首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Elevated turbidity (Tn) and suspended sediment concentrations (SSC) during and following flood events can degrade water supply quality and aquatic ecosystem integrity. Streams draining glacially conditioned mountainous terrain, such as those in the Catskill Mountains of New York State, are particularly susceptible to high levels of Tn and SSC sourced from erosional contact with glacial-related sediment. This study forwards a novel approach to evaluate the effectiveness of stream restoration best management practices (BMPs) meant to reduce stream Tn and SSC, and demonstrates the approach within the Stony Clove sub-basin of the Catskills, a water supply source for New York City. The proposed approach is designed to isolate BMP effects from natural trends in Tn and SSC caused by trends in discharge and shifts in average Tn or SSC per unit discharge (Q) following large flood events. We develop Dynamic Linear Models (DLMs) to quantify how Tn-Q and SSC-Q relationships change over time at monitoring stations upstream and downstream of BMPs within the Stony Clove and in three other sub-basins without BMPs, providing observational evidence of BMP effectiveness. A process-based model, the River Erosion Model, is then developed to simulate natural, hydrology-driven SSC-Q dynamics in the Stony Clove sub-basin (absent of BMP effects). We use DLMs to compare the modelled and observed SSC-Q dynamics and isolate the influence of the BMPs. Results suggest that observed reductions in SSC and Tn in the Stony Clove sub-basin have been driven by a combination of declining streamflow and the installed BMPs, confirming the utility of the BMPs for the monitored hydrologic conditions.  相似文献   

2.
The efficacy of in‐stream nephelometric turbidometry as a surrogate for total suspended solids (TSS) and total phosphorus (TP) concentrations was evaluated for use in low turbidity (<50 NTU) subalpine watersheds at Lake Tahoe, California–Nevada, USA. Continuous turbidity records for the 1999, 2000 and 2001 snowmelt seasons and data from water quality samples (1982–2000) were examined to determine watershed sediment delivery dynamics. Strong correlations were found between turbidity and both TSS and TP concentration. The strong correlation indicates that turbidity can serve as a good surrogate for direct measurement in these watersheds. The watersheds displayed clockwise hysteresis: sediment flushing and depletion, on daily, seasonal and decadal time‐scales. The hysteresis curves had strong concave shapes, indicating a sensitive response to peak flow. A pronounced seasonal trend was observed for the ratio of suspended sediment concentration (SSC)/discharge over time, indicating early season flushing of available sediment. Significant linear relationships (p < 0·05) were found for 12 of 17 years. Comparison of annual sediment rating curve coefficients indicated smaller coefficients during high sediment loading years and in the years following. The smaller coefficients are evidence of sediment depletion during high flow years. The effect of hysteresis on monitoring methods was illustrated by comparing turbidity estimates of TSS load with sediment rating curve estimates of SSC. After accounting for differences in SSC/TSS methods of analysis, daily loads calculated with turbidity methods were 58–98% of rating curve estimates for the spring snowmelt seasons of 1999–2001. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Suspended sediment particles contained in inflows of water systems of hydropower plants (HPPs) cause hydro-abrasive erosion of the hydraulic turbines and structures leading to significant maintenance costs, efficiency reductions, and downtime. Relevant parameters such as suspended sediment concentration (SSC), particle size distribution (PSD), shape, and mineralogical composition were measured with an online multi-frequency acoustic instrument and based on manually taken samples from the end of the sand trap of the Toss HPP in the Himalayan region, India. In the laboratory, the samples were analyzed using the gravimetric method, laser diffraction, turbidity, dynamic digital image processing, scanning electron microscope, petrography analysis, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The online instrument and the samples provided measurement results at a single point. To investigate vertical gradients in concentration and particle sizes, additional samples were collected 9 times at 7 relative water depths. The SSC, most particle sizes, and particle shape were found to be evenly distributed over depth except d90, i.e. the diameter which is not exceeded by 90% of the particle mass. d90 measured at 76% of the water depth was in the range of fine sand and was multiplied by 1.05 to obtain an average value representative for the entire depth. Improved methodologies to quantify both particle shape and size in an analytical model for hydro-abrasive erosion are proposed. Also, the PSD measuring performance of laser diffraction and dynamic imaging was studied and similar values of the median particle sizes were obtained from both instruments. Further, multi-frequency acoustic, turbidity and laser diffraction techniques were found suitable for SSC measurement at the test case HPP.  相似文献   

4.
Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long‐term datasets are available to evaluate changes over time. In this study, we demonstrate how simple monthly linear regression models based on short‐term historical Ts observations and readily available interpolated air temperature (Ta) estimates can be used for rapid assessment of historical and future changes in Ts. Models were developed for 61 sites in the southeastern USA using ≥18 months of observations and were validated at sites with longer periods of record. The Ts models were then used to estimate temporal changes in Ts at each site using both historical estimates and future Ta projections. Results suggested that the linear regression models adequately explained the variability in Ts across sites, and the relationships between Ts and Ta remained consistent over 37 years. We estimated that most sites had increases in historical annual mean Ts between 1961 and 2010 (mean of +0.11 °C decade?1). All 61 sites were projected to experience increases in Ts from 2011 to 2060 under the three climate projections evaluated (mean of +0.41 °C decade?1). Several of the sites with the largest historical and future Ts changes were located in ecoregions home to temperature‐sensitive fish species. This methodology can be used by resource managers for rapid assessment of potential climate change impacts on stream water temperature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Cementitious porous pavement (CPP) is a structural low‐impact development material for rainfall–runoff management. Both infiltration and filtration are critical functions for CPP stormwater quality and quantity control. In this study, three groups of CPP specimens exposed to rainfall–runoff for 4 years and experienced with different maintenance intervals (6, 12 and 48 months, respectively) were used to examine CPP infiltration and filtration performance. Particle mass strained on CPP surface, saturated infiltration rate If, temporal infiltration rate I(t), suspended sediment concentration (SSC) and turbidity (τ) were measured to evaluate the process of filtration/infiltration. I(t), SSC and τ were examined less than 50 mg/l of the suspended particle loading. It was found that the CPP surface cleaning methods used in the past 4 years, namely, high pressure wash followed by vacuuming with one atmosphere (100 kPa), were effective, and a 12‐month maintenance interval was verified suitable to maintain the pore structure an acceptable infiltration rate for stormwater management. It was also found that CPP infiltration and filtration process affect each other, and the two properties are coupled in urban stormwater quality and quantity control. On the basis of the experimental measurements, the temporal infiltration rate of the cleaned CPP under a certain particle loading could be simulated by a first‐order nonlinear rational model, and effluent turbidity–SSC relationship was found following a power law. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, we assessed the relationship between the occurrence of the invasive water hyacinth (Eichhornia crassipes) and water quality properties as well as macroinvertebrate diversity in a tropical reservoir, situated in western Ecuador. Macroinvertebrates and physico-chemical water quality variables were sampled at 32 locations (during the dry season of 2013) in both sites covered and non-covered by water hyacinth in the Daule-Peripa reservoir. The results indicated that, in terms of water quality, only turbidity was significantly different between sampling sites with and without water hyacinth (Mann–Whitney U-test, p < 0.01). The habitat suitability model showed that water hyacinth was present at sites with a low turbidity. The percentage water hyacinth cover increased with decreasing turbidity. The Biological Monitoring Working Party-Colombia score and the Margalef diversity index were significantly higher (Mann–Whitney U-test, p < 0.01) at sampling sites where water hyacinth was present compared to water hyacinth absent sites. However, there were no significant differences in the Shannon–Wiener index, Evenness index and Simpson index between the sampling sites with and without water hyacinth. Our results suggest that water hyacinth cover was an important variable affecting the diversity of macroinvertebrates in the Daule-Peripa reservoir, with intermediate levels of water hyacinth cover having a positive effect on the diversity of macroinvertebrates. Information on the habitat suitability of water hyacinth and its effect on the physico-chemical water quality and the macroinvertebrate community are essential to develop conservation and management programs for large tropical reservoirs such as the Daule-Peripa reservoir and the Guayas river basin, where water resources are being at high risk due to expansion of agricultural and industrial development activities.  相似文献   

7.
在分析已有资料的基础上划分了兰州盆地与建设工程分布密切相关的T0、T1、T2、T3和T4级黄河阶地,建立201个土层地震反应模型。通过一维等效线性化计算和反应谱分析,得出兰州盆地沉积阶地50年超越概率10%地表地震动参数,分析阶地高度和vS≤500 m/s覆盖层厚度特征与地震动参数峰值加速度Am和加速度反应谱特征周期Tg的相关性。表明兰州盆地T0~T2阶地覆盖层厚度与50年超越概率10%Am呈正相关,T3及以上阶地覆盖层厚度对Am增大有明显的减小作用。Tg值随T0~T3阶地覆盖层厚度的增加而变大,当覆盖层厚度进一步变大,Tg值不再同步增大,阶地覆盖层厚度对Tg的影响是有限的,阶地海拔高度与地表50年超越概率10%地震动参数没有关系。  相似文献   

8.
Stream temperature is a key physical water‐quality parameter, controlling many biological, chemical, and physical processes in aquatic ecosystems. Maintenance of cool stream temperatures during summer is critical for high‐quality aquatic habitat. As such, transmission of warm water from small, nonfish‐bearing headwater streams after forest harvesting could cause warming in downstream fish‐bearing stream reaches with negative consequences. In this study, we evaluate (a) the effects of contemporary forest management practices on stream temperature in small, headwater streams, (b) the transmission of thermal signals from headwater reaches after harvesting to downstream fish‐bearing reaches, and (c) the relative role of lithology and forest management practices in influencing differential thermal responses in both the headwater and downstream reaches. We measured summer stream temperatures both preharvest and postharvest at 29 sites—12 upstream sites (4 reference, 8 harvested) and 17 downstream sites (5 reference, 12 harvested)—across 3 paired watershed studies in western Oregon. The 7‐day moving average of daily maximum stream temperature (T7DAYMAX) was greater during the postharvest period relative to the preharvest period at 7 of the 8 harvested upstream sites. Although the T7DAYMAX was generally warmer in the downstream direction at most of the stream reaches during both the preharvest and postharvest period, there was no evidence for additional downstream warming related to the harvesting activity. Rather, the T7DAYMAX cooled rapidly as stream water flowed into forested reaches ~370–1,420 m downstream of harvested areas. Finally, the magnitude of effects of contemporary forest management practices on stream temperature increased with the proportion of catchment underlain by more resistant lithology at both the headwater and downstream sites, reducing the potential for the cooling influence of groundwater.  相似文献   

9.
10.
Stream water quality can change substantively during diurnal cycles, discrete flow events, and seasonal time scales. In this study, we assessed event responses in surface water nutrient concentrations and biogeochemical parameters through the deployment of continuous water quality sensors from March to October 2011 in the East Fork Jemez River, located in northern New Mexico, USA. Events included two pre‐fire non‐monsoonal precipitation events in April, four post‐fire precipitation events in August and September (associated with monsoonal thunderstorms), and two post‐fire non‐monsoonal precipitation events in October. The six post‐fire events occurred after the Las Conchas wildfire burned a significant portion of the contributing watershed (36%) beginning in June 2011. Surface water nitrate (NO3? N) concentrations increased by an average of 50% after pre‐fire and post‐fire non‐monsoonal precipitation events and were associated with small increases in turbidity (up to 15 NTU). Beginning 1 month after the start of the large regional wildfire, monsoonal precipitation events resulted in large multi‐day increases in dissolved NO3? N (6 × background levels), dissolved phosphate (100 × background levels), specific conductance (5 × background levels), and turbidity (>100 × background levels). These periods also corresponded with substantial sags in dissolved oxygen (<4 mg l?1) and pH (<6.5). The short duration and rapid rates of change during many of these flow events, particularly following wildfire, highlight the importance of continuous water quality monitoring to quantify the timing and magnitude of event responses in streams and to examine large water quality excursions linked to catchment disturbance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A variety of electrolytes FeCl3, CaCl2, CuSO4, Al2(SO4)3, and LaCl3 was investigated for their efficiency in removing biostimulants (phosphorous and nitrogen) to improve the water quality. Results show that the removal of PO43– was achieved below the detection limit (BDL) by two electrolytes, CuSO4 and Al2(SO4)3, and up to 1.0 ± 0.0 mg/L by LaCl3 from a value of 15.0 mg/L, of the concentration of PO43– in amended water. The turbidity was found to be removed significantly by FeCl3, CuSO4, and Al2(SO4)3 by about 5.8 ± 2.6, 9.7 ± 1.0, and 5.4 ± 1.1 nephalometric turbidity unit (NTU), respectively. The removal of the members of Enterobacteriaceae viz., Escherichia coli, Enterobacter spp. Pseudomonas fluorescence, and Pseudomonas spp. was found almost in all the chemical precipitants but their removal was more significant in the water samples treated with CuSO4, Al2(SO4)3, and LaCl3. To achieve a complete removal and to sustain the after effects of precipitation, such as recurrence of algal growth, the combination of CuSO4 and Al2(SO4)3 was investigated. Reduction in the turbidity from 30.83 to <2 NTU, phosphate ion from a value of 1.28 mg/L to BDL and ammonia ion from a value of 44.71 to 36.48 mg/L of natural pond water were observed after the treatment with CuSO4 and Al2(SO4)3 in combination.  相似文献   

12.
Ditch cleaning in drained peatland forests increases sediment loads and degrades water quality in headwater streams and lakes. A better understanding of the processes controlling ditch erosion and sediment transport in such systems is a prerequisite for proper peatland management. In order to relate hydrological observations to key erosion processes in headwater peatlands drained for forestry, a two‐year study was conducted in a nested sub‐catchment system (treated with ditch cleaning) and at two reference sites. The treated catchment was instrumented for continuous discharge and turbidity monitoring, erosion pin measurements of changes in ditch bed and banks and time‐integrated sampling of suspended sediment (SS) composition. The results showed that ditch cleaning clearly increased transient suspended sediment concentrations (SSCs) and suspended sediment yields (SSYs), and resulted in temporary storage of loosely deposited organic sediment in the ditch network. After exhaustion of this sediment storage, subaerial processes and erosion from ditch banks became dominant in producing sediment for transport. Recorded SSCs were higher on the rising limbs of event hydrographs throughout the study period, indicating that SS transport was limited by availability of erosion‐prone sediment. A strong positive correlation (R2 = 0.84, p < 0.001) between rainfall intensity (above a threshold of 1 mm h?1) and average SSC obtained on the rising limb of hydrographs for the sub‐catchment showed that soil detachment from ditch banks by raindrop impact can directly increase SSC in runoff. At the main catchment outlet, variation in SSC was best explained (R2 = 0.67, p < 0.05) by the linear combination of initial discharge (?), peak discharge (+) and the lag time from initial to peak discharge (?). Based on these factors, ditch cleaning slightly increased peak discharges and decreased transit times in the study catchment. The implications of the results for water pollution management in peatland forests are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The physico‐chemical characteristics and microbial composition of the final effluents of two municipal wastewater treatment plants in South Africa were assessed between July and September 2009. The impact of the treated final effluents on the receiving water bodies was also evaluated. The temperature across all sampling points ranged between 14 and 22°C, while pH varied from 6.9 to 7.6. High levels of turbidity, chemical oxygen demand (COD), ammonia, nitrate, nitrite and orthophosphate (PO4) were observed in many cases. Turbidity of the samples was in the range of 2.2–288.6 NTU. The concentrations (mg/L) of other physico‐chemical parameters are as follows: COD (9.33–289); ammonia (0.000340–45.4); nitrate (0.062–539); nitrite (0.021–22.6); PO4 (5.3–33.2). The microbial quality of the effluents discharged from the plants did not comply with the limits set by the South African guidelines with respect to pathogens such as Salmonella, Shigella, Escherichia coli, total coliform, faecal coliform, enterococci, faecal streptococci, and viral particles for effluents intended for discharge into receiving watersheds. This study revealed an undesirable impact on the physico‐chemical and microbial qualities of the receiving water bodies as a result of the discharge of inadequately treated effluents from the wastewater treatment facilities. This poses a health risk to several rural communities which rely on the receiving water bodies primarily as their sources of domestic water and recreational purposes. There is therefore a need for the intervention of appropriate regulatory agencies in South Africa to ensure compliance of treatment facilities with wastewater effluent quality standards.  相似文献   

14.
Motivated by field studies of the Ems estuary which show longitudinal gradients in bottom sediment concentration as high as O(0.01 kg/m4), we develop an analytical model for estuarine residual circulation based on currents from salinity gradients, turbidity gradients, and freshwater discharge. Salinity is assumed to be vertically well mixed, while the vertical concentration profile is assumed to result from a balance between a constant settling velocity and turbulent diffusive flux. Width and depth of the model estuary are held constant. Model results show that turbidity gradients enhance tidally averaged circulation upstream of the estuarine turbidity maximum (ETM), but significantly reduce residual circulation downstream, where salinity and turbidity gradients oppose each other. We apply the condition of morphodynamic equilibrium (vanishing sediment transport) and develop an analytical solution for the position of the turbidity maximum and the distribution of suspended sediment concentration (SSC) along a longitudinal axis. A sensitivity study shows great variability in the longitudinal distribution of suspended sediment with the applied salinity gradient and six model parameters: settling velocity, vertical mixing, horizontal dispersion, total sediment supply, fresh water flow, and water depth. Increasing depth and settling velocity move the ETM upstream, while increasing freshwater discharge and vertical mixing move the ETM downstream. Moreover, the longitudinal distribution of SSC is inherently asymmetric around the ETM, and depends on spatial variations in the residual current structure and the vertical profile of SSC.  相似文献   

15.
《水文科学杂志》2013,58(1):124-134
Abstract

The three-route South-to-North Water Diversion Project (SNWDP), transferring water from the water-rich Yangtze River and its tributaries to the much drier area of North China for irrigation, industrial and domestic use, has been implemented in China since 2002. Thus, water quality in the Danjiangkou Reservoir, the water source area of the SNWDP's Middle Route, is of great concern. We investigate its water quality from 2004 to 2006 by monitoring some important physical (T, turbidity and SPM) and chemical (DO, pH, alkalinity, TDS, SpCond, ORP, CODMn and BOD) parameters and nutrient (nitrogen and phosphorus) contents. Consequently, their spatial and temporal patterns in the reservoir were examined. The results indicate that the water of the reservoir is of a Ca and HCO3 type, and the major pollutants are nitrogen and CODMn. Comparisons among the sampling sites show that water quality increases downstream, implying the self-purification capacity of the reservoir. The reservoir in general has better water quality in the dry season than in the wet season. Integrated basin management would be critical of the water quality in the Danjingkou Reservoir for the interbasin water transfer project.  相似文献   

16.
Alaa A. Masoud 《水文研究》2013,27(20):2987-3002
Eighteen groundwater well sites located in Kafr Al‐Zayat (Egypt) were sampled monthly from January 2009 to November 2011 for microbial content, Mn+2, Fe+2, total dissolved solids (TDS), total hardness, NO3?, and turbidity. The data were analyzed combining the integrated use of factor and cluster analyses as well as the geostatistical semi‐variogram modeling. The prime objectives were to assess the groundwater suitability for drinking, to document the factors governing the spatio‐tempral variability, and to recognize distinctive groundwater quality patterns to help enable effective sustainability and proactive management of the limited resource. The groundwater microbial, Mn+2, Fe+2, TDS, and total hardness contents violated the drinking water local standards while the turbidity and the nitrate content complied with them. Factor analysis indicated that the microbial content is the most influential factor raising the variability potential followed, in decreasing order, by Mn2+, Fe2+, TDS, NO3?, turbidity, and finally the total hardness. Turbidity resulting from urban and agricultural runoff was strongly associated with most of the quality parameters. Quality parameters fluctuate sporadically without concrete pattern in space and time while their variability scores peak in November every year. Three spatially distinctive quality patterns were recognized that were consistent with and affected by the cumulative effects of the local topography, depth to water table, thickness of the silty clay (cap layer), surface water, and groundwater flow direction and hence the recharge from contaminated surface canals and agricultural drains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
油气管线工程是生命线工程的重要组成部分,工程跨度通常超越几十甚至几千公里,从而导致横穿地区覆盖层中土层结构存在明显差异,对地震动峰值加速度(PGA)产生较大影响,进而影响区划结果。本文采用分区拟合放大系数的方法,对华北平原地区某大型管线进行研究,给出研究区不同土层结构条件下场地放大系数KS-基岩PGA拟合函数结果,得到沿线附近10km范围内的PGA区划图结果,并与第四代和第五代中国地震动参数区划图提出的场地系数公式的计算结果进行比较。三种计算方法的结果表明,研究区内50年超越概率10%条件下实际场地放大系数为1.30~1.45,50年超越概率5%条件下实际场地放大系数为1.15~1.30,均高于我国第四代和第五代区划图对场地系数的建议值。50年超越概率10%下的PGA区划图结果显示,局部区域在第四代和第五代地震动参数区划图场地系数的结果中位于0.15g或0.20g区,由于KS的提高,其实际计算结果会提升为0.20g或0.25g分区,这说明场地系数对峰值加速度区划图结果具有较大影响。  相似文献   

18.
High‐frequency water discharge and suspended sediment concentration (SSC) databases were collected for 3 years on four contrasted watersheds: the Asse and the Bléone (two Mediterranean rainfall regime watersheds) and the Romanche and the Ferrand (two rainfall–snowmelt regime watersheds). SSCs were calculated from turbidity recordings (1‐h time step), converted into SSC values. The rating curve was calculated by means of simultaneous SSC measurement taken by water sampling and turbidity recording. Violent storms during springtime and autumn were responsible for suspended sediment transport on the Asse and the Bléone rivers. On the Ferrand and the Romanche, a large share of suspended sediment transport was also caused by local storms, but 30% of annual fluxes results from snowmelt or icemelt which occurred from April to October. On each watershed, SSC up to 50 g l?1 were observed. Annual specific fluxes ranged from 450 to 800 t km?2 year?1 and 40–80% of annual suspended sediment fluxes occurred within 2% of the time. These general indicators clearly demonstrate the intensity of suspended sediment transport on these types of watersheds. Suspended sediment fluxes proved to be highly variable at the annual scale (inter‐annual variability of specific fluxes) as well as at the event scale (through a hysteresis loop in the SSC/Q relationship) on these watersheds. In both cases, water discharge and precipitations were the main processes involved in suspended sediment production and transport. The temporal and spatial variability of hydro‐meteorological processes on the watershed provides a better understanding of suspended sediment dynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
This study examines the relationship between suspended sediment concentration (SSC) and the signal to noise ratio (SNR) recorded by a 6 MHz Nortek Vector velocimeter in a laboratory water tank using four different synthetic and natural mud mixtures and different combinations of the user-set Vector parameters transmit power level and velocity range. For concentrations less than 1500 mg/l (1.5 g/l), a region of linearity between the logarithm of concentration and time-average SNR was found for all sediment types and transmitter power level settings. Within this concentration range, the experimental data was used to develop calibrated equations of the form, log(SSC)=c1SNR+c2; R2 values for all calibrated equations were greater than 0.98, suggesting that properly calibrated relations can yield accurate time-averaged SSC measurements using Vector measured SNR. An analysis of the general calibration equation indicated that the predicted SSC values are sensitive to changes in the coefficient values for c1 and c2. Even small (10%) deviations in coefficient values resulted in 20%-65% changes in the predicted SSC. Variation in c1 and c2 values among all four mud mixtures were significant enough that the calibrated equations could not be used interchangeably. This was true even among three samples that had similar particle-size distributions. Translation of raw 32 Hz SNR data to 32 Hz SSC time series produced excessively large variation in the SSC time series. Several smoothing and filtering schemes were examined to reduce the magnitude of these fluctuations to more reasonable levels. Of the methods tested, a two-sided moving average functioned best at removing fine-scale variation while retaining larger-scale trends. A 96-point (3 Hz) averaging window brought 98.6% of the Vector estimated SSC time series values to within ±10% of the time-average physical samples. Impacts of turbulent kinetic energy and sampling volume size on instrument recorded SNR were also empirically examined.  相似文献   

20.
Recent studies in many developing countries have shown that Small Scale Independent Providers (SSIPs) in low-income areas (LIAs) are practical alternatives to water utilities. This study explored supply dynamics and quality of alternative water sources in four LIAs of Lilongwe City in Malawi using qualitative and quantitative methods. Household-level surveys (n = 120) and transect walks were employed to determine the socio-economic activities in the areas. One-on-one discussions were made with water source owners (SSIPs) (n = 24). Data on policy and institutional frameworks was collected through desktop study and Key Informant Interviews (n = 25). Quality of the water sources (shallow wells and boreholes) was determined by collecting grab samples (n = 24) in triplicate using 500 mL bottles. Selected physico-chemical and microbiological parameters were measured: pH, EC, TDS, turbidity, water temperature, salinity, K, Na, Ca, Mg, Cl, F, NO3, alkalinity, water hardness, Fecal coliform (FC) and Faecal Streptococci (FS) bacteria. Water quality data was compared with Malawi Bureau of Standards (MBS) and World Health Organization (WHO) guidelines for drinking water. Shallow wells were reported (65%, n = 120) to be the main source of water for household use in all areas. Some policies like prohibition of boreholes and shallow wells in City locations were in conflict with other provisions of water supply, sanitation and housing. High levels of FC (0–2100 cfu/100 mL) and FS (0–1490 cfu/100 mL) at several sites (>90%, n = 24) suggest water contamination likely to impact on human health. This calls for upgrading and recognition of the water sources for improved water service delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号