首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Destriping methods for constructing maps of the cosmic microwave background (CMB) anisotropies have been investigated extensively in the literature. However, their error properties have been studied in less detail. Here we present an analysis of the effects of destriping errors on CMB power spectrum estimates for Planck -like scanning strategies. Analytic formulae are derived for certain simple scanning geometries that can be rescaled to account for different detector noise. Assuming Planck -like low-frequency noise, the noise power spectrum is accurately white at high multipoles  (ℓ≳ 50)  . Destriping errors, though dominant at lower multipoles, are small in comparison to the cosmic variance. These results show that simple destriping map-making methods should be perfectly adequate for the analysis of Planck data and support the arguments given in an earlier paper in favour of applying a fast hybrid power spectrum estimator to CMB data with realistic '1/ f ' noise.  相似文献   

2.
We implement the theory of resonant scattering in the context of cosmic microwave background (CMB) polarization anisotropies. We compute the changes in the E-mode polarization (EE) and temperature E-mode (TE) CMB power spectra introduced by the scattering on a resonant transition with a given optical depth τX and polarization coefficient E 1. The latter parameter, accounting for how anisotropic the scattering is, depends on the exchange of angular momentum in the transition, enabling observational discrimination between different resonances. We use this formalism in two different scenarios: cosmological recombination and cosmological re-ionization. In the context of cosmological recombination, we compute predictions in frequency and multipole space for the change in the TE and EE power spectra introduced by scattering on the Hα and Pα lines of hydrogen. This constitutes a fundamental test of the standard model of recombination, and the sensitivity it requires is comparable to that needed in measuring the primordial CMB B-mode polarization component. In the context of re-ionization, we study the scattering off metals and ions produced by the first stars, and find that polarization anisotropies, apart from providing a consistency test for intensity measurements, give some insight on how re-ionization evolved. Since polarization anisotropies have memory of how anisotropic the line scattering is, they should be able to discern the O  i 63.2-μm transition from other possible transitions associated to O  iii , N  ii , N  iii , etc. The amplitude of these signals are, however, between 10 and 100 times below the (already challenging) level of CMB B-mode polarization anisotropies.  相似文献   

3.
We examine the ability of the future Planck mission to provide a catalogue of galaxy clusters observed via their Sunyaev–Zel'dovich (SZ) distortion in the cosmic microwave background (CMB). For this purpose we produce full-sky SZ maps based on N -body simulations and scaling relations between cluster properties for several cosmological models. We extrapolate the N -body simulations by a mass function to high redshifts in order to obtain a realistic SZ background. The simulated Planck observations include, besides the thermal and kinematic SZ effects, contributions from the primordial CMB, extragalactic point sources as well as Galactic dust, free–free and synchrotron emission. A harmonic-space maximum-entropy method is used to separate the SZ signal from contaminating components in combination with a cluster detection algorithm based on thresholding and flux integration to identify clusters and to obtain their fluxes. We estimate a survey sensitivity limit (depending on the quality of the recovered cluster flux) and provide cluster survey completeness and purity estimates. We find that, given our modelling and detection algorithm, Planck will reliably detect at least several thousands of clusters over the full sky. The exact number depends on the particular cosmological model (up to 10 000 cluster detections in a concordance ΛCDM model with  σ8= 0.9  ). We show that the Galaxy does not significantly affect the cluster detection. Furthermore, the dependence of the thermal SZ power spectrum on the matter variance on scales of  8 h −1  Mpc and the quality of its reconstruction by the employed method are investigated. Our simulations suggest that the Planck cluster sample will not only be useful as a basis for follow-up observations, but also will have the ability to provide constraints on cosmological parameters.  相似文献   

4.
Distortion of spectrum of the cosmic microwave background due to anisotropic expansion is discussed. We consider an anisotropic cosmological model with a secondary re-heating and re-ionization. After the secondary re-heating distribution of photons momenta becomes isotropic but the spectrum becomes slightly different from that of black body.  相似文献   

5.
We investigate the power of wavelets in detecting non-Gaussianity in the cosmic microwave background (CMB). We use a wavelet-based method on small simulated patches of the sky to discriminate between a pure inflationary model and inflationary models that also contain a contribution from cosmic strings. We show the importance of the choice of a good test statistic in order to optimize the discriminating power of the wavelet technique. In particular, we construct the Fisher discriminant function, which combines all the information available in the different wavelet scales. We also compare the performance of different decomposition schemes and wavelet bases. For our case, we find that the Mallat and a ` trous algorithms are superior to the 2D-tensor wavelets. Using this technique, the inflationary and strings models are clearly distinguished even in the presence of a superposed Gaussian component with twice the rms amplitude of the original cosmic string map.  相似文献   

6.
We present a new map-making method for cosmic microwave background (CMB) measurements. The method is based on the destriping technique, but it also utilizes information about the noise spectrum. The low-frequency component of the instrument noise stream is modelled as a superposition of a set of simple base functions, whose amplitudes are determined by means of maximum-likelihood analysis, involving the covariance matrix of the amplitudes. We present simulation results with  1/ f   noise and show a reduction in the residual noise with respect to ordinary destriping. This study is related to Planck Low Frequency Instrument (LFI) activities.  相似文献   

7.
We present accurate small-angle predictions of the correlation function of hotspots in the microwave background radiation for Gaussian theories such as those predicted in most inflation models. The correlation function of peaks above a certain threshold depends only on the threshold and the power spectrum of temperature fluctuations. Since these are both potentially observable quantities in a microwave background map, there are no adjustable parameters in the predictions. These correlations should therefore provide a powerful test of the Gaussian hypothesis, and provide a useful discriminant between inflation and topological defect models such as the cosmic string model. The correlations have a number of oscillatory features, which should be detectable at high signal-to-noise ratio with future satellite experiments such as MAP and Planck .  相似文献   

8.
Markov chain Monte Carlo (MCMC) techniques are now widely used for cosmological parameter estimation. Chains are generated to sample the posterior probability distribution obtained following the Bayesian approach. An important issue is how to optimize the efficiency of such sampling and how to diagnose whether a finite-length chain has adequately sampled the underlying posterior probability distribution. We show how the power spectrum of a single such finite chain may be used as a convergence diagnostic by means of a fitting function, and discuss strategies for optimizing the distribution for the proposed steps. The methods developed are applied to current cosmic microwave background and large-scale structure data interpreted using both a pure adiabatic cosmological model and a mixed adiabatic/isocurvature cosmological model including possible correlations between modes. For the latter application, because of the increased dimensionality and the presence of degeneracies, the need for tuning MCMC methods for maximum efficiency becomes particularly acute.  相似文献   

9.
Topological defect theories lead to non-Gaussian features on maps of fluctuations of the cosmic microwave background radiation (CMBR), which enable us to distinguish them from maps predicted by standard inflationary models. We have recently presented a maximum entropy method (MEM) which simultaneously deconvolves interferometer maps of CMBR fluctuations, and separates out foreground contaminants. By applying this method to simulated observations using a realistic ground-based interferometer, we demonstrate that it is possible to recover the prominent hotspots in the CMBR maps which delineate individual defects, even in the presence of a significant Galactic foreground.  相似文献   

10.
We address the problem of encoding and compressing data dominated by noise. Information is decomposed into 'reference' sequences plus arrays containing noisy differences susceptible to being described by a known probability distribution. One can then give reliable estimates of the optimal compression rates by estimating the corresponding Shannon entropy. As a working example, this idea is applied to an idealized model of the cosmic microwave background (CMB) data on board the Planck satellite. Data reduction is a critical issue in space missions because the total information that can be downloaded to Earth is sometimes limited by telemetry allocation. Similar limitations might arise in remotely operated ground based telescopes. This download-rate limitation could reduce the amount of diagnostics sent on the stability of the instruments and, as a consequence, curb the final sensitivity of the scientific signal. Our proposal for Planck consists of taking differences of consecutive circles at a given sky pointing. To a good approximation, these differences could be made independent of the external signal, so that they are dominated by thermal (white) instrumental noise, which is simpler to model than the sky signal. Similar approaches can be found in other individual applications. Generic simulations and analytical predictions show that high compression rates,     can be obtained with minor or zero loss of sensitivity. Possible effects of digital distortion are also analysed. The proposed scheme is flexible and reliable enough to be optimized in relation to other critical aspects of the corresponding application. For Planck , this study constitutes an important step towards a more realistic modelling of the final sensitivity of the CMB temperature anisotropy maps.  相似文献   

11.
12.
We use the billion-particle Hubble Volume simulations to make statistical predictions for the distribution of galaxy clusters that will be observed by the Planck Surveyor satellite through their effect on the cosmic microwave background – the Sunyaev–Zel'dovich (SZ) effect. We utilize the lightcone data sets for both critical density ( τ CDM) and flat low-density (ΛCDM) cosmologies: a 'full-sky' survey out to z ∼0.5 , two 'octant' data sets out to beyond z =1 , and a 100 square degree data set extending to z ∼4 . Making simple, but robust, assumptions regarding both the thermodynamic state of the gas and the detection of objects against an unresolved background, we present the expected number of SZ sources as a function of redshift and angular size, and also as a function of flux (for both the thermal and kinetic effects) for three of the relevant High Frequency Instrument frequency channels. We confirm the expectation that the Planck Surveyor will detect around 5×104 clusters, though the exact number is sensitive to the choice of several parameters including the baryon fraction, and also to the cluster density profile, so that either cosmology may predict more clusters. We also find that the majority of detected sources should be at z <1.5 , and we estimate that around 1 per cent of clusters will be spatially resolved by the Planck Surveyor , though this has a large uncertainty.  相似文献   

13.
An algorithm is proposed for denoising the signal induced by cosmic strings in the cosmic microwave background. A Bayesian approach is taken, based on modelling the string signal in the wavelet domain with generalized Gaussian distributions. Good performance of the algorithm is demonstrated by simulated experiments at arcminute resolution under noise conditions including primary and secondary cosmic microwave background anisotropies, as well as instrumental noise.  相似文献   

14.
We investigate the power of geometrical estimators on detecting non-Gaussianity in the cosmic microwave background (CMB). In particular the number, eccentricity and Gaussian curvature of excursion sets above (and below) a threshold are studied. We compare their different performance when applied to non-Gaussian simulated maps of small patches of the sky, which take into account the angular resolution and instrumental noise of the Planck satellite. These non-Gaussian simulations are obtained as perturbations of a Gaussian field in two different ways which introduce a small level of skewness or kurtosis in the distribution. A comparison with a classical estimator, the genus, is also shown. We find that the Gaussian curvature is the best of our estimators in all the considered cases. Therefore we propose the use of this quantity as a particularly useful test to look for non-Gaussianity in the CMB.  相似文献   

15.
We present a harmonic model for the data analysis of an all-sky cosmic microwave background survey, such as Planck , where the survey is obtained through ring-scans of the sky. In this model, resampling and pixelization of the data are avoided. The spherical transforms of the sky at each frequency, in total intensity and polarization, as well as the bright-point-source catalogue, are derived directly from the data reduced on to the rings. Formal errors and the most significant correlation coefficients for the spherical transforms of the frequency maps are preserved. A clean and transparent path from the original samplings in the time domain to the final scientific products is thus obtained. The data analysis is largely based on Fourier analysis of rings; the positional stability of the instrument's spin axis during these scans is a requirement for the data model and is investigated here for the Planck satellite. Brighter point sources are recognized and extracted as part of the ring reductions and, on the basis of accumulated data, used to build the bright-point-source catalogue. The analysis of the rings is performed in an iterative loop, involving a range of geometric and detector response calibrations. The geometric calibrations are used to reconstruct the paths of the detectors over the sky during a scan and the phase offsets between scans of different detectors; the response calibrations eliminate short- and long-term variations in detector response. Point-source information may allow the reconstruction of the beam profile. The reconstructed spherical transforms of the sky in each frequency channel form the input to the subsequent analysis stages. Although the methods in this paper were developed with the data processing for the Planck satellite in mind, there are many aspects which have wider implementation possibilities, including the construction of real-space pixelized maps.  相似文献   

16.
As the quality of the available galaxy cluster data improves, the models fitted to these data might be expected to become increasingly complex. Here we present the Bayesian approach to the problem of cluster data modelling: starting from simple, physically motivated parametrized functions to describe the cluster's gas density, gravitational potential and temperature, we explore the high-dimensional parameter spaces with a Markov-Chain Monte Carlo sampler, and compute the Bayesian evidence in order to make probabilistic statements about the models tested. In this way sufficiently good data will enable the models to be distinguished, enhancing our astrophysical understanding; in any case the models may be marginalized over in the correct way when estimating global, perhaps cosmological, parameters. In this work we apply this methodology to two sets of simulated interferometric Sunyaev–Zel'dovich effect and gravitational weak lensing data, corresponding to current and next-generation telescopes. We calculate the expected precision on the measurement of the cluster gas fraction from such experiments, and investigate the effect of the primordial cosmic microwave background (CMB) fluctuations on their accuracy. We find that data from instruments such as the Arcminute Microkelvin Imager (AMI), when combined with wide-field ground-based weak lensing data, should allow both cluster model selection and estimation of gas fractions to a precision of better than 30 per cent for a given cluster.  相似文献   

17.
We analyse the effects of the detector response time on bolometric measurements of the anisotropy of the cosmic microwave background (CMB). We quantify the effect in terms of a single dimensionless parameter L defined as the ratio between the time the beam sweeps its own size and the bolometer response time. As L decreases below ∼ 2.5, the point-source response of the experiment becomes elongated. We introduce a window function matrix based on the timestream data to assess the effects of the elongated beam. We find that the values of the window function matrix elements decrease slowly as a function of L . Our analysis and results apply to other cases of beam asymmetry. For the High Frequency Instrument on board the Planck Surveyor satellite we show that, for a broad range of L , the ability of the experiment to extract the cosmological parameters is not degraded. Our analysis enhances the flexibility in tuning the design parameters of CMB anisotropy experiments.  相似文献   

18.
For the most sensitive present and future experiments dedicated to cosmic microwave background (CMB) anisotropy observations, the identification and separation of signals coming from different sources is an important step in the data analysis. This problem of the restitution of signals from the observation of their mixture is classically called 'component separation' in CMB mapping. In this paper, we address the general problem of separating, for millimetre-wave sky-mapping applications, components which include not only astrophysical emissions in two-dimensional maps, but also one-dimensional instrumental effects in the data streams. We show that component separation methods can be adapted to separate simultaneously both astrophysical emissions and components coming from time-dependent foreground signals which originate from the instrument itself. Such general methods can be used for the optimal processing of low-redundancy observations where multi-channel observations are a precious tool to remove systematic effects, as may be the case for the Planck mission.  相似文献   

19.
The Fisher matrix approach allows one to calculate in advance how well a given experiment will be able to estimate model parameters, and has been an invaluable tool in experimental design. In the same spirit, we present here a method to predict how well a given experiment can distinguish between different models, regardless of their parameters. From a Bayesian viewpoint, this involves computation of the Bayesian evidence. In this paper, we generalize the Fisher matrix approach from the context of parameter fitting to that of model testing, and show how the expected evidence can be computed under the same simplifying assumption of a Gaussian likelihood as the Fisher matrix approach for parameter estimation. With this 'Laplace approximation' all that is needed to compute the expected evidence is the Fisher matrix itself. We illustrate the method with a study of how well upcoming and planned experiments should perform at distinguishing between dark energy models and modified gravity theories. In particular, we consider the combination of 3D weak lensing, for which planned and proposed wide-field multiband imaging surveys will provide suitable data, and probes of the expansion history of the Universe, such as proposed supernova and baryonic acoustic oscillations surveys. We find that proposed large-scale weak-lensing surveys from space should be able readily to distinguish General Relativity from modified gravity models.  相似文献   

20.
We present a method, based on the correlation function of excursion sets above a given threshold, to test the Gaussianity of the cosmic microwave background (CMB) temperature fluctuations in the sky. In particular, this method can be applied to discriminate between standard inflationary scenarios and those producing non-Gaussianity such as topological defects. We have obtained the normalized correlation of excursion sets, including different levels of noise, for two-point probability density functions constructed from the Gaussian, χ2 n and Laplace one-point probability density functions in two different ways. Considering subdegree angular scales, we find that this method can distinguish between different distributions even if the corresponding marginal probability density functions and/or the radiation power spectra are the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号