneous values above 350 g l− 1. The high scatter between discharge and suspended sediment concentrations (up to five orders of magnitude) has not permitted the use of rating curve methods to estimate the total load. Interpolation techniques yielded a mean annual sediment load of 184,253 t y− 1 for the study period, with a specific yield of 414 t km− 2 y− 1. This value resembles those reported for small torrents in nearby mountainous environments and is the result of the high connectivity between the badland source areas and stream courses, a fact that maximises sediment conveyance through the catchment. Floods dominated the sediment transport and yield. However, sediment transport was more constant through time than that observed in Mediterranean counterparts; this can be attributed to the role of base flows that entrain fine sediment temporarily stored in the channel and force the river to carry high sediment concentrations (i.e., generally in the order of 0.5 g l− 1), even under minimum flow conditions.  相似文献   

11.
Charophytes are very common in Australian modern and Quaternary waterbodies, and are quite commonly incorrectly reported as “Chara” sp. or Lamprothamnium papulosum (Wallroth) Groves. This paper is the first attempt at the identification of the widespread euryhaline genus Lamprothamnium in Australia, and its use as a paleoenvironmental indicator. Lamprothamnium is distributed worldwide in all continents, except north and central America. The Australian environment, characterized by increasing aridity during the last 500 ka, has an abundance of saline lakes. We sampled 30 modern lakes and identified extant Lamprothamnium macropogon (A. Braun) Ophel and Lamprothamnium succinctum (A. Braun in Ascherson) Wood. Fossil gyrogonites, from lacustrine sediments ∼65 ka old from Madigan Gulf, Lake Eyre, were identified as Lamprothamnium williamsii sp. nov. We applied statistical analysis (analysis of variance, ANOVA) to the morphometry of the gyrogonites from one fossil and three living Lamprothamnium populations. The ANOVA test suggests all the populations are different, including two separate populations of extant L. macropogon, interpreted in this case as the expression of ecophenotypic variability. Lamprothamnium is a useful paleoenvironmental indicator because it indicates a non-marine environment with varying salinity ranging from fresh (usually 2–3 g l−1) to 70 g l−1, and water bodies holding water for at least 70 consecutive days. Collectively, these parameters provide important information in the study of ephemeral habitats.  相似文献   

12.
Populations of two ornamental exotic species, Kalanchoe daigremontiana and Stapelia gigantea, have been recently detected inside a protected area containing arid ecosystems in Venezuela. We indirectly tested their invasive potential by characterizing their reproductive biology and recruitment patterns and comparing our estimates against Baker's Law and reproductive profiles reported for invasive plants. K. daigremontiana is autogamous, produces >16,000 seeds per plant and also reproduces clonally. Despite low seed viability (17.9%) and germination rates (11.9%), seeds were present in the seed bank. Plantlets of asexual origin showed high survival (75–100%) compared to seedlings of sexual origin (10%). S. gigantea is self-incompatible, xenogamous and produces close to 1500 seeds per m2 of plant tissue. Seed viability (77%) and germination rates (62%) were high, but this species is not represented in the seed bank. It has a vegetative growth. A combination of reproductive and recruitment attributes, which match those considered in Baker's Law and others reported for invasive plants, confer K. daigremontiana and S. gigantea the potential to invade Neotropical arid zones; the former mainly through selfing and production of numerous asexual plantlets, and the latter through an association with a locally abundant pollinator and production of wind dispersed seeds.  相似文献   

13.
Piñon (Pinus edulis)-juniper (Juniperus monosperma)-ecosystems increased substantially in the western USA during the 20th century. Sustainability of these ecosystems primarily depends on soil quality and water availability. This study was undertaken with the objective of assessing the effect of tree species on soil physical quality in a semi-arid region in the western part of Sugarite Canyon, northeast of Raton, Colfax County, NM (37°56′32″N and 104°23′00″W) USA. Three cores and three bulk soil samples were obtained from the site under the canopy of three juniper, Gambel oak (Quercus gambelii) and piñon trees for 0–10 and 10–20 cm depths. These samples were analyzed for particle size distribution, soil bulk density (ρb), water stable aggregation (WSA), mean weight diameter (MWD) of aggregates, pH, electrical conductivity (EC) and soil organic carbon (SOC) and total nitrogen (TN) concentrations and stocks. Sand content was greater under juniper (48%) than oak (32%), whereas clay content followed the opposite trend. The ρb, WSA, MWD, pH and EC were similar under juniper, piñon, oak canopies for both depths. Estimated (from Philip and Green and Ampt infiltration models) and measured water infiltration parameters did not vary among these sites and were in accord with the values for ρb, WSA and MWD. The SOC concentrations and stocks were greater under oak (43.1 Mg ha−1 for 0–10 and 37.5 Mg ha−1 for 10–20 cm depths) than piñon (23.3 Mg ha−1 for 0–10 and 18.5 Mg ha−1 for 10–20 cm depths). The TN concentrations were greater under oak (3.4 g kg−1) than piñon (1.7 g kg−1) for the 0–10 cm depth only. Accumulation of detritus material under tree canopies reduced soil compaction and crusting caused by raindrop impact and increased SOC, and TN concentrations, and water infiltration. Coefficients of variation ranged from low to moderate for most soil properties except infiltration rate at 2.5 h, which was highly variable. Overall, soil quality for each site was good and soil aggregation, water infiltration and SOC concentrations were high, and soil ρb was low.  相似文献   

14.
As an approach to understand how diurnal and seasonal plant water potentials (Ψ) are related to soil water-content and evaporative demand components, the responses of six thornscrub shrubs species (Havardia pallens, Acacia rigidula, Eysenhardtia texana, Diospyros texana, Randia rhagocarpa, and Bernardia myricaefolia) of the north-eastern region of Mexico to drought stress were investigated during the course of 1 year. All study species showed the typical diurnal pattern of variation in Ψ. That is, Ψ decreased gradually from predawn (Ψpd) maximal values to reach minima at midday (Ψmd) and began to recover in the late afternoon. On a diurnal basis and with adequate soil water-content (>0.20 kg kg−1), diurnal Ψ values differed among shrub species and were negatively and significantly (p<0.001) correlated with air temperature (r=−0.741 to −0.883) and vapor pressure deficit (r=−0.750 to −0.817); in contrast, a positive and significant (p<0.001) relationship was found to exist with relative humidity (r=0.758–0.842). On a seasonal basis, during the wettest period (soil water-content>0.20 kg kg−1), higher Ψpd (−0.10 MPa) and Ψmd (−1.16 MPa) values were observed in R. rhagocarpa, whereas lower figures (−0.26 and −2.73 MPa, respectively) were detected in A. rigidula. On the other hand, during the driest period (soil water-content<0.15 kg kg−1), Ψpd and Ψmd values were below −7.3 MPa; i.e. when shrubs species faced severe water deficit. Soil water-content at different soil layers, monthly mean relative humidity and monthly precipitation were significantly correlated with both Ψpd (r=0.538–0.953; p<0.01) and Ψmd (r=0.431–0.906; p<0.05). Average soil water-content in the 0–50 cm soil depth profile explained between 70% and 87% of the variation in Ψpd. Results have shown that when gravimetric soil water-content values were above 0.15 kg kg−1, Ψpd values were high and constant; below this threshold value, Ψ declined gradually. Among all shrub species, A. rigidula appeared to be the most drought tolerant of the six species since during dry periods it tends to sustain significantly higher Ψpd in relation to B. myricaefolia. The remaining species showed an intermediate pattern. It is concluded that the ability of shrub species to cope with drought stress depends on the pattern of water uptake and the extent to control water loss through the transpirational flux.  相似文献   

15.
This paper presents data on the germination traits of five perennials (Allium polyrrhizum, Agropyron cristatum, Arenaria meyeri, Artemisia frigida and Artemisia santolinifolia) widespread in the mountain steppes of southern Mongolia. Germination and seed viability were assessed at three alternate temperatures (8/4 °C, 20/10 °C, 32/20 °C), three levels of osmotic stress (deionized water; −0.5 MPa, −1 MPa Mannitol solution), and under conditions of alternate light/darkness versus complete darkness. The results of a factorial ANOVA with treatments and species as main effects showed that all five species germinated best at higher temperatures, with only Agropyron cristatum showing some seed mortality. Osmotic stress reduced seed viability and total germination in all five species. Darkness had no influence on viability, but positively affected seed germination of Allium polyrrhizum and Agropyron cristatum. We therefore conclude that, in the field, germination of all five species is mainly controlled by ambient temperatures and water availability, both of which drop towards the end of summer when dispersal takes place and effectively delay seedling recruitment until the next vegetation period.  相似文献   

16.
The forage and oilseed halophyte,Salicornia bigeloviiTorr., was grown in gravity-drained lysimeters set in open plots of the same crop over two seasons in a coastal desert environment in Sonora, Mexico. The lysimeters were irrigated daily with seawater (40 g l−1salts) at rates ranging from 46–225% of potential evaporation. Biomass and seed yields increased with increasing irrigation depth over the range of treatments. Biomass yields ranged from 13·6–23·1 t DM ha−1, equivalent to conventional forage crops, on seasonal water application depths of 2·3–3·8 m, but were markedly lower at lower irrigation depths. Increasing the irrigation depth lowered the soil solution salinity, resulting in greater growth and water use, and hence leaching fractions that were nearly even over irrigation treatments, averaging 0·5. Evapo-transpiration rose in direct proportion to the irrigation depth. Potential evaporation was estimated by site pan evaporation and by the Blaney-Criddle and Penman models using climatological data; the methods agreed within 15%. The ratio of evapo-transpiration to potential evaporation increased over the growing season and approached 1·5 by pan on the highest irrigation treatment due to the combined effects of high transpiration and high evaporation from the permanently moist soil surface. The best field predictor of biomass yield was the salinity of the soil moisture in the top 15 cm of soil profile, which constitutes the root zone for this crop. Root zone salinity must be kept at 70–75 g l−1for high yields. Although irrigation and drainage requirements were high compared to conventional crops, seawater irrigation appears to be feasible in medium sand and could augment crop production along coastal deserts. The possibility of using this crop for animal production is discussed.  相似文献   

17.
Distinct rock fragment displacements occur on the ambas, or structurally determined stepped mountains of the Northern Ethiopian Highlands. This paper describes the rock fragment detachment from cliffs by rockfall, quantifies its annual rate, and identifies factors controlling rock fragment movement on the scree slopes. It further presents a conceptual model explaining rock fragment cover at the soil surface in these landscapes. In the May Zegzeg catchment (Dogu'a Tembien district, Tigray), rockfall from cliffs and rock fragment movement on debris slopes by runoff and livestock trampling were monitored over a 4-year period (1998–2001). Rockfall and rock fragment transport mainly induced by livestock trampling appear to be important geomorphic processes. Along a 1500-m long section of the Amba Aradam sandstone cliff, at least 80 t of rocks are detached yearly and fall over a mean vertical distance of 24 m resulting in a mean annual cliff retreat rate of 0.37 mm y− 1. Yearly unit rock fragment transport rates on scree slopes ranged between 23.1 and 37.9 kg m− 1 y− 1. This process is virtually stopped when exclosures are established. Corresponding mean rock fragment transport coefficients K are 32–69 kg m− 1 y− 1 on rangeland but only 3.9 kg m− 1 y− 1 in densely vegetated exclosures. A conceptual model indicates that besides rockfall from cliffs and argillipedoturbation, all factors and processes of rock fragment redistribution in the study area are of anthropogenic origin.  相似文献   

18.
To accurately estimate soil organic carbon (SOC) storage in upper alpine to nival zones on the Tibetan Plateau, we inventoried SOC pools in 0–0.3 m profiles along an altitudinal gradient (4400–5300 m asl). We also studied vegetation properties and decomposition activity along the gradient to provide insight into the mechanisms of SOC storage. The vegetation cover and belowground root biomass showed a gradual increased with altitude, reaching a peak in the upper alpine zone at 4800–4950 m before decreasing in the nival zone at 5200–5300 m.Decomposition activity was invariant along the altitudinal gradient except in the nival zone. SOC pools at lower sites were relatively small (2.6 kg C m−2 at 4400 m), but increased sharply with altitude, reaching a peak in the upper alpine zone (4950 m; 13.7 kg C m−2) before decreasing (1.0 kg C m−2 at 5300 m) with altitude in the nival zone. SOC pool varied greatly within individual alpine meadows by a factor of five or more, as did bulk density, partly due to the effect of grazing. Inventory data for both carbon density and bulk density along altitudinal gradients in alpine ecosystems are of crucial importance in estimating global tundra SOC storage.  相似文献   

19.
As part of the restoration of degraded land south of the Sahara, an experimental study has been carried out on the germinative properties of the seeds of seven Sahelian leguminous species (Cassia obtusifolia, Cassia occidentalis, Indigofera astragalina, Indigofera senegalensis, Indigofera tinctoria, Sesbania pachycarpa and Tephrosia purpurea). Analysis of the effects of temperature, pretreatment and water potential has enabled definition of their optimum germination conditions. For the temperature range studied (20–40°C), germination capacity was significantly greater between 30 and 35°C for all species. All species except Cassia obtusifolia developed a very strong integumental inhibition which was easily eliminated by mechanical scarification or immersion in concentrated sulphuric acid (H2SO4, 95%). Study of the influence of water potential on germination showed that these species are able to germinate at relatively low water potentials. Different patterns of response to water stress are highlighted and explained by the different behaviours of these species in the semi-arid conditions of the Sahelian environment.  相似文献   

20.
Beach–dune seasonal elevation changes, aeolian sand transport measurements, bathymetric surveys and shoreline evolution assessments were used to investigate annual and seasonal patterns of dune development on Sfântu Gheorghe beach, the Danube delta coast, from 1997 to 2004. Dune volume increased consistently (1.96 m3 m− 1 y− 1 to 5.1 m3 m− 1 y− 1) over this 7-year period with higher rates in the southward (downdrift) direction. Dune aggradation is periodically limited by storms, each of which marks a new evolutionary phase of the beach–dune system. As a consequence of the variable beach morphology and vegetation density during a year, foredune growth occurs during the April–December interval while between December and April a slightly erosive tendency is present. The pattern of erosion and deposition shown by the topographical surveys is in good agreement with the sand transport measurements and demonstrates the presence of a vigorous sand flux over the foredunes which is 20–50% smaller than on the beach. This high sand flux, due to low precipitation and sparse vegetation cover, creates an aerodynamically efficient morphology on the seaward dune slope. The seaward dune face accretes during low to medium onshore winds (5.5–12 m s− 1) and erodes during high winds (> 12 m s− 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号