首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Soil inorganic carbon (SIC) and organic carbon (SOC) levels can change with forest development, however, concurrent changes in soil carbon balance and their functional differences in regulating soil properties are unclear. Here, SIC, SOC, and other physicochemical properties of soil (N, alkali-hydrolyzed N, effective Si, electrical conductivity, pH, and bulk density) in 49 chronosequence plots of larch plantation forests were evaluated, by analyzing the concurrent changes in SIC and SOC storage during growth of plantation and the functional difference of these levels in maintaining soil sustainability. These soils had characteristically high SOC (15.34 kg m?2) and low SIC storage (83.38 g m?2 on average). Further, 28 of 30 linear regressions between SIC and SOC storage and larch growth parameters (age, tree size, and biomass density) were not statistically significant (p > 0.05). However, significant changes were observed in ratios of SIC and SOC with these growth parameters (between 0–40 cm and 40–80 cm, respectively; p < 0.05). These results were more useful for determining the changes in SIC and SOC vertical distribution than changes in storage. Moreover, larch growth generally decreased SIC and increased SOC. Linear correlation and multiple-regression analysis showed that the SIC influences soil acidity, whereas SOC affects soil nitrogen. This clearly indicates that larch growth could result in divergent changes in SIC and SOC levels, particularly in their vertical distribution; further, changes in SIC and SOC may variably affect soil physicochemical properties.  相似文献   

2.
Understanding the spatial distribution, stocks, and influencing factors of soil organic carbon (SOC) is important for understanding the current situation of SOC in alpine meadow ecosystems on the Qinghai–Tibetan Plateau (QTP). We sampled 23 soil profiles to a depth of 50 cm in a 33.5 hm\(^{2}\) plot in a typical meadow on the central QTP. The distribution, stock and influencing factors of SOC was then analyzed. The mean density of soil carbon content (SOCD) was 2.28 kg m\(^{-2}\) with a range of 5.99 kg  m\(^{-2}\). SOCD in the 0–10 cm layer was 3.94 kg m\(^{-2}\) and decreased quadratically with depth. The total stock of SOC to a depth of 50 cm was ca. 2950 t, the 0–10 and 0–30 cm layers accounting for 38 and 80%, respectively. SOCD varied moderately spatially and was distributed more homogeneously in the 0–10 and 40–50 cm layers but was more variable in the middle three layers. SOCD was significantly correlated positively with soil-water content, total porosity, and silt content and negatively with soil pH, bulk density, stone content and sand content. This study provides an important contribution to understanding the role of alpine meadows in the global carbon cycle. It also provides field data for model simulation and the management of alpine meadow ecosystems.  相似文献   

3.
Karst poljes in the Dinaric Mountains have a complex hydrological regime and high potential for crop production. Little information is available about soil organic carbon (SOC), total nitrogen (TN), carbon stocks (SOCS), and nitrogen stocks (TNS) in karst poljes located in the Dinaric area. The objective of this paper was to study the spatial distribution of SOC and TN in topsoil (ranged from 9 to 53 cm depth) and whole profile SOCS and TNS (ranged from 15 to 160 cm depth) in the Livno karst polje depression (Bosnia and Herzegovina) using kriging and co-kriging approaches. We used the following properties as co-variates: distance from hills (DFH), distance from the lake (DFL), sand, silt, and clay content, TN, SOC, SOCS, and TNS. We only used the properties that had a significant correlation with the estimated properties as co-variates. The results showed that soils in the study area had high average SOC (7.92%), TN (0.79%), SOCS (191.05 t ha?1), and TNS (17.91 t ha?1) values. Histosols had the highest SOCS and TNS and Arenosols the lowest. The experimental variogram of LogSOC and LogTN was best-fitted by the spherical model, while the exponential model was the most accurate for LogSOCS and LogTNS. The spatial dependence was moderate for all studied soil properties. The incorporation of auxiliary variables increased the precision of the estimations from 35.7% (SOC?×?TN) to 49.2% (TNS?×?SOCS).  相似文献   

4.
Growing wetland loss along a coastal area in China was examined through shoreline recession and land use changes. Carbon storage or sequestration in coastal wetland soils was based on vertical marsh accretion and aerial change data. Marshes sequester significant amounts of carbon through vertical accretion; however, large amounts of carbon previously sequestered in the soil profile are lost through rapid land use changes and shoreline recessions. The Liaohe Delta (LHD) was divided into nine landscape types based on Landsat TM digital images from 1991 to 2011. The distributed areas and transfer matrices of each landscape type were calculated. Combined with the organic carbon content and bulk density of 202 soil surface samples from field investigations in 2012, the soil organic carbon pools and stocks were estimated. Results showed that the soil organic carbon pools varied from 0.58 to 9.75 kg m?2, and organic carbon storage in the upper 20 cm of soil was 1935.92 × 104 and 1863.87 × 104 t in 1991 and 2011, respectively. We attributed these large losses of carbon to rapid land use changes. The construction of levees along the shoreline has triggered large instantaneous losses of previously sequestered carbon through the destruction of 278.06 km2 of tidal flats. Our results reveal that the LHD wetlands might not serve as a desired sink of carbon if maladministration practices are applied. These results can provide scientific guidance for decision makers in determining an effective way to maintain the soil carbon pool in the wetlands of the LHD.  相似文献   

5.
Soil organic carbon (SOC) storage and erosion in South China at the regional scale in the past decades remains far from being understood. This paper calculated the SOC density, storage and erosion in 14 soil classes in Guangdong Province, South China, based on statistical data from the soil survey and soil erosion survey of Guangdong, which was performed in the 1990s. The purpose of this study is to understand the relationships between soil classes and SOC erosion at the regional scale. The results indicated that the SOC density in the soils of Guangdong varied from 12.7 to 144.9 Mg ha?1 over the entire profile and from 12.6 to 68.4 Mg ha?1 in the top 20-cm soil layer. The average area-weighted SOC density in the topsoil (0–20 cm) and the entire profile was 32 ± 3 and 86 ± 4 Mg ha?1, respectively. The total SOC storage was 1.27 ± 0.06 Pg, with 35.6 % (0.46 ± 0.04 Pg) located in the topsoil. The average area-weighted strength of the SOC erosion in the 1990s was 20.6 ± 0.8 Mg km?2 year?1. The results indicated that SOC erosion was strongly related to soil class.  相似文献   

6.
Past studies have focused on carbon variation in the upper 1 m of the soil profile. However, there is limited information on carbon variation at deeper depths (e.g., 0–4 m) and mathematical functions to extrapolate carbon content at these depths. The objective of this study was therefore to assess the vertical variation in SOC (reached 4 m) of the Tarim River floodplain in northwestern China. The vertical distribution in SOC was described by exponential and power functions based on (1) soil depth, (2) soil depth and silt content, (3) soil depth and SOC at the shallowest and deepest depths, (4) soil depth, silt content, and SOC at the shallowest and deepest depths, and (5) soil depth and SOC at the shallowest depth. We found SOC content decreased with depth from 6.82 g kg?1 at 0–0.2 m to?<?1.0 g kg?1 below 3.2–3.4 m averaged across five locations along the floodplain. Both the power and exponential functions provided a good fit to the measured data in the upper 1 m of the soil profile, whereas the power function provided a better fit to the data when extrapolating to a depth of 3–4 m. The power function describing SOC as a function of soil depth, silt content, and SOC at the shallowest and deepest depths best portrayed the distribution in SOC with depth. Considering the cost and labor in measuring soil properties, our results suggest that SOC at the shallowest depth can provide good estimates of the vertical distribution in SOC in a floodplain.  相似文献   

7.
Soil organic carbon storage changes in Yangtze Delta region,China   总被引:1,自引:1,他引:0  
Soil carbon sequestration plays an essential role in mitigating CO2 increases and the global greenhouse effect. This paper calculates soil organic carbon (SOC) storage changes during the course of industrialization and urbanization in Yangtze Delta region, China, based on the data of the second national soil survey (1982–1985) and the regional geochemical survey (2002–2005), with the help of remote sensing images acquired in periods of 1980, 2000, 2005. The results show that soils in the top 0–20 and 0–100 cm depth in this region demonstrate the carbon sink effect from the early 1980s to the early 2000s. The SOC storage in 0–20 cm depth has resulted in increase from 213.70 to 238.65 Tg, which corresponds to the SOC density increase from 2.94 ± 1.08 to 3.28 ± 0.92 kg m−2, and mean carbon sequestration storage and rate are 1.25 Tg a−1, 17.14 g m−2 a−1, respectively. The SOC storage in 0–100 cm depth has resulted in increase from 690.26 to 792.65 Tg, which corresponds to the SOC density increase from 9.48 ± 4.22 to 10.89 ± 3.42 kg m−2, and mean carbon sequestration storage and rate are 5.12 Tg a−1, 70.32 g m−2 a−1, respectively. Urban area in Yangtze Delta region, China, increased more than 3,000 km2 and the urban growth patterns circled the central city region in the past 20 years. The SOC densities in 0–20 cm depth decrease gradually along urban–suburban–countryside and the urban topsoil is slightly enriched with SOC. Compared to the data of the second national soil survey in the early 1980s, the mean SOC density in urban area increased by 0.76 kg m2, or up 25.85% in the past 20 years. With the characteristics of SOC storage changes offered, land-use changes, farming system transition and ecological city construction are mainly attributed to SOC storage increases. Because of lower SOC content in this region, it is assumed that the carbon sink effect will go on in the future through improved soil management.  相似文献   

8.
During the past 50 years, the amount of agricultural fertilizer used in Northern China increased from about 7.5 kg ha?1 in the 1950s to approximately 348 kg ha?1 in the 1990s. Given that little is known about the effects of nitrogen fertilization on soil labile carbon fraction in Northern China, this paper evaluated such effects in terms of microbial biomass and dissolved organic carbon in the Sanjiang Plain located in Northeast China. Soils with different cultivation time and undisturbed marsh with Deyeuxia angustifolia were selected to study the effects of nitrogen fertilization on the soil labile organic fractions microbial C (biomass C, microbial quotient, and basal respiration) and to estimate the contributions of nitrogen input on the dynamics of soil labile carbon. Continuous nitrogen application decreased total organic and dissolved organic carbon concentrations significantly, leading to the lack of carbon source for microbes. Therefore, continuous nitrogen fertilizer application induced negative effects on measured soil microbiological properties. However, a moderate nitrogen application rate (60 kg N ha?1) stimulated soil microbial activity in the short term (about 2 months), whereas a high nitrogen application rate (150 kg N ha?1) inhibited measured soil microbiological properties in the same period.  相似文献   

9.
Increased nitrogen (N) input to ecosystems could alter soil organic carbon (C) dynamics, but the effect still remains uncertain. To better understand the effect of N addition on soil organic C in wetland ecosystems, a field experiment was conducted in a seasonally inundated freshwater marsh, the Sanjiang Plain, Northeast China. In this study, litter production, soil total organic C (TOC) concentration, microbial biomass C (MBC), organic C mineralization, metabolic quotient (qCO2) and mineralization quotient (qmC) in 0–15 cm depth were investigated after four consecutive years of N addition at four rates (CK, 0 g N m?2 year?1; low, 6 g N m?2 year?1; moderate, 12 g N m?2 year?1; high, 24 g N m?2 year?1). Four-year N addition increased litter production, and decreased soil organic C mineralization. In addition, soil TOC concentration and MBC generally increased at low and moderate N addition levels, but declined at high N addition level, whereas soil qCO2 and qmC showed a reverse trend. These results suggest that short-term N addition alters soil organic C dynamics in seasonally inundated freshwater marshes of Northeast China, and the effects vary with N fertilization rates.  相似文献   

10.
Precise estimation of soil organic carbon storage is essential to assess carbon sequestration in soils at a regional scale. However, there is great uncertainty regarding such estimations for discontinuous soils, especially in peak-karst regions where soil is distributed between horizontal cracks and vertical fissures. In this study, a modified method was developed to estimate the soil organic carbon density (SOCD) in peak-karst regions in southwest China, and four typical sites were selected to evaluate this methodology. Compared with the conventional method, additional soil distribution characters, such as the average depth and the proportions of the ground surface area represented by continuous soil, soil in cracks and fissures, soil on rocks, and rocky soil, were considered in the estimation. The SOCD under each vegetation type was calculated by totaling the SOCD values for the various types of soil surfaces, and the SOCD for a site was then totaled using the weighted mean method based on vegetation. Using the modified method, the SOCD values were estimated for the four typical sites selected. The estimation results demonstrated that the SOCD values for the karst sites (6.39, 7.52, and 9.22?kg?m?2) were lower than that for the red soil site (10.01?kg?m?2). The SOCD values estimated for the karst sites using the proposed method ranged from 24.3 to 89.6% of the estimates obtained using the conventional method, reflecting previous overestimations. The differences in the estimated SOCD values were mainly due to soil distribution characters.  相似文献   

11.
Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas emissions and soil erosion. However, the dynamic processes of soil organic carbon (SOC) in areas of either continuous cultivation or abandonment remain unclear and inconsistent. Our aims were to assess and model the dynamic processes of SOC under continuous tillage and after cultivation abandonment in the black soil of Northeast China. Soil profiles were collected of cultivated or abandoned land with cultivation history of 0–100 years. An isotope mass balance equation was used to calculate the proportion of SOC derived from corn debris (C4) and from natural vegetation (C3) to deduce the dynamic process. Approximately 40% of SOC in the natural surface soil (0–10 cm) was eroded in the first 5 years of cultivation, increasing to about 75% within 40 years, before a slow recovery. C4 above 30 cm soil depth increased by 4.5%–5% or 0.11–0.12 g·kg?1 on average per year under continuous cultivation, while it decreased by approximately 0.34% annually in the surface soil after cultivation abandonment. The increase in the percentage of C4 was fitted to a linear equation with given intercepts in the upper 30 cm of soil in cultivated land. A significant relationship between the change of C4 and time was found only in the surface soil after abandonment of cultivation. These results demonstrate the loss and accumulation of corn-derived SOC in surface black soil of Northeast China under continuous tillage or cultivation abandonment.  相似文献   

12.
Monsoon-induced coastal upwelling, land run-off, benthic and atmospheric inputs make the western Indian shelf waters biologically productive that is expected to lead to high rates of mineralisation of organic matter (OM) in the sediments. Dissimilatory sulphate reduction (SR) is a major pathway of OM mineralisation in near-shore marine sediments owing to depletion of other energetically more profitable electron acceptors (O2, NO3 ?, Mn and Fe oxides) within few millimetres of the sediment-water interface. We carried out first ever study to quantify SR rates in the inner shelf sediments off Goa (central west coast of India) using the 35S radiotracer technique. The highest rates were recorded in the upper 10 cm of the sediment cores and decreased gradually thereafter below detection. Despite significant SR activity in the upper ~12 to 21 cm at most of the sites, pore water sulphate concentrations generally did not show much variation with depth. The depth integrated SR rate (0.066–0.46 mol m?2 year?1) decreased with increasing water depth. Free sulphide was present in low concentrations (0–3 μM) in pore waters at shallow stations (depth <30 m). However, high build-up of sulphide (100–600 μM) in pore waters was observed at two deeper stations (depths 39 and 48 m), 7–11 cm below the sediment-water interface. The total iron content of the sediment decreased from ~7 to 5 % from the shallowest to the deepest station. The high pyrite content indicates that the shelf sediments act as a sink for sulphide accounting for the low free sulphide levels in pore water. In the moderately organic rich (2–3.5 %) sediments off Goa, the measured SR rates are much lower than those reported from other upwelling areas, especially off Namibia and Peru. The amount of organic carbon remineralised via sulphate reduction was ~0.52 mol m?2 year?1. With an estimated average organic carbon accumulation rate of ~5.6 (±0.5) mol m?2 year?1, it appears that the bulk of organic matter gets preserved in sediments in the study region.  相似文献   

13.
Soil organic carbon (SOC) is one of the key components for assessing soil quality. Meanwhile, the changes in the stocks SOC may have large potential impact on global climate. It is increasingly important to estimate the SOC stock precisely and to investigate its variability. In this study, Yangjuangou watershed was selected to investigate the SOC distribution under different land uses. We found that SOC concentration decreased with increasing soil depth under all land uses and was significantly different across the vertical soil profile (P < 0.01). However, considering effect of land use on SOC, it is only significant (P < 0.01) in the topsoil (0-5 cm) layer. This indicated that land use has a large effect on the stocks of SOC in the surface soil. The stratification ratio of SOC > 1.2 may mean that soil quality is improving. The order of the SOC density (0-30 cm) under different land uses is forestland > orchard land > grassland > immature forestland > terraced cropland. The SOC stock is found to be as large as 2.67 × 103 t (0-30 cm) in this watershed. Considering time effect of restoration, the slope cropland just abandoned is more efficient for SOC accumulation than trees planted in the semi-arid hilly loess area.  相似文献   

14.
Environmental degradation resulting from desertification often accelerates biodiversity loss and alters carbon (C) and nitrogen (N) stocks within grassland ecosystem. In order to evaluate the effect of desertification on plant diversity and carbon (C) and nitrogen (N) stocks, species compositions and C and N contents in plants and soil were investigated along five regions with different degrees of desertification in the northeastern margin of the Qinghai-Tibetan Plateau (control, light, moderate, severe and very severe stages). The study showed: (1) species composition and richness changed significantly with the development of grassland desertification; (2) the aboveground biomass C and N contents in the control were 101.60 and 4.03 g m?2, respectively. Compared to the control, the aboveground tissue C and N contents significantly decreased from light, moderate, severe to very severe stages. (3) The root C and N contents in the control in 0–40 cm depth are 1,372.83 and 31.49 g m?2, respectively, while the root C and N contents in 0–40 cm were also declining from the control, light, moderate, severe to very severe stages. (4) Compared to the plant, the soil made a greater contribution for C and N distribution, in which the soil organic C and total N contents in 0–40 cm depth in the control are 20,386.70 and 3,587.89 g m?2, respectively. At the same time, soil organic C and N contents also decreased significantly from the control to very severe stages. These results suggest that grassland desertification not only alters species compositions and leads to the loss of plant diversity, but also results in greater loss of organic C and N in alpine meadow, in which there is a negative effect on reducing greenhouse gas emission.  相似文献   

15.
The spatial heterogeneity of soil nutrients influences crop yield and the environment. Previous research has focused mainly on the surface layer, with little research being carried out on the deep soil layers, where high root density is highly related to crop growth. In the study, 610 soil samples were collected from 122 soil profiles (0–60 cm) in a random-sample method. Both geostatistics and traditional statistics were used to describe the spatial variability of soil organic matter (SOM) and total nitrogen (TN) deeper in the soil profile (0–60 cm) with high root density from a typical Mollisol watershed of Northeast China. Also, the SOM and TN in farmland and forest (field returned to forest over 10 years) areas was compared. The spatial autocorrelations of SOM at 0–50 cm depth and TN at 30–60 cm depth were strong, and were mainly influenced by structural factors. Compared to farmland, SOM and TN were typically lower in the 0–30 cm depth of the forest areas, while they were higher in the 30–60 cm depth. As well, both SOM and TN decreased from the 0–20 cm layer to the 30–40 cm layer, and then discontinues, while they continuously decreased with increasing soil depth in the farmland. SOM and TN were typically higher at the gently sloped summit of the watershed and part of the bottom of the slope than at mid-slope positions at the 0–30 cm depth. SOM and TN were lower on the back slope at the 30–60 cm depth, but were higher at the bottom of the slope. Also, the spatial distribution of the carbon storage and nitrogen storage were all highest at the bottom of the slope and part of the summit, while they were lowest in most of back slope in depth of 0–60 cm, and mainly caused by soil loss and deposition. SOM at 0–60 cm and TN at 0–40 cm greater than the sufficiency level for crop growth (3.7–79.2 and 0.09–3.09 g kg?1, respectively) covered 99 % of the total area, yet for TN, over 35 % of the total area was less than the insufficiency level at the 40–60 cm depth. Generally, accurately predicting SOM and TN is nearly impossible when based only on soil loss by water, although the fact that variability is influenced by elevation, soil loss, deposition and steepness, was shown in this research. Nitrogen fertilizer and manure application were needed, especially in conjunction with conservation tillage in special conditions and specific areas such as the back slope, where soil loss was severe and the deep soil that lacked TN was exposed at the surface.  相似文献   

16.
Soil erosion due to surface water is a standout among the serious threat land degradation problem and an hazard environmental destruction. The first stage for every kind of soil conservation planning is recognition of soil erosion status. In this research, the usability of two new techniques remote sensing and geographical information system was assessed to estimate the average annual specific sediments production and the intensity erosion map at two sub-basins of DEZ watershed, southwest of Lorestan Province, Iran, namely Absorkh and Keshvar sub-basins with 19,920 ha, using Modified Pacific Southwest Inter-Agency Committee (MPSIAC) soil erosion model. At the stage of imagery data processing of IRS-P6 satellite, the result showed that an overall accuracy and kappa coefficient were 90.3% and 0.901, respectively, which were considered acceptable or good for imagery data. According to our investigation, the study area can be categorized into three level of severity of erosion: moderate, high, and very high erosion zones. The amount of specific sediments and soil erosion predicted by MPSIAC model was 1374.656 and 2396.574 m3 km?2 year?1, respectively. The areas situated at the center and south parts of the watershed were subjected to significant erosion because of the geology formation and ground cover, while the area at the north parts was relatively less eroded due to intensive land cover. Based on effective of nine factors, the driving factors from high to low impact included: Topography > Land use > Upland erosion > Channel erosion > Climate > Ground cover > Soil > Runoff > Surface geology. The measured sediment yield of the watershed in the hydrometric station (Keshvar station) was approximately 2223.178 m3 km?2 year?1 and comparison of the amount of total sediment yield predicted by model with the measured sediment yield indicated that the MPSIAC model 38% underestimated the observed value of the watershed.  相似文献   

17.
The objective of this study was to examine the variation of time and space and the effects of alpine meadow desertification, and the study area was selected at the Qinghai–Tibet Plateau of China. The sampling locations were categorized as the top, middle, bottom of the slope and flat in front of the slope, and the sites were classified as alpine meadow, light desertified land, moderate desertified land, serious desertified land, and very serious desertified land according to the level of alpine meadow desertification. This study examined spatial and temporal variability in soil organic carbon (SOC), total nitrogen (TN), pH, and soil bulk density due to wind erosion and documents the relationship between soil properties and desertification of alpine meadows. Desertification caused decreases to soil organic carbon and total nitrogen and increases to pH and soil bulk density. Soil properties were greatly affected by the level of alpine meadow desertification with the changes being attributed to overgrazing. The middle portion of slopes was identified as being the most susceptible to desertification. Carbon and nitrogen stocks were found to decrease as desertification progressed, the SOC stocks were 274.70, 273.81, 285.26, 196.20, and 144.36 g m?2 in the alpine meadow, light desertified land, moderate desertified land, serious desertified land and very serious desertified land, respectively; and the TN stocks were 27.23, 27.11, 28.35, 20.97, and 17.09 g m?2 at the top 30 cm soil layer, respectively. To alleviate desertification of alpine meadow, conservative grazing practices should be implemented.  相似文献   

18.
This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m?2 day?1 in the Elorn estuary and 10 mmol m?2 day?1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x ? (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.  相似文献   

19.
Phosphorus is an essential and common limiting element for plants. Phosphorus losses from agricultural production systems are known to contribute to accelerated eutrophication of natural waters. In this study, soil available phosphorus (SAP) content and SAP density were estimated based on a soil survey of a small watershed in the Dan River, China, and the spatial heterogeneity of SAP distribution and the impacts of land-use types, elevation, slope and aspect on SAP were assessed. Field sampling was carried out based on a 100 m × 100 m grid system overlaid on the topographic map of the study area, and samples were collected in three soil layers to a depth of 40 cm. A total of 190 sites were sampled, and 539 soil samples were collected. The results showed that classical kriging could successfully interpolate SAP content in the watershed. SAP content showed a downward trend with the increase in soil depth and the extent of SAP variability in the three soil layer is moderate. There were significant differences among the three soil layers (P < 0.01). The land use had a great impact on the SAP content. ANOVA indicated that the spatial variation of SAP contents under different land-use types was significant (P < 0.01). The SAP density of different land-use types followed the order of cropland > forestland > grassland. The mean SAP density of cropland, forestland and grassland at a depth of 0–40 cm was 4.28, 3.74 and 2.81 g/m2, respectively. SAP and topographic factors showed that SAP content increased with decreasing altitude and slope gradient. The soil bulk density played a very important role in the assessment of SAP density. In conclusion, the soils in the source area of the middle Dan River would reduce SAP with conversions from cropland to forest or grassland.  相似文献   

20.
Seagrass ecosystems are attracting attention as potentially important tools for carbon (C) sequestration, comparable to those terrestrial and aquatic ecosystems already incorporated into climate change mitigation frameworks. Despite the relatively low C stocks in living biomass, the soil organic carbon pools beneath seagrass meadows can be substantial. We tested the relationship between soil C storage and seagrass community biomass, productivity, and species composition by revisiting meadows experimentally altered by 30 years of consistent nutrient fertilization provided by roosting birds. While the benthos beneath experimental perches has maintained dense, Halodule wrightii-dominated communities compared to the sparse Thalassia testudinum-dominated communities at control sites, there were no significant differences in soil organic carbon stocks in the top 15 cm. Although there were differences in δ13C of the dominant seagrass species at control and treatment sites, there was no difference in soil δ13C between treatments. Averages for soil organic carbon content (2.57?±?0.08 %) and δ13C (?12.0?±?0.3?‰) were comparable to global averages for seagrass ecosystems; however, our findings question the relevance of local-scale seagrass species composition or density to soil organic carbon pools in some environmental contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号