首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A 3873-km2 large rectangular area of the Precambrian basement in south-western Sweden has been investigated regarding gross morphology of palaeosurfaces. GIS and digital elevation data were used to construct maps of relative and absolute relief and E–W trending height profiles. Three different palaeosurfaces were recognised and delimited; the very even sub-Cambrian peneplain in the east at an intermediate altitudinal position, an uplifted and broken part of the sub-Cambrian peneplain in the centre at the highest present elevation, and in the western coastal areas a joint-aligned valley landscape with high relative relief, probably an exhumed Mesozoic etch-surface. Phanerozoic faulting has dissected the different palaeosurfaces into tectonic blocks, which are shown from trend surface analysis to be tilted in different directions and to different degrees, characteristic and decisive for the morphological development.  相似文献   

2.
A terrain partition scheme is presented that allows the identification of regions with high landslide risk in natural terrain zones on the basis of geomorphometric criteria from moderate resolution DEMs. The key factor being the terrain segmentation to aspect regions (regions formed by points preserving the same aspect direction) instead of using an artificial regular-grid terrain partition scheme. The study area is in western Greece (NW Peloponnesus) whereas a moderate resolution digital elevation model with spacing 75 m is used. Landslide inventory analysis and knowledge conceptualization identified that the landslide susceptibility of a particular aspect region is high, if the mean elevation is low and the mean gradient is high. Each aspect region was parametrically represented on the basis of its mean gradient and elevation. The domain of each parameter was divided to seven slices (classes) on the basis of the observed density. Subsequent knowledge based mapping identified aspect regions with high landslide susceptibility for the following spatial rule: (a) “mean slope in class 6 or 7” and (b) “mean elevation in class 1 to 5”. Alternatively the rule is expressed as mean slope to be equal or greater than 15 whereas mean elevation to be in the range 0 to 750 m. These identified zones correspond to regions where historical landslides occurred (populated coastal areas in the North) as well as to south regions (natural terrain zone) where no landslide record is available, because of the limitations posed by the natural terrain landslide mapping program in Greece. The presented terrain segmentation technique combined to the spatial decision-making process, provided both an object framework for integrating geomorphometric parameters and a method for landslide risk analysis in natural terrain zones.  相似文献   

3.
Topographic change in regions of active deformation is a function of rates of uplift and denudation. The rate of topographic development and change of an actively uplifting mountain range, the Santa Monica Mountains, southern California, was assessed using landscape attributes of the present topography, uplift rates and denudation rates. Landscape features were characterized through analysis of a digital elevation model (DEM). Uplift rates at time scales ranging from 104 to 106 years were constrained with geological cross-sections and published estimates. Denudation rate was determined from sediment yield data from debris basins in southern California and from the relief of rivers set into geomorphic surfaces of known age. First-order morphology of the Santa Monica Mountains is set by large-scale along-strike variations in structural geometry. Drainage spacing, drainage geometry and to a lesser extent relief are controlled by bedrock strength. Dissection of the range flanks and position of the principal drainage divide are modulated by structural asymmetry and differences in structural relief across the range. Topographic and catchment-scale relief are ≈300–900 m. Mean denudation rate derived from the sediment yield data and river incision is 0.5±0.3 mm yr?1. Uplift rate across the south flank of the range is ≈0.5±0.4 mm yr?1 and across the north flank is 0.24±0.12 mm yr?1. At least 1.6–2.7 Myr is required to create either the present topographic or the catchment-scale relief based on either the mean rates of denudation or uplift. Although the landscape has had sufficient time to achieve a steady-state form, comparison of the time-scale of uplift and denudation rate variation with probable landscape response times implies the present topography does not represent the steady-state form.  相似文献   

4.
To protect the richness, diversity and uniqueness of China's ecosystems and landscapes, more than 150 national parks (named "National scenic and historic interest areas" in China), 85 national geoparks and 230 national nature reserves have been delimited nationwide. In addition, a total of 30 world heritage sites (4 mixed, 4 natural, 22 cultural), 24 biosphere reserves and 8 world geoparks have been ratified for China in a short time by the UNESCO. Unfortunately, most of these national and…  相似文献   

5.
The landscape of today's central Iberian Peninsula has been shaped by ongoing tectonic activity since the Tertiary. This landscape comprises a mountain ridge trending E–W to NW–SE, the Central System, separating two regions of smooth topography: the basins of the rivers Duero and Tajo. In this study, we explore interrelationships between topography and tectonics in the central Iberian Peninsula. Regional landscape features were analysed using a digital elevation model (DEM). Slope gradients and slope orientations derived from the DEM were combined to describe topographic surface roughness. Topography trend-surfaces inferred from harmonic analysis were used to define regional topographic features. Low roughness emphasizes the smooth nature of the basins' topography, where surfaces of homogeneous slope gradient and orientation dominate. High roughness was associated with abrupt changes in gradient and slope orientation such as those affecting crests, valley bottoms and scarp edges present in the mountain chain and in some deep incised valleys in the basins. One of the applications of roughness mapping was its capacity to isolate incised valley segments. The area distribution of incised rivers shows their prevalence in the east. On a regional scale, the topographic surface can be described as a train of NE–SW undulations or waves of 20 km wavelength. These undulations undergo changes in direction and interruptions limited by N–S-trending breaks. E–W and NE–SW troughs and ridges clearly mark structural uplifts and depressions within the Central System. These structures are transverse to the compressive NW–SE stress field that controlled the deformation of the central Iberian Peninsula from the Neogene to the present. They represent the upper crustal folding that accommodates Alpine shortening. N–S breaks coincide with Late Miocene faults that control the basins' sedimentation. Further, associated palaeoseismic structures suggest the recent tectonic activity of N–S faults in the eastern part of the Tajo Basin. Apatite fission track analysis data for this area suggest the occurrence of a significant uplift episode from 7 to 10 Ma which induced the river incisions appearing in the roughness map. N–S and NE–SW faults could be seismogenic sources for the current moderate to low seismic activity of the east Tajo Basin and southeast Central System. Although N–S fault activity has already been established, we propose its significant contribution to shaping the landscape.  相似文献   

6.
About 70% of its land area as mountains and plateaus,China is the largest mountain countryin the world.Thanks to its vast territory (9.6 million km2),outstanding relief and varied climates,China boasts extremely plenty of ecosystems and landscapes.From south to north,it traverses almostall the temporal zones from tropical rainforest in the southernmost to frigid-temperate needle-leavedforest in the northernmost; from east to west,it sees a gradual transition fro humid forest landscape toextremely arid desert landscape; vertical change of landscapes is most striking owing to the existenceof many high mountains (above 6000-7000 m,e.g.,the Himalayas,the Kunlun,the Tianshan,theHengduan,etc.) and plateaus,especially the immense Tibetan Plateau (averagely 4500 m above sealevel).All of this give rise to the richness and diversity of ecosystems and landscape in China.Some ofthe ecosystems are endemic to China,e.g.,alpine desert and alpine steppe in the Tibetan Plateau.As aresult,China bears a great responsibility in the protection of global ecosystems and landscape.  相似文献   

7.
We describe a method of morphometric characterisation of landform from digital elevation models (DEMs). The method is implemented first by classifying every location into morphometric classes based on the mathematical shape of a locally fitted quadratic surface and its positional relationship with the analysis window. Single‐scale fuzzy terrain indices of peakness, pitness, passness, ridgeness, and valleyness are then calculated based on the distance of the analysis location from the ideal cases. These can then be combined into multi‐scale terrain indices to summarise terrain information across different operational scales. The algorithm has four characteristics: (1) the ideal cases of different geomorphometric features are simply and clearly defined; (2) the output is spatially continuous to reflect the inherent fuzziness of geomorphometric features; (3) the output is easily combined into a multi‐scale index across a range of operational scales; and (4) the standard general morphometric parameters are quantified as the first and second order derivatives of the quadratic surface. An additional benefit of the quadratic surface is the derivation of the R 2 goodness of fit statistic, which allows an assessment of both the reliability of the results and the complexity of the terrain. An application of the method using a test DEM indicates that the single‐ and multi‐scale terrain indices perform well when characterising the different geomorphometric features.  相似文献   

8.
China has a vast area of mountains that are of great research interest. Chongqing is a typical mountain city in China. In urban construction, a mountain is not only an important limiting condition for urban development, but also an important condition for shaping the urban form. The area from the Yangtze River to the eastern ridge line of Nan Mountain in Nanan District is strongly representative of mountain cities with a complex landform, fragile ecological environment and a long history and culture. In recent years, the construction and optimization of this area are increasingly closely related to the landscape environment. However, due to the special environments of mountain cities, altitude and landform conditions become the key influencing conditions for further development of the cities. Therefore, this paper takes this region as an example, focuses on remote sensing and field measurement data, combines government data with that from scholarly research, and conducts relevant exploration through GIS, ENVI and some chart processing software. At first, from the perspective of the landscape gradient and urban construction, the characteristics of the urban landscape gradient are sorted out, and the developmental status of each urban area is analyzed. Then, the coupling relationships between the landscape features of each gradient and each urban area are analyzed. Finally, based on the analysis results, three major optimization measures are proposed to maintain ecological harmony in the mountainous area, reconstruct the mountain characteristic culture, and create unique mountain aesthetics, all with the hope of providing some guidance for the future development of the study area and similar mountain cities.  相似文献   

9.
The landscape of the Canadian Rockies in southern Alberta is not a direct result of constructional processes; that is, the ridges and peaks have not been pushed into the positions in which we see them today. Tectonic activity provided original elevation but not mountains: at the end of Laramide time, what are now the front ranges and foothills of the Rockies comprised a high-elevation upland of relatively low relief. The present mountain physiography is the result of 55–60 million years of post-orogenic differential erosion, in which more resistant rocks have been left at higher elevations than less-resistant rocks.The Canadian Rockies and the foothills are developed in a thin-skinned, thrust-and-fold belt created during the Laramide Orogeny; the adjacent Interior Plains cut across foreland basin sediments derived from the mountains. The mountains currently consist of large parts of ridges of well-indurated Paleozoic and, locally, Proterozoic rock alternating with valleys developed in soft Mesozoic clastic rock. In the foothills, where the soft Mesozoic rock is at the surface, relief is subdued, but ridges of more-resistant sandstone rise above shaley lowlands. The plains are relatively flat but also contain erosional outliers of higher paleo-plains-surfaces.Numerous lines of evidence suggest that the mountains and foothills have lost several kilometers of overburden since the end of the Laramide Orogeny, while the western plains have lost at least 2 km, requiring that the local relief of the mountains and foothills that we see is erosional in origin. Local physiography is adjusted to lithology: the mountains have high relief because the exposed sub-Mesozoic rocks can hold up high, steep slopes, whereas the foothills have low relief because the underlying Cretaceous rocks cannot hold up high, steep slopes. The east-facing escarpment at the mountain front is a fault-line scarp along a low-angle thrust.Mesozoic rocks involved in the deformation originally extended all the way across the thrust and fold belt, and physiography of the belt at the end of Laramide time (60–55 Ma) depended mainly on whether Mesozoic or Paleozoic/Proterozoic rocks were exposed at the surface at that time. A reconstruction using critical-taper theory generally agrees with reconstructions from earlier stratigraphic and paleothermometry studies: what are now the front ranges at the eastern edge of the Rocky Mountains were mostly or perhaps entirely covered with Mesozoic rocks and despite that high elevation had a hilly, not mountainous, character. The main ranges, in the central Rocky Mountains, were in part stripped of Mesozoic cover by then and more mountainous. Treeline was higher then, and the thrust belt may have been largely or entirely vegetated. Generation of modern relief in the front ranges, including the escarpment at the mountain front, had to await stripping of Mesozoic rocks and incision of rivers into harder substrates in post-Laramide time.The Interior Plains are an erosional surface that was cut 1 to 3 km below the aggradational top of the foreland basin sediments. Although some of the present low local relief of the plains results from weakness of underlying Cretaceous/Tertiary rocks, the low relief is probably largely related to the process of denudation.  相似文献   

10.
About 70% of its land area as mountains and plateaus, China is the largest mountain country in the world. Thanks to its vast territory (9.6 million km2), outstanding relief and varied climates, China boasts extremely plenty of ecosystems and landscapes. From south to north, it traverses almost all the temporal zones from tropical rainforest in the southernmost to frigid-temperate needle-leaved forest in the northernmost; from east to west, it sees a gradual transition fro humid forest landscape to extremely arid desert landscape; vertical change of landscapes is most striking owing to the existence of many high mountains (above 6000–7000 m, e.g., the Himalayas, the Kunlun, the Tianshan, the Hengduan, etc.) and plateaus, especially the immense Tibetan Plateau (averagely 4500 m above sea level). All of this give rise to the richness and diversity of ecosystems and landscape in China. Some of the ecosystems are endemic to China, e.g., alpine desert and alpine steppe in the Tibetan Plateau. As a result, China bears a great responsibility in the protection of global ecosystems and landscape.  相似文献   

11.
基于MODIS的秦巴山地气温估算与山体效应分析   总被引:1,自引:0,他引:1  
秦巴山地作为横亘在中国南北过渡带的巨大山脉,其山体效应对中国中部植被和气候的非地带性分布产生了重要的影响,山体内外同海拔的温差是表征山体效应大小较为理想的指标。本研究结合MODIS地表温度(LST)数据、STRM-1 DEM数据和秦巴山地的118个气象站点的观测数据,分别采用普通线性回归(OLS)和地理加权回归(GWR)两种分析方法对秦巴山地的气温进行估算,在此基础上将秦巴山地各月气温转换为同海拔(1500 m,秦巴山地平均海拔)气温,对比分析秦巴山地的山体效应。结果表明:① 相比OLS分析,GWR分析方法的精度更高,各月回归模型的R 2均在0.89以上,均方根误差(RMSE)在0.68~0.98 ℃之间。② 利用GWR估算得到的同海拔气温,从东向西随海拔升高呈现了明显的升高的趋势,秦岭西部山地比东段升高约6 ℃和4.5 ℃;大巴山西部山地年均和7月份同海拔的气温较东段升高约8 ℃和5 ℃。③ 从南向北,以汉江为分界,秦岭与大巴山的同海拔的气温均呈现出由山体边缘向内部升高的趋势。④ 秦巴山地西部大起伏高山,秦岭大起伏高中山和大巴山大起伏中山,相比豫西汉中中山谷地,各月均同海拔气温分别升高了约3.85~9.28 ℃、1.49~3.34 ℃和0.43~3.05 ℃,平均温差约为3.50 ℃,说明秦巴山地大起伏中高山的山体效应十分明显。  相似文献   

12.
Mountain topography is the result of highly scale-dependent interactions involving climatic, tectonic, and surface processes. No complete understanding of the geodynamics of mountain building and topographic evolution yet exists, although numerous conceptual and physical models indicate that surficial erosion plays a significant role. Mapping and assessing landforms and erosion in mountain environments is essential in order to understand landscape denudation and complex feedback mechanisms. This requires the development and evaluation of new approaches in remote sensing and geomorphometry. The research herein evaluates the problem of topographic normalization of satellite imagery and demonstrates the use of terrain analysis using a digital elevation model (DEM) to evaluate the relief structure of the landscape in the western Himalaya. We specifically evaluated the Cosine-correction and Minnaert-correction methods to reduce spectral variation in imagery caused by the topography. Semivariogram analyses of the topography were used to examine the relationships between relief and surface processes. Remote-sensing results indicate that the Minnaert-correction method can be used to reduce the “topographic effect” in satellite imagery for mapping, although extreme radiance values are the result of not accounting for the diffuse-skylight and adjacent-terrain irradiance. Geomorphometry results indicate that river incision and glaciation can generate extreme relief, although the greatest mesoscale relief is produced by glaciation at high altitudes. At intermediate altitudes, warm-based glaciation was found to decrease relief. Our results indicate that glaciation can have a differential influence on the relief structure of the landscape. Collectively, our results indicate that scale-dependent analysis of the topography is required to address radiation transfer issues and the polygenetic nature of landscape denudation and relief production.  相似文献   

13.
In several publications Evers (see especially 1941) described ‘Piedmont’ or ‘Rumpftreppen’ in Norway. He claimed to have found the Treppen in many parts of the country at surprisingly regular height intervals: at 200 m, 400 m, 600 m, 800 m, 1000 m, and 1200 m above sea level, at sea level and 200 m below sea level. Evers recognized ‘Rumpftreppen’ north of Kristiansand in the southernmost part of Norway at 200 m, 600 m, 800 m, 1000 m, and 1200 m elevation (Evers 1941, p. 38). This part of Norway is underlain by crystalline Precambrian rocks. Rolling hills with a low relief between more deeply incised north-south-trending main valleys characterize the landscape. The hills are flat-topped or slightly rounded. A smooth surface, which passes through the highest hill-tops, rises gradually from the coast to the high mountain plateau of central southern Norway (Fig. 1). The surface is also shown by profiles at right angles to the coast line (Fig. 2). Towards the northwest this ‘summit surface’ passes into the mountain plateau which follows the sub-Cambrian ‘peneplain’ in Ryfylke (Andersen 1954). Andersen (1960) therefore suggested that the ‘summit surface’ in southernmost Norway was probably the tilted sub-Cambrian ‘peneplain’ slightly lowered by erosion. The only extensive distinct younger erosion surface (shelf) that could be clearly recognized lies on the coast approximately at sea level (Fig. 3).  相似文献   

14.
Landforms are used as analytical tools to separate inherited features from the glacial impact on Precambrian basement rocks in southwest Sweden. The study covers three different palaeosurfaces, the sub-Cambrian peneplain (relative relief (r.r.) 0–20 m) with the character of a pediplain, an uplifted and dissected part of the sub-Cambrian peneplain (r.r. 5–40 m) and an etch-surface (r.r. 20–135 m), presumably sub-Mesozoic. The surfaces were recently re-exposed, probably due to a Neogene upheaval with some pre-glacial reshaping. Strong structural control and no alignment with glacial erosional directions other than those coinciding with structures, are arguments for etch processes as a most important agent for relief differentiation. This is strengthened by the occurrence of saprolite residues and etchforms in protected positions.
The glacial reshaping of the sub-Cambrian flat bedrock surfaces is negligible. The glacial impact becomes more evident in the uplifted and dissected parts of the peneplain and within the hilly sub-Mesozoic surface. The higher the initial relief the more effect of glacial erosion on individual hills, both on the abrading side, with formation of roches moutonnées, and on the plucking side. Detailed etchforms are preserved in protected positions in spite of erosion by a clearly wet-based ice. The magnitude of the Pleistocene glacial erosion is considerably less than the amplitude of the palaeorelief in the entire area.
Landscapes of areal glacial scouring have been described as comprising irregular depressions with intervening bosses scraped by ice and labelled 'knock and lochan' topography, but we suggest that an etched bedrock surface is a prerequisite for this type of landscape to develop.  相似文献   

15.
横断山区地貌区划   总被引:1,自引:0,他引:1  
本文概述了横断山区地貌区划的基本原则和划区依据。在分析本区地貌特征的基础上,将区内地貌划分为2个地貌区;Ⅰ.横断极大起伏大起伏高山山原地貌区;Ⅱ.云贵川高中山山原地貌区,13个地貌地区,并分别论述了各区主要地貌特征。  相似文献   

16.
基于DEM的中国地形起伏度适宜计算尺度研究   总被引:10,自引:0,他引:10  
基于SRTM和ASTER DEM数据,在全国范围内选取13个实验区,在渐变尺度下计算平均起伏度变化曲线的"突变点",据此确定中国地形起伏度的适宜计算尺度;结合山地界定标准计算各实验区山地面积,并采用人工解译的山地范围对计算结果进行检验。研究结果表明:1)地形起伏度适宜计算尺度与所采用的DEM数据有关,DEM分辨率越小,地形起伏度适宜计算尺度越大;2)针对同一分辨率DEM数据,中国境内的地形起伏度适宜计算尺度随地貌特征变化而变化,但总体变化幅度不大;3)针对SRTM和ASTER DEM两种常用数据源,分别选择4.72km2和3.20km2作为地形起伏度适宜计算尺度是合理的,山地界定精度达90%以上。  相似文献   

17.
利用方差极大旋转经验正交函数展开、最大熵谱、小波分析方法 ,对京津冀区域近 5 0年春夏季降水的地域特征与气候变化进行研究。结果表明此区域的降水场分别存在以下主要降水异常分布型 :夏季包括燕山迎风坡型、太行山迎风坡型、冀中平原型、冀东平原型、沿海平原型、冀北山地型、冀南平原型 ;春季包括平原中南部型、燕山南麓型、滨海平原型、京西山麓型、太行山迎风坡型、冀东北高原型、冀西北高原型 (坝上 )。同时 ,通过最大熵谱、小波分析 ,进一步分析各降水型的主要变化特征及主要周期。  相似文献   

18.
The varied altitudinal gradient of climate and vegetation is further complicated by mass elevation effect (MEE), especially in high and extensive mountain regions. However, this effect and its implications for mountain altitudinal belts have not been well studied until recently. This paper provides an overview of the research carried out in the past 5 years. MEE is virtually the heating effect of mountain massifs and can be defined as the temperature difference on a given elevation between inside and outside of a mountain mass. It can be digitally modelled with three factors of intra-mountain base elevation (MBE), latitude and hygrometric continentality; MBE usually acts as the primary factor for the magnitude of MEE and, to a great extent, could represent MEE. MEE leads to higher treelines in the interior than in the outside of mountain masses. It makes montane forests to grow at 4800–4900 m and snowlines to develop at about 6000 m in the southern Tibetan Plateau and the central Andes, and large areas of forests to live above 3500 m in a lot of high mountains of the world. The altitudinal distribution of global treelines can be modelled with high precision when taking into account MEE and the result shows that MEE contributes the most to treeline distribution pattern. Without MEE, forests could only develop upmost to about 3500 m above sea level and the world ecological pattern would be much simpler. The quantification of MEE should be further improved with higher resolution data and its global implications are to be further revealed.  相似文献   

19.
This paper presents a semi-automatic method using an unsupervised neural network to analyze geomorphometric features as landform elements. The Shuttle Radar Topography Mission (SRTM) provided detailed digital elevation models (DEMs) for all land masses between 60°N and 57°S. Exploiting these data for recognition and extraction of geomorphometric features is a challenging task. Results obtained with two methods, Wood's morphometric parameterization and the Self Organizing Map (SOM), are presented in this paper.Four morphometric parameters (slope, minimum curvature, maximum curvature and cross-sectional curvature) were derived by fitting a bivariate quadratic surface with a window size of 5 by 5 to the SRTM DEM. These parameters were then used as input to the two methods. Wood's morphometric parameterization provides point-based features (peak, pit and pass), line-based features (channel and ridge) and area-based features (planar). Since point-based features are defined as having a very small slope when their neighbors are considered, two tolerance values (slope tolerance and curvature tolerance) are introduced. Selection of suitable values for the tolerance parameters is crucial for obtaining useful results.The SOM as an unsupervised neural network algorithm is employed for the classification of the same morphometric parameters into ten classes characterized by morphometric position (crest, channel, ridge and plan area) subdivided by slope ranges. These terrain features are generic landform element and can be used to improve mapping and modeling of soils, vegetation, and land use, as well as ecological, hydrological and geomorphological features. These landform elements are the smallest homogeneous divisions of the land surface at the given resolution. The result showed that the SOM is an efficient scalable tool for analyzing geomorphometric features as meaningful landform elements, and uses the full potential of morphometric characteristics.  相似文献   

20.
Sediment transport processes in the Kärkevagge are investigated concerning their spatial and temporal characteristics due to long–term monitoring. Within this study remote sensing techniques and GIS modelling in connection with geomorphic mapping are applied for identification and characterization of geomorphic process units. Relationships between geomorphometric parameters and slope processes like solifluction, talus creep and rockfall have been analysed. Multitemporal Landsat–TM5 scenes are used as source for landcover characteristics (Normalized Difference Vegetation Index) after preprocessing involving orthorectification and topographic normalization in order to remove possible terrain–induced effects. Additionally, a digital elevation model with a resolution of 20 m for the Kärkevagge catchment is developed and parameters like slope gradient, slope aspect and profile curvature are extracted as input for the analysis of the sediment transport system. The combination of landcover information, geomorphometrical and topological features allows the definition of areas for single process activities. They show specific sediment displacement characteristics depending on material conditions, topological and geometrical features. Geomorphic process units, which show a homogenous composition, are extracted from these available layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号