首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A numerical simulation was conducted to predict the change of pCO2 in the ocean caused by CO2 leaked from an underground aquifer, in which CO2 is purposefully stored. The target space of the present model was the ocean above the seafloor. The behavior of CO2 bubbles, their dissolution, and the advection-diffusion of dissolved CO2 were numerically simulated. Here, two cases for the leakage rate were studied: an extreme case, 94,600 t/y, which assumed that a large fault accidentally connects the CO2 reservoir and the seafloor; and a reasonable case, 3800 t/y, based on the seepage rate of an existing EOR site. In the extreme case, the calculated increase in ΔpCO2 experienced by floating organisms was less than 300 ppm, while that for immobile organisms directly over the fault surface periodically exceeded 1000 ppm, if momentarily. In the reasonable case, the calculated ΔpCO2 and pH were within the range of natural fluctuation.  相似文献   

2.
Solar geoengineering has been proposed as a potential mechanism to counteract global warming. Here we use the University of Victoria Earth System Model (UVic) to simulate the effect of idealized sunshade geoengineering on the global carbon cycle. We conduct two simulations. The first is the A2 simulation, where the model is driven by prescribed emission scenario based on the SRES A2 CO2 emission pathway. The second is the solar geoengineering simulation in which the model is driven by the A2 CO2 emission scenario combined with sunshade solar geoengineering. In the model, solar geoengineering is represented by a spatially uniform reduction in solar insolation that is implemented at year 2020 to offset CO2-induced global mean surface temperature change. Our results show that solar geoengineering increases global carbon uptake relative to A2, in particular CO2 uptake by the terrestrial biosphere. The increase in land carbon uptake is mainly associated with increased net primary production (NPP) in the tropics in the geoengineering simulation, which prevents excess warming in tropics. By year 2100, solar geoengineering decreases A2-simulated atmospheric CO2 by 110 ppm (12%) and causes a 60% (251 Pg C) increase in land carbon accumulation compared to A2. Solar geoengineering also prevents the reduction in ocean oxygen concentration caused by increased ocean temperatures and decreased ocean ventilation, but reduces global ocean NPP. Our results suggest that to fully access the climate effect of solar geoengineering, the response of the global carbon cycle should be taken into account.  相似文献   

3.
The importance of ocean temperature to global biogeochemistry   总被引:1,自引:0,他引:1  
Variations in the mean temperature of the ocean, on time scales from millennial to millions of years, in the past and projected for the future, are large enough to impact the geochemistry of the carbon, oxygen, and methane geochemical systems. In each system, the time scale of the temperature perturbation is key. On time frames of 1-100 ky, atmospheric CO2 is controlled by the ocean. CO2 temperature-dependent solubility and greenhouse forcing combine to create an amplifying feedback with ocean temperature; the CaCO3 cycle increases this effect somewhat on time scales longer than ∼5-10 ky. The CO2/T feedback can be seen in the climate record from Vostok, and a model including the temperature feedback predicts that 10% of the fossil fuel CO2 will reside in the atmosphere for longer than 100 ky. Timing is important for oxygen, as well; the atmosphere controls the ocean on short time scales, but ocean anoxia controls atmospheric pO2 on million-year time scales and longer. Warming the ocean to Cretaceous temperatures might eventually increase pO2 by approximately 25%, in the absence of other perturbations. The response of methane clathrate to climate change in the coming century will probably be small, but on longer time scales of 1-10 ky, there may be a positive feedback with ocean temperature, amplifying the long-term climate impact of anthropogenic CO2 release.  相似文献   

4.
5.
Coastal upwelling events in the California Current System can transport subsurface waters with high levels of carbon dioxide (CO2) to the sea surface near shore. As these waters age and are advected offshore, CO2 levels decrease dramatically, falling well below the atmospheric concentration beyond the continental shelf break. In May 2007 we observed an upwelling event off the coast of northern California. During the upwelling event subsurface respiration along the upwelling path added ∼35 μmol kg−1 of dissolved inorganic carbon (DIC) to the water as it transited toward shore causing the waters to become undersaturated with respect to Aragonite. Within the mixed layer, pCO2 levels were reduced by the biological uptake of DIC (up to 70%), gas exchange (up to 44%), and the addition of total alkalinity through CaCO3 dissolution in the undersaturated waters (up to 23%). The percentage contribution of each of these processes was dependent on distance from shore. At the time of measurement, a phytoplankton bloom was just beginning to develop over the continental shelf. A box model was used to project the evolution of the water chemistry as the bloom developed. The biological utilization of available nitrate resulted in a DIC decrease of ∼200 μmol kg−1, sea surface pCO2 near ∼200 ppm, and an aragonite saturation state of ∼3. These results suggest that respiration processes along the upwelling path generally increase the acidification of the waters that are being upwelled, but once the waters reach the surface biological productivity and gas exchange reduce that acidification over time.  相似文献   

6.
There are six classes of water and five geologic environments in the subarctic Nahanni karst. During the summers of 1972 and 1973, 214 water samples were collected from 15 of the 30 hydrogeologic categories. Linear discriminant function analysis, using five measured and two derived chemical variables, indicates that there are statistically significant (0.005 level) differences in water chemistry between similar waters in different geologic environments, between waters in the same geologic environment, and between waters in different hydrogeological categories. Geological environment labels a natural water because it determines the availability of soil CO2 and of soluble minerals. Measurements indicate that mean soil log PCO2 is greatest in areas of shale mantled by till (?2.39), and least in areas of sandy fluvioglacial drift (?3.27). Low values on the sandy drift are due to the sparse shrub vegetation, and to the high degree of soil aeration; soils in areas of shale are clay-rich and support a dense boreal forest. Hydrology influences water chemistry because it determines how much CO2 natural waters pick up from the environment and how much they subsequently lose to the atmosphere, and as a result, whether they dissolve or deposit soluble materials. The similarity between mean calculated log PCO2 in natural waters (?2.92) and mean measured soil log PCO2 (?2.80) suggests that natural waters in Nahanni are dose to equilibrium with mean soil CO2 levels.  相似文献   

7.
Waters were sampled from 17 boreholes at Haut Glacier d'Arolla during the 1993 and 1994 ablation seasons. Three types of concentrated subglacial water were identified, based on the relative proportions of Ca2+, HCO3? and SO42? to Si. Type A waters are the most solute rich and have the lowest relative proportion of Si. They are believed to form in hydrologically inefficient areas of a distributed drainage system. Most solute is obtained from coupled sulphide oxidation and carbonate dissolution (SO–CD). It is possible that there is a subglacial source of O2, perhaps from gas bubbles released during regelation, because the high SO42? levels found (up to 1200 µeq/L) are greater than could be achieved if sulphides are oxidized by oxygen in saturated water at 0 °C (c.414 µeq/L). A more likely alternative is that sulphide is oxidized by Fe3+ in anoxic environments. If this is the case, exchange reactions involving FeIII and FeII from silicates are possible. These have the potential to generate relatively high concentrations of HCO3? with respect to SO42?. Formation of secondary weathering products, such as clays, may explain the low Si concentrations of Type A waters. Type B waters were the most frequently sampled subglacial water. They are believed to be representative of waters flowing in more efficient parts of a distributed drainage system. Residence time and reaction kinetics help determine the solute composition of these waters. The initial water–rock reactions are carbonate and silicate hydrolysis, and there is exchange of divalent cations from solution for monovalent cations held on surface exchange sites. Hydrolysis is followed by SO–CD. The SO42? concentrations usually are <414 µeq/L, although some range up to 580 µeq/L, which suggests that elements of the distributed drainage system may become anoxic. Type C waters were the most dilute, yet they were very turbid. Their chemical composition is characterized by low SO42? : HCO3? ratios and high pH. Type C waters were usually artefacts of the borehole chemical weathering environment. True Type C waters are believed to flow through sulphide‐poor basal debris, particularly in the channel marginal zone. The composition of bulk runoff was most similar to diluted Type B waters at high discharge, and was similar to a mixture of Type B and C waters at lower discharge. These observations suggest that some supraglacial meltwaters input to the bed are stored temporarily in the channel marginal zone during rising discharge and are released during declining flow. Little of the subglacial chemical weathering we infer is associated with the sequestration of atmospheric CO2. The progression of reactions is from carbonate and silicate hydrolysis, through sulphide oxidation by first oxygen and then FeIII, which drives further carbonate and silicate weathering. A crude estimate of the ratio of carbonate to silicate weathering following hydrolysis is 4 : 1. We speculate that microbial oxidation of organic carbon also may occur. Both sulphide oxidation and microbial oxidation of organic carbon are likely to drive the bed towards suboxic conditions. Hence, we believe that subglacial chemical weathering does not sequester significant quantities of atmospheric CO2 and that one of the key controls on the rate and magnitude of solute acquisition is microbial activity, which catalyses the reduction of FeIII and the oxidation of FeS2. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Mineral and thermal water chemistry from the Azores archipelago was investigated in order to discriminate among hydrochemical facies and isotopic groups and identify the major geochemical processes that affect water composition. A systematic geochemical survey of mineral and thermal water chemistry was carried out, incorporating new data as well as results from the literature. The Azores are a volcanic archipelago consisting of nine islands and samples were collected at São Miguel, Graciosa, Faial, São Jorge, Pico and Flores islands. Hydrothermal manifestations show the effects of active volcanism on several islands. Discharges are mainly related to active Quaternary central volcanoes, of basaltic to trachytic composition, but also some springs are related to older dormant or extinct volcanoes.Multivariate analysis – principal component and cluster analysis – enables classification of water compositions into 4 groups and interpretation of processes affecting water compositions. Groups 1 and 2 discharge from perched-water bodies, and mostly correspond to Na–HCO3 and Na–HCO3–Cl type waters. These groups comprise of cold, thermal (27 °C–75 °C) and boiling waters (92.2 °C–93.2 °C), with a wide TDS range (77.3–27, 145.7 mg/L). Group 3 is made of samples of dominated Na–SO4 from very acid boiling pools (pH range of 2.02–2.27) which are fed by steam-heated perched-water bodies. Group 4 is representative of springs from the basal aquifer system and corresponds to Na–Cl type fluids, with compositions dominated by seawater.Results are used to further develop a conceptual model characterizing the geochemical evolution of the studied waters. Mineral and thermal waters discharging from perched-water bodies are of meteoric origin and chemically evolve by absorption of magmatic volatiles (CO2) and by a limited degree of rock leaching. Existing data also suggest mixture between cold waters and thermal water. Water chemistry from springs that discharge from the basal aquifer system evolves by mixing with seawater; although, processes such as absorption of magmatic volatiles (CO2), rock leaching and mixture with hydrothermal waters are not excluded by the data because the actual composition of these waters deviates from that expected considering only conservative mixing between fresh and seawater.  相似文献   

9.
The Bay of Biscay is part of the North Atlantic Ocean, the most important sink of CO2, and a subduction zone of mode waters that favours the entry of carbon to the ocean interior. To investigate the seasonal and interannual variability of CO2 uptake, continuous underway measurements of the partial pressure of CO2 at sea surface were performed along a commercial route between Vigo (Spain) and St. Nazaire (France). An unattended measuring system of CO2 fugacity (fCO2), with meteorological station, and temperature, salinity, oxygen and fluorescence sensors, was installed on board of ships of opportunity (RO-RO LAudace and RO-RO Surprise).  相似文献   

10.
Most models of cave formation in limestone that remains near its depositional environment and has not been deeply buried (i.e. eogenetic limestone) invoke dissolution from mixing of waters that have different ionic strengths or have equilibrated with calcite at different pCO2 values. In eogenetic karst aquifers lacking saline water, mixing of vadose and phreatic waters is thought to form caves. We show here calcite dissolution in a cave in eogenetic limestone occurred due to increases in vadose CO2 gas concentrations and subsequent dissolution of CO2 into groundwater, not by mixing dissolution. We collected high‐resolution time series measurements (1 year) of specific conductivity (SpC), temperature, meteorological data, and synoptic water chemical composition from a water table cave in central Florida (Briar Cave). We found SpC, pCO2 and calcite undersaturation increased through late summer, when Briar Cave experienced little ventilation by outside air, and decreased through winter, when increased ventilation lowered cave CO2(g) concentrations. We hypothesize dissolution occurred when water flowed from aquifer regions with low pCO2 into the cave, which had elevated pCO2. Elevated pCO2 would be promoted by fractures connecting the soil to the water table. Simple geochemical models demonstrate that changes in pCO2 of less than 1% along flow paths are an order of magnitude more efficient at dissolving limestone than mixing of vadose and phreatic water. We conclude that spatially or temporally variable vadose CO2(g) concentrations are responsible for cave formation because mixing is too slow to generate observed cave sizes in the time available for formation. While this study emphasized dissolution, gas exchange between the atmosphere and karst aquifer vadose zones that is facilitated by conduits likely exerts important controls on other geochemical processes in limestone critical zones by transporting oxygen deep into vadose zones, creating redox boundaries that would not exist in the absence of caves. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Na–HCO3–CO2-rich thermomineral waters issue in the N of Portugal, within the Galicia-Trás-os-Montes region, linked to a major NNE-trending fault, the so-called Penacova-Régua-Verin megalineament. Along this tectonic structure different occurrences of CO2-rich thermomineral waters are found: Chaves hot waters (67 °C) and also several cold (16.1 °C) CO2-rich waters. The δ2H and δ18O values of the thermomineral waters are similar to those of the local meteoric waters. The chemical composition of both hot and cold mineral waters suggests that water–rock reactions are mainly controlled by the amount of dissolved CO2 (g) rather than by the water temperature. Stable carbon isotope data indicate an external CO2 inorganic origin for the gas. δ13CCO2 values ranging between ? 7.2‰ and ? 5.1‰ are consistent with a two-component mixture between crustal and mantle-derived CO2. Such an assumption is supported by the 3He/4He ratios measured in the gas phase, are between 0.89 and 2.68 times the atmospheric ratio (Ra). These ratios which are higher than that those expected for a pure crustal origin (≈ 0.02 Ra), indicating that 10 to 30% of the He has originated from the upper mantle. Release of deep-seated fluids having a mantle-derived component in a region without recent volcanic activity indicates that extensive neo-tectonic structures originating during the Alpine Orogeny are still active (i.e., the Chaves Depression).  相似文献   

12.
Ocean Drilling Program Leg 199 Site 1220 provides a continuous sedimentary section across the Paleocene/Eocene (P/E) transition in the carbonate‐bearing sediments on 56–57 Ma oceanic crust. The large negative δ13C shift in seawater is likely due to the disintegration of methane hydrate, which is expected to be rapidly changed to carbon dioxide in the atmosphere and well‐oxygenated seawater, leading to a reduction in deep‐sea pH. A pH decrease was very likely responsible for the emergence of agglutinated foraminiferal fauna as calcareous fauna was eliminated by acidification at the P/E transition at Site 1220. The absence of the more resistant calcareous benthic foraminifera and the presence of the planktonic foraminifera at Site 1220 is interesting and unique, which indicates that calcareous benthic foraminifera suffered greatly from living on the seafloor. Box model calculation demonstrates that, assuming the same mean alkalinity as today, pCO2 must increase from 280 ppm to about 410 ppm for the calcite undersaturation in the deep ocean and for the oversaturation in the surface ocean during the P/E transition. The calculated increased pCO2 coincides with paleo‐botanical evidence. The current global emission rate (~7.3 peta (1015) gC/y) of anthropogenic carbon input is approximately 30 times of the estimate at the P/E transition. The results at the P/E transition give an implication that the deep sea benthic fauna will be threatened in future in combination with ocean acidification, increased sea surface temperature and more stratified surface water.  相似文献   

13.
The ocean takes up approximately 2 GT carbon per year due to the enhanced CO2 concentrations in the atmosphere. Several options have been suggested in order to reduce the emissions of CO2 into the atmosphere, and among these are CO2 storage in the deep ocean. Topographic effects of dissolution and transport from a CO2 lake located at 3,000-m depth have been studied using the z-coordinate model Massachusetts Institute of Technology general circulation model (MITgcm) and the σ-coordinate model Bergen ocean model (BOM). Both models have been coupled with the general ocean turbulence model (GOTM) in order to account for vertical subgrid processes. The chosen vertical turbulence mixing scheme includes the damping effect from stable stratification on the turbulence intensity. Three different topographic scenarios are presented: a flat bottom and the CO2 lake placed within a trench with depths of 10 and 20 m. The flat case scenario gives good correlation with previous numerical studies of dissolution from a CO2 lake. When topography is introduced, it is shown that the z-coordinate model and the σ-coordinate model give different circulation patterns in the trench. This leads to different dissolution rates, 0.1 μmol cm − 2 s − 1 for the scenario of a 20-m-deep trench using BOM and 0.005–0.02 μmol cm − 2 s − 1 for the same scenario using the MITgcm. The study is also relevant for leakages of CO2 stored in geological formations and to the ocean.  相似文献   

14.
In the Jungwon area, South Korea, two contrasting types of deep thermal groundwater (around 20–33 °C) occur together in granite. Compared to shallow groundwater and surface water, thermal groundwaters have significantly lower δ18O and δD values (> 1‰ lower in δ18O) and negligible tritium content (mostly < 2 TU), suggesting a relatively high age of these waters (at least pre-thermonuclear period) and relatively long subsurface circulation. However, the hydrochemical evolution yielded two distinct water types. CO2-rich water (PCO2 = 0.1 to 2 atm) is characterized by lower pH (5.7–6.4) and higher TDS content (up to 3300 mg/L), whereas alkaline water (PCO2 = 10− 4.1–10− 4.6 atm) has higher pH (9.1–9.5) and lower TDS (< 254 mg/L). Carbon isotope data indicate that the CO2-rich water is influenced by a local supply of deep CO2 (potentially, magmatic), which enhanced dissolution of silicate minerals in surrounding rocks and resulted in elevated concentrations of Ca2+, Na+, Mg2+, K+, HCO3 and silica under lower pH conditions. In contrast, the evolution of the alkaline water was characterized by a lesser degree of water–rock (granite) interaction under the negligible inflow of CO2. The application of chemical thermometers indicates that the alkaline water represents partially equilibrated waters coming from a geothermal reservoir with a temperature of about 40 °C, while the immature characteristics of the CO2-rich water resulted from the input of CO2 in Na–HCO3 waters and subsequent rock leaching.  相似文献   

15.
Thermal waters of the Ömer–Gecek geothermal field, Turkey, with temperatures ranging from 32 to 92°C vary in chemical composition and TDS contents. They are generally enriched in Na–Cl–HCO3 and suggest deep water circulation. Silica and cation geothermometers applied to the Ömer–Gecek thermal waters yield reservoir temperatures of 75–155°C. The enthalpy–chloride mixing model, which approximates a reservoir temperature of 125°C for the Ömer–Gecek field, accounts for the diversity in the chemical composition and temperature of the waters by a combination of processes including boiling and conductive cooling of deep thermal water and mixing of the deep thermal water with cold water. It is also determined that the solubility of silica in most of the waters is controlled by the chalcedony phase. Equilibrium states of the Ömer–Gecek thermal waters studied by means of the Na–K–Mg triangular diagram, Na–K–Mg–Ca diagram, K–Mg–Ca geoindicator diagram, activity diagrams in the systems composed of Na2O–CaO–K2O–Al2O3–SiO2–CO2–H2O phases, log SI diagrams, and finally the alteration mineralogy indicate that most of the spring and low-temperature well waters in the area can be classified as shallow or mixed waters which are likely to be equilibrated with calcite, chalcedony and kaolinite at predicted temperature ranges similar to those calculated from the chemical geothermometers. It was also observed that mineral equilibrium in the Ömer–Gecek waters is largely controlled by CO2 concentrations.  相似文献   

16.
Surface partial pressure of CO2 (pCO2), temperature, salinity, nutrients, and chlorophyll a were measured in the East China Sea (ECS; 31°30′–34°00′N to 124°00′–127°30′E) in August 2003 (summer), May 2004 (spring), October 2004 (early fall), and November 2005 (fall). The warm and saline Tsushima Warm Current was observed in the eastern part of the survey area during four cruises, and relatively low salinity waters due to outflow from the Changjiang (Yangtze River) were observed over the western part of the survey area. Surface pCO2 ranged from 236 to 445 μatm in spring and summer, and from 326 to 517 μatm in fall. Large pCO2 (values >400 μatm) occurred in the western part of the study area in spring and fall, and in the eastern part in summer. A positive linear correlation existed between surface pCO2 and temperature in the eastern part of the study area, where the Tsushima Warm Current dominates; this correlation suggests that temperature is the major factor controlling surface pCO2 distribution in that area. In the western part of the study area, however, the main controlling factor is different and seasonally complex. There is large transport in this region of Changjiang Diluted Water in summer, causing low salinity and low pCO2 values. The relationship between surface pCO2 and water stability suggests that the amount of mixing and/or upwelling of CO2-rich water might be the important process controlling surface pCO2 levels during spring and fall in this shallow region. Sea–air CO2 flux, based on the application of a Wanninkhof [1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373–7382] formula for gas transfer velocity and a set of monthly averaged satellite wind data, were −5.04±1.59, −2.52±1.81, 1.71±2.87, and 0.39±0.18 mmol m−2 d−1 in spring, summer, early fall, and fall, respectively, in the northern ECS. The ocean in this study area is therefore a carbon sink in spring and summer, but a weak source or in equilibrium with the atmosphere in fall. If the winter flux value is assumed to have been the mean of autumnal and vernal values, then the northern ECS absorbs about 0.013 Pg C annually. That result suggests that the northern ECS is a net sink for atmospheric CO2, a result consistent with previous studies.  相似文献   

17.
Climate change and thawing permafrost in the Arctic will significantly alter landscape hydro‐geomorphology and the distribution of soil moisture, which will have cascading effects on climate feedbacks (CO2 and CH4) and plant and microbial communities. Fundamental processes critical to predicting active layer hydrology are not well understood. This study applied water stable isotope techniques (δ2H and δ18O) to infer sources and mixing of active layer waters in a polygonal tundra landscape in Barrow, Alaska (USA), in August and September of 2012. Results suggested that winter precipitation did not contribute substantially to surface waters or subsurface active layer pore waters measured in August and September. Summer rain was the main source of water to the active layer, with seasonal ice melt contributing to deeper pore waters later in the season. Surface water evaporation was evident in August from a characteristic isotopic fractionation slope (δ2H vs δ18O). Freeze‐out isotopic fractionation effects in frozen active layer samples and textural permafrost were indistinguishable from evaporation fractionation, emphasizing the importance of considering the most likely processes in water isotope studies, in systems where both evaporation and freeze‐out occur in close proximity. The fractionation observed in frozen active layer ice was not observed in liquid active layer pore waters. Such a discrepancy between frozen and liquid active layer samples suggests mixing of meltwater, likely due to slow melting of seasonal ice. This research provides insight into fundamental processes relating to sources and mixing of active layer waters, which should be considered in process‐based fine‐scale and intermediate‐scale hydrologic models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The Ischia geothermal system is hosted by silicic rocks of the Quaternary Potassic Roman Province, in southern Italy. Exploration drilling down to 1156 m depth in the mid-1950s provided information on boiling profiles (up to 250°C) and on the depth and permeability of the potential reservoirs. Discharge fluid samples were collected and analyzed to define the inflow of surrounding seawater (C1 ranges from 2.5 to 20 g/kg) into the system.Analyses of samples from surface manifestations and shallow wells collected during 1983 and 1988 point to the existence of three distinct mixing regimes, involving three water components. A dishomogeneous body of diluted water (Cl less than 2.5 g/kg), that occurs at depths > 700 m and reequilibrates at 240°C at least, is overlain by an aquifer of groundwater variably mixed with variably seawater (Cl from 4 to 10 g/kg), which tends to reequilibrate at 160°C. Steam-heated waters locally develop and act as dilutants of the rising geothermal fluids.Dilution, mixing, and evaporation of the ascending chloride fluids are supported by oxygen and hydrogen isotopic data the thermal waters being enriched in 18O and D with respect to local meteoric water by up to 7 and 30‰, respectively. The relative composition of the major cations in thermal solutions was used to discriminate the two main groups of thermal waters, the reservoir temperatures of which are estimated from the Na/K-gethermometer. K-Mg geothermometer indicates reequilibration in near-surface conditions.The isotopic composition of the fumarolic steam varies from −7 to −12‰ in ∂8O and from − 35 to − 70‰ in ∂D, in agreement with a deep mixed fluid that boils adiabatically from 240 to 80°C. The deuterium content of the H2O-H2 pair gives enrichment factor of about 830‰, corresponding to equilibrium temperature conditions slightly higher than the surface boiling temperatures. The ∂13C of CO2is almost constant at −4.5‰ (1δ=0.4), suggesting an important magmatic contribution, and the ∂18O values of CO2appears to in equilibrium with accompanying steam at the measured temperatures.The CO2/Ar and H2/Ar chemical ratios have been used to derive aquifer temperatures, the values obtained being consistent with those of solute geothermometers.  相似文献   

19.
Lava balloons—peculiar products of basaltic submarine eruptions   总被引:1,自引:1,他引:0  
Between December 1998 and April 2001, a submarine basaltic eruption occurred west of Terceira Island, Azores (Portugal) in water depths between 300 and 1,000?m. Physical evidence for the eruption was provided by the periodic occurrence of hot lava “balloons” floating on the sea surface. The balloons consisted of a large gas-filled cavity surrounded by a thin shell (a few centimetres thick). The shells of the collected balloons are composed of two layers, termed the outer layer and the inner layer, defined by different bubble number density, bubble sizes and crystal content. The inner layer is further divided into three sublayers defined by more subtle differences in vesicularity. The outer layer is glassy, golden-coloured and highly porous. It shows signs of fluidal deformation and late-stage extension cracks. Interstitial glass contains 0.29?wt% H2O and CO2 is below detection. Melt inclusions contain up to 1.18?wt% H2O and 1,500?ppm CO2 (from different inclusions). Cooling rates of the outermost glass of the outer layer are found to be as high as 1,259?K/s. During ascent of low viscosity magma to the ocean floor, volatiles, dominated by CO2, exsolved from the magma (melt + crystals). The buoyancy of the vapour phase that accumulated below a thin crust on lava ponded at the vent caused bulging and ultimately cracking of the crust. This allowed large bubbles (central cavity) surrounded by a film of vesicular magma (balloon shell) to leak into the water column. On contact with the seawater, the outermost part of the outer layer of the shell hyperquenched. If an entirely closed shell was produced during detachment, the trapped gas inside allowed buoyant rise. Only balloons with the right balance of physical properties (e.g. size and bulk density) rose all the way to the sea surface.  相似文献   

20.
13C and ΣCO2 data from the North and South Atlantic, the Antarctic, and the North and South Pacific are given. The δ13C of the ΣCO2 in the deep water (~3000m) decreases from 1.7‰ in the North Atlantic to ?0.10‰ in the North Pacific. This change is attributed to the addition of about 158 μmoles of CO2 per kg of seawater. The in-situ oxidation of organic matter accounts for 83% of this increase in ΣCO2, while the remainder is attributed to dissolution of calcium carbonate.The δ13C of the dissolved CO2 in mid-latitude surface water samples is controlled by a quasi-steady-state equilibrium with atmospheric CO2 at a mean temperature of 16°C. The δ13C and ΣCO2 values of Antarctic surface water samples suggest that these waters are derived from a mixture of North Atlantic deep water and equilibrated surface water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号