首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 609 毫秒
1.
冻融条件下土壤中水盐运移规律模拟研究   总被引:16,自引:0,他引:16  
冻融作用是土壤盐碱化独特的形成机制,冻融条件下土壤中盐分迁移是水分对流、浓度梯度、温度梯度、不同溶质、土壤结构及质地等因素作用下的综合结果,温度是导致土壤中水分与盐分迁移的驱动力。在土壤冻融过程中,水分和盐分的两次迁移过程构成了特殊的水盐运动规律。在冻融过程中,土壤剖面结构发生变异,形成冻结层、似冻结层和非冻结层。冻结带土水势降低导致水分不断向冻层迁移,冻结缘以下的盐分同步向上运移,整个冻层的土壤含盐量明显增加;在融化过程中,随着地表蒸发逐渐强烈,使冻结过程中累积于冻结层中的盐分,转而向地表强烈聚集,使表层的盐分含量急剧上升。当冻结层未融通之前,尚未融化的冻层起到隔水的作用,不但阻止顶部融水向下层渗透,而且隔断了与下层水的联系。模拟实验结果充分证明了中国北方冻融区域土壤盐碱化的发生过程,为有效防治土壤盐碱化提供了理论依据。  相似文献   

2.
基于2004~2008年的土壤温度和湿度等数据,分析了盘锦芦苇(Phragmites australis)沼泽的土壤冻融过程及其浅层土壤的水热特征。结果表明,盘锦芦苇沼泽土壤温度变幅随着土壤深度增加而减小;土壤冻融期一般从12月初开始,至3月末或4月初结束。土壤冻融过程表现为单向冻结、双向消融的特征,总体上冻结过程慢,消融过程快。日冻融循环(土壤夜间冻结,白天消融)持续时间较短,冻结期几乎没有明显的日冻融循环,消融期日冻融循环天数不超过10 d。冻融期开始与结束时间、最大冻结深度以及完全冻结期持续时间有显著的年际差异。浅层土壤未冻水含量在完全冻结期低于10%。  相似文献   

3.
光合响应特征与水分利用效率研究对深入理解柽柳(Tamarix ramosissima)对水盐胁迫的适应性机制十分必要,可为荒漠绿洲湿地盐渍化的改善和治理提供科学指导。以荒漠绿洲湿地柽柳为研究对象,利用Li-6400光合仪测定水盐梯度下柽柳的光合参数及其对光强的响应,探讨水盐梯度对荒漠绿洲湿地植物光合作用和水分利用效率的影响机制。结果表明:荒漠绿洲湿地柽柳的净光合速率(P_n)呈不对称双峰型日变化趋势,河岸灌木、盐沼和绿洲草地湿地的次峰较主峰分别下降19%、8.5%和11.2%;蒸腾速率(T_r)表现为单峰型。在同一水盐环境下,柽柳的Pn和水分利用效率(WUE)随光合有效辐射(PAR)的增强先快速升高后渐趋平缓。Tr对PAR的增强表现均不敏感。盐沼湿地柽柳的最大净光合速率、光饱和点与表观量子效率均最大,光补偿点最小。柽柳光饱和点512.67~1 790μmol·m~(-2)·s~(-1),光补偿点16.28~19.23μmol·m~(-2)·s~(-1)。适度的水盐含量会促进光合作用,水盐含量过高或过低均会抑制光合速率。盐分含量越低,荒漠绿洲湿地柽柳适应光强的范围越广。适度的水分含量下降可促进水分利用效率的提高。  相似文献   

4.
藏北高寒草地土壤冻融循环过程及水热分布特征   总被引:4,自引:0,他引:4  
利用活动层土壤剖面的温度、水分观测资料,系统研究了藏北高寒草地多年冻土活动层土壤的冻融过程及其水热分布特征。研究表明:1.土壤剖面温度随气温发生周期性波动,具有明显的滞后效应,且随深度增加变幅减小;2.土壤剖面完全冻结天数为109~123 d,日冻融循环主要发生在表层(0~10 cm)土层中,冻融过程可分为不稳定冻结期、完全冻结期、不稳定消融期、和消融期4个阶段;3.受冻融作用影响,土壤含水量呈现"凹"型变化,变化趋势与土壤温度有较好的一致性;4.冻融作用有利于维持藏北高寒草地土壤水分,在季节转换,生态系统碳、氮循环中具有重要作用。  相似文献   

5.
季节性冻融是干旱区土壤盐碱化形成的主要驱动因子,但冻融过程中土壤水盐耦合关系及热量调控机理仍不清楚。通过分析2009年11月~2010年5月新疆玛纳斯河流域典型盐荒地季节性冻融过程中土壤剖面160 cm以内的水分、盐分和温度动态变化,探讨了不同土层冻融过程中水热盐的耦合关系。结果表明:土壤最大冻结深度为150 cm左右,表土层(0~40 cm)温度与气温关系密切;土壤剖面水分呈现“C”型垂直分布,表土层和底土层(100~160 cm)含水量较大,而心土层(40~100 cm)含水量不足10%,土层平均含水率在冻融前期增加了12.91%,而在初蒸期减少了10.01%;土壤剖面盐分在冻结期和初蒸期表聚作用明显,心土层和底土层含盐量稳定,土壤剖面含盐量表现为“积盐-脱盐-再积盐”的变化过程。水热盐之间具有高度协同性,心土层和底土层表现为水盐相随、而表土层为水去盐留的耦合特征,热量传输是调控水盐运移的关键因素。  相似文献   

6.
李东昇  崔步礼  赵云朵 《地理研究》2022,41(10):2821-2831
区域地下水溶解性碳的时空变化特征研究对于认识区域物质循环和能量传递及推动区域生态可持续发展具有重要意义。本研究在青海湖流域冻结期和融化期分别收集了地下水、河水和湖水样品,研究了环青海湖地下水在冻结期和融化期的溶解性碳特征,并探究了不同类型地下水的溶解性碳特征及其对不同冻融时期的响应,最后揭示了环湖区域不同水体的溶解性碳的差异特征及影响因素。结果表明:冻结期地下水、河水和湖水的溶解性无机碳(DIC)均相对高于融化期,溶解性有机碳(DOC)均相对低于融化期。地下水、河水和湖水的溶解性碳均主要以DIC为主,DIC在溶解性碳的占比高达92%。地下水的DIC平均含量在基岩裂隙水、水量中等和浅埋藏的水文地质条件下相对较高,DOC平均含量在基岩裂隙水、水量丰富和浅埋藏的水文地质条件下相对较高。地下水的DIC在湖滨平原砂砾石层、淤泥质砂层潜水和水量中等的水文地质条件下受冻融期影响较大,DOC在基岩裂隙水和水量贫乏的水文地质条件下受冻融期影响较大。湖水的DIC和DOC均远高于河水和地下水。河水的DIC在融化期和冻结期均低于地下水,DOC在融化期高于地下水,在冻结期低于地下水。  相似文献   

7.
马晓飞  楚新正  马倩 《干旱区地理》2015,38(6):1190-1201
冻融作用对酶和微生物活性具有重要影响,进而影响植物群落的生长发育。为深入了解荒漠优势种梭梭群落冬季土壤生态过程,于2012年10月~2013年10月,对土壤冻融期、冻结期、融冻期和生长季的艾比湖典型样地进行野外实地观测、采样和室内分析。通过对比分析不同冻融阶段土壤含水量、pH值、有机质、全氮、酶活性和微生物数量的变化特征。结果表明:(1)土壤含水量,融冻期 >冻结期 >冻融期 >生长季,土壤pH值,生长季 >融冻期 >冻融期 >冻结期,各土层土壤含水量以浅层土表现最为显著(P <0.05),不同冻融阶段各土层pH值差异性较大,冻融期、冻结期和生长季表层土壤pH值较大,融冻期浅层土壤pH值较大。(2)土壤有机质和全氮含量的波动状况相似,分别在融冻期和生长季呈现波峰和波谷,不同土层间全氮和有机质含量差异性较小,以冻融期和生长季表现最为显著(P <0.05)。(3)土壤酶活性的变化中,过氧化氢酶、脲酶和蛋白酶在融冻期含量最大,冻融期次之,蔗糖酶在冻结期活性最大,土壤微生物数量的变化以融冻期最大,除此之外,各冻融阶段细菌和放线菌占主导,真菌含量相对较少。(4)冻融循环次数分布于冻融期和融冻期,对土壤酶活性和微生物数量具有一定的影响,致使融冻期土壤各因子大于冻融期。  相似文献   

8.
基于水热变化的青藏高原土壤冻融过程研究进展   总被引:1,自引:0,他引:1  
青藏高原近地层土壤冻融过程是高原地表最显著的陆面特征之一,也是判断冻土发育、存在以及反映气候变化的重要指标。近地层土壤昼夜、季节性的冻结、融化会导致青藏高原陆—气间能水平衡的变化甚至异常,从而显著影响高原地表水文过程、生态环境、碳氮循环以及高原及其周边区域的天气和气候系统。论文从观测、模拟以及对气候的影响3个角度来探讨1990年以来青藏高原土壤冻融过程的最新研究进展。结果表明:① 在一个完整的年冻融循环过程中,近地表各层土壤大体都经历了夏季融化期、春秋季融化—冻结期、冬季冻结期4个阶段。受局地因素的影响,不同站点的冻结或消融起止时间、速率、类型均有差异。② 多年冻土区和季节冻土区的日冻融循环过程差异较大,主要体现在日冻融循环持续时间上。③ 不同陆面模式都可以很好地抓住冻融过程中物理量的时空变化,但都需要针对高原陆面过程的特点进行参数化改进。④ 规避不稳定的迭代计算并根据热力学平衡方程确定冻融临界温度可以改进不合理的冻融参数化方案。基于已有研究回顾,发现增加高质量的观测站,利用卫星遥感等多种手段来反演高原土壤冻融过程以及加强陆面模式与区域气候模式和全球气候模式的耦合,并立足于高原冻融过程的特点发展相适应的参数化方案以及模拟结构的调整,能够有助于高原冻融过程的模拟。  相似文献   

9.
米草属植物是典型的盐沼湿地优势种,在北美东海岸及墨西哥湾广泛分布,同时作为一种引入种或入侵种分布在西欧沿海湿地及我国广大沿海湿地,并有不断扩大其分布区面积的趋势,构成了全球沿海盐沼湿地的重要组成部分,也是全球重要的甲烷排放天然源。综述了国内外关于米草属植物盐沼湿地甲烷排放研究进展,包括米草属植物盐沼湿地甲烷排放通量、季节变化、甲烷的产生、氧化与传输以及影响甲烷通量的主要因子。  相似文献   

10.
土壤冻融交替是陆地表层极其重要的物理过程,土壤冻融状态的频繁变化对地气能量交换、地表径流、植被生长、生态系统及土壤碳氮循环等均具有重要的影响。本文基于1981—2019年ERA5-LAND逐小时土壤温度数据,借助GIS空间分析功能,利用Python编程处理分析了中国东北地区近地表土壤冻融状态的时空变化特征。结果表明:从不同冻融状态起始日期的空间分布来看,近地表不同阶段的起始日期主要受纬度和地形的影响,具有明显的纬度地带性和垂直地带性。春季冻融过渡期和完全融化期的起始日期由东南向西北均呈逐渐推迟趋势,而秋季冻融过渡期与完全冻结期起始日期则由东南向西北随纬度升高越来越早。就不同冻融状态发生天数的空间分布而言,研究区南部春季冻融过渡期发生天数多于北部,西部多于东部,年均发生天数均在30 d以内;秋季发生冻融的天数空间差异不大,研究区一半以上的地区年均发生天数在10 d以内。完全融化期发生天数最多,从东南向西北呈逐渐减少趋势,年均发生天数主要介于150~240 d之间;完全冻结期发生天数则由南向北日益增多,其空间分布表现为一向南开口的簸箕形,各地年均发生天数集中于90~180 d之间。从时间变化趋势来看,近年来春季冻融过渡期起始日期以提前趋势为主,而秋季冻融过渡期起始日期总体表现为延后,致使完全融化期发生天数以增加趋势为主,年均变化速度高达0.2 d/a;大兴安岭以西、呼伦贝尔高原以北地区及辽河平原春季冻融过渡期发生天数呈减少趋势,其他地区为增加趋势;大兴安岭以西地区、呼伦贝尔高原以北地区完全融化期起始日期明显提前;松嫩平原和长白山区秋季冻融过渡期起始日期推迟显著,发生天数的变化趋势呈北增南减的空间分异特征;不同地区完全冻结期起始日期的变化趋势差异显著,中部广大的平原区呈不显著的推迟趋势,而大、小兴安岭、长白山、辽东半岛和辽西丘陵则提前进入完全冻结状态;研究区完全冻结期发生天数呈减少趋势,研究区中部的季节冻土区完全冻结期明显变短,年均减少速度大于0.2 d/a。  相似文献   

11.
The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and their associated complex hydrothermal coupling can significantly affect variation in mean annual temperatures and the formation of ground ice in permafrost regions. Using soil-temperature and-moisture data obtained from the active layer between September 2011 and October 2014 in the permafrost region of the Nanweng'he River in the Da Xing'anling Mountains, the freeze-thaw characteristics of the permafrost were studied. Based on analysis of ground-temperature variation and hydrothermal transport characteristics, the thawing and freezing processes of the active layer were divided into three stages:(1) autumn-winter freezing,(2) winter freeze-up, and(3) spring-summer thawing. Variations in the soil temperature and moisture were analyzed during each stage of the freeze-thaw process, and the effects of the soil moisture and ground vegetation on the freeze-thaw are discussed in this paper. The study's results show that thawing in the active layer was unidirectional, while the ground freezing was bidirectional(upward from the bottom of the active layer and downward from the ground surface).During the annual freeze-thaw cycle, the migration of soil moisture had different characteristics at different stages. In general, during a freezing-thawing cycle, the soil-water molecules migrate downward, i.e., soil moisture transports from the entire active layer to the upper limit of the permafrost. In the meantime, freeze-thaw in the active layer can be significantly affected by the soil-moisture content and vegetation.  相似文献   

12.
孟阳阳  刘冰  刘婵 《中国沙漠》2019,39(1):149-160
以甘肃临泽荒漠绿洲湿地为研究对象,通过对土壤温度、含水量、电导率及蒸散量的野外观测,在植物生长期和冻融期分别深入分析水热盐耦合运移过程及其影响因素,探讨水热梯度对盐分运移及其分布格局的控制作用。结果表明:土壤温度整体呈现出春夏季逐渐升高、秋冬季降低趋势。在冻结期,土壤表现为脱盐状态,表层电导率由2.8 mS·cm-1降到1.2 mS·cm-1;而在消融期为积盐状态,表层电导率由1.2 mS·cm-1升到3.7 mS·cm-1。在生长期,土壤含水量和电导率波动较为剧烈,表层含水量27%~43%,表层电导率3~5.5 mS·cm-1,土壤脱盐、积盐反复出现。全年蒸散量总体呈单峰变化趋势,年蒸散量507 mm;土壤电导率与蒸散量呈正比关系,与地下水位呈负相关关系;蒸散发作用是土壤表层积盐的主要驱动力,而地下水波动影响着湿地脱盐、洗盐过程。因此,荒漠绿洲湿地土壤盐分累积过程是水分运移和热量传输过程发生变化的结果。  相似文献   

13.
The soil-freezing characteristic curve (SFCC), which represents the relationship between unfrozen water content and sub-freezing temperature (or suction at ice-water interface) in a freezing soil, can be used for understanding the transportation of heat, water, and solute in frozen soils. In this paper, the soil freezing process and the similarity between the SFCC of saturated frozen soil and soil-water characteristic curve (SWCC) of unfrozen unsaturated soil are reviewed. Based on similar characteristics between SWCC and SFCC, a conceptual SFCC is drawn for illustrating the main features of soil freezing and thawing processes. Various SFCC expressions from the literature are summarized. Four widely used expressions (i.e., power relationship, exponential relationship, van Genuchten 1980 equation and Fredlund and Xing 1994 equation) are evaluated using published experimental data on four different soils (i.e., sandy loam, silt, clay, and saline silt). Results show that the exponential relationship and van Genuchten (1980) equation are more suitable for sandy soils. The simple power relationship can be used to reasonably best-fit the SFCC for soils with different particle sizes; however, it exhibits limitations when fitting the saline silt data. The Fredlund and Xing (1994) equation is suitable for fitting the SFCCs for all soils studied in this paper.  相似文献   

14.
Combined observations of hourly soil temperature and electric potential, the latter converted to a relative index of soil-water solute concentration, yield information on the physical chemistry of near-surface frost effects. Solute concentration near the descending 0° C isotherm in the refreezing active layer above permafrost is divided into three distinct zones: (1) an ion-enriched zone in the unfrozen active layer that precedes the penetrating freezing front; (2) an ion-purified desorbed zone at the freezing front that is the source region of the downward-expelled ions and water; and (3) a hydrologically isolated subfreezing zone of enhanced solute concentration located above the freezing isotherm. High-frequency fluctuations superimposed on these general patterns are traceable to vapor migration driven by surface thermal fluctuations. These effects diminish at temperatures below about -0.4° C, as permeability decreases with soil-ice formation. The combined temperature-solute concentration time series is used to develop sorption curves for the frozen organic and mineral soils, and indicates that approximately half of the pore water present in the mineral soil at -0.4° C had not been converted to ice at -6° C. Gradual soil desiccation over winter appears to result from outward vapor diffusion, possibly through soil cracks. [Key words: Alaska, active layer, frozen ground, soil temperature, soil water, permafrost.]  相似文献   

15.
三江平原环型湿地土壤温度梯度的研究   总被引:21,自引:3,他引:18  
三江平原环型湿地是低温 (碟型洼地 )和高温 (岛状林 )两种环境组合的典型区 ,为了研究三江平原环型湿地土壤温度梯度特征 ,对环型湿地 4种群落的土壤温度进行了观测。结果表明 ,由环型湿地的中心到边缘 ,土壤温度逐渐升高 ,土壤温度垂直变异由大逐渐减小。各群落深层土壤温度日变化不明显 ,而季节变化较明显 ,不同群落间深层土壤温度水平变异和垂直变异差异以 6月最大 ,8月和 10月份差异较小。这是由于环型湿地的中心到边缘 ,土壤层的厚度逐渐变薄 ,土壤水分含量逐渐降低 ,泥炭层的厚度逐渐变薄以至消失 ,冻结层融解时间逐渐推迟造成的。环型湿地中心的致冷效应有利于有机质的积累和保持环型湿地生态系统的稳定性。研究环型湿地的土壤温度梯度有助于从水热角度来进一步揭示沼泽湿地的生态环境效应 ,为湿地的保护及合理利用提供科学依据。  相似文献   

16.
The acquisition of spatial-temporal information of frozen soil is fundamental for the study of frozen soil dynamics and its feedback to climate change in cold regions. With advancement of remote sensing and better understanding of frozen soil dynamics, discrimination of freeze and thaw status of surface soil based on passive microwave remote sensing and numerical simulation of frozen soil processes under water and heat transfer principles provides valuable means for regional and global frozen soil dynamic monitoring and systematic spatial-temporal responses to global change. However, as an important data source of frozen soil processes, remotely sensed information has not yet been fully utilized in the numerical simulation of frozen soil processes. Although great progress has been made in remote sensing and frozen soil physics, yet few frozen soil research has been done on the application of remotely sensed information in association with the numerical model for frozen soil process studies. In the present study, a distributed numerical model for frozen soil dynamic studies based on coupled water-heat transferring theory in association with remotely sensed frozen soil datasets was developed. In order to reduce the uncertainty of the simulation, the remotely sensed frozen soil information was used to monitor and modify relevant parameters in the process of model simulation. The remotely sensed information and numerically simulated spatial-temporal frozen soil processes were validated by in-situ field observations in cold regions near the town of Naqu on the East-Central Tibetan Plateau. The results suggest that the overall accuracy of the algorithm for discriminating freeze and thaw status of surface soil based on passive microwave remote sensing was more than 95%. These results provided an accurate initial freeze and thaw status of surface soil for coupling and calibrating the numerical model of this study. The numerically simulated frozen soil processes demonstrated good performance of the distributed numerical model based on the coupled water-heat transferring theory. The relatively larger uncertainties of the numerical model were found in alternating periods between freezing and thawing of surface soil. The average accuracy increased by about 5% after integrating remotely sensed information on the surface soil. The simulation accuracy was significantly improved, especially in transition periods between freezing and thawing of the surface soil.  相似文献   

17.
Herein we review research on the structure of the frozen fringe and one of its key characteristics(unfrozen water content),and compare its current measurement methods,including pulsed nuclear magnetic resonance(NMR),time-domain reflectometry(TDR),calorimetry,thermometry,the sublimation method,and CT imagery.A freeze-thaw cycle experiment with remolded soil was conducted inside to verify the mechanism of frost heave,measuring such variables as soil-water potential,temperature,water supplement,and the position of the freezing front.Conclusions from the analysis of the experiment data are:(1) The soil-water potential,the water supplement,and the position of the freezing front vary with temperature; and(2) the temperature gradient induces the soil-water potential,which in turn provides a stable driving force for moisture migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号