首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Introduction Since the middle of the century, gravitational isostasy has been a fundamental hypothesis for inverting the gravity data to find the crust thickness. Geophysicists have done a lot of researches on using gravity data to investigate the depth of Moho discontinuity. Since 1980, the International Lithosphere Program emphasized the importance of investigating the Moho depth variation. Thereafter a lot of results have been published in the world (Braitenberg et al, 2000; Kaban et al,…  相似文献   

2.
The paper presents a high-resolution global gravity field modelling by the boundary element method (BEM). A direct BEM formulation for the Laplace equation is applied to get a numerical solution of the linearized fixed gravimetric boundary-value problem. The numerical scheme uses the collocation method with linear basis functions. It involves a discretization of the complicated Earth’s surface, which is considered as a fixed boundary. Here 3D positions of collocation points are simulated from the DNSC08 mean sea surface at oceans and from the SRTM30PLUS_V5.0 global topography model added to EGM96 on lands. High-performance computations together with an elimination of the far zones’ interactions allow a very refined integration over the all Earth’s surface with a resolution up to 0.1 deg. Inaccuracy of the approximate coarse solutions used for the elimination of the far zones’ interactions leads to a long-wavelength error surface included in the obtained numerical solution. This paper introduces an iterative procedure how to reduce such long-wavelength error surface. Surface gravity disturbances as oblique derivative boundary conditions are generated from the EGM2008 geopotential model. Numerical experiments demonstrate how the iterative procedure tends to the final numerical solutions that are converging to EGM2008. Finally the input surface gravity disturbances at oceans are replaced by real data obtained from the DNSC08 altimetryderived gravity data. The ITG-GRACE03S satellite geopotential model up to degree 180 is used to eliminate far zones’ interactions. The final high-resolution global gravity field model with the resolution 0.1 deg is compared with EGM2008.  相似文献   

3.
A spectral representation of the topographic corrections to gravity field quantities is formulated in terms of spherical height functions. When computing the far-zone contributions to the topographic corrections, various types of the truncation coefficients are applied to a spectral representation of Newton’s integral. In this study we utilise Molodensky’s truncation coefficients in deriving the expressions for the far-zone contributions to topographic corrections. The expressions for computing the far-zone gravity field contributions corrected for the effect of topography are then obtained by combining the expressions for the far-zone contributions to the gravity field quantities and to the respective topographic corrections, both expressed in terms of Molodensky’s truncation coefficients. The numerical examples of the far-zone contributions to the topographic corrections and to the topography-corrected gravity field quantities are given over the study area situated in the Canadian Rocky Mountains with adjacent planes. Coefficients of the global elevation and geopotential models are used as the input data.  相似文献   

4.
This paper revisits several aspects of defining and computing the anomalous gravity data for purposes of gravimetric inversion/interpretation. Attention is paid to evaluation of a refined global topographic correction to the gravity disturbance based on the reference ellipsoid (RE) and constant reference density for solid topography onshore and sea water density for liquid topography offshore. The global bathymetric correction is discussed. Two issues associated with compilation and inversion of bathymetrically and topographically corrected gravity disturbances in regions of negative ellipsoidal (geodetic) heights are pointed out: the evaluation of normal gravity and the harmonic continuation of the gravity data. Stripping, the removal of an effect of a known density contrast, is considered also for additional geological elements such as lakes, glaciers, sedimentary basins, isostatic mountain roots, etc. The stripping corrections are discussed in the context of the gravimetric inverse problem.  相似文献   

5.
We derive expressions for computing the gravitational field (potential and its radial derivative) generated by an arbitrary homogeneous or laterally varying density contrast layer with a variable depth and thickness based on methods for a spherical harmonic analysis and synthesis of gravity field. The newly derived expressions are utilised in the gravimetric forward modelling of major known density structures within the Earth’s crust (excluding the ocean density contrast) beneath the geoid surface. The gravitational field quantities due to the sediments and crust components density contrasts, shown in numerical examples, are computed using the 2 × 2 arc-deg discrete data from the global crustal model CRUST2.0. These density contrasts are defined relative to the adopted value of the reference crustal density of 2670 kgm−3. All computations are realised globally on a 1 × 1 arc-deg geographical grid at the Earth’s surface. The maxima of the gravitational signal due to the sediments density contrast are mainly along continental shelf regions with the largest sedimentary deposits. The corresponding maxima due to the consolidated crust components density contrast are over areas of the largest continental crustal thickness with variable geological structure.  相似文献   

6.
Compilation of the bathymetrically and topographically corrected gravity disturbance, the so called BT disturbance, for the purpose of gravity interpretation/inversion, is investigated from the numerical point of view, with special emphasis on regions of negative heights. In regions of negative ellipsoidal (geodetic) heights, such as the Dead Sea region onshore or offshore areas of negative geoidal heights, two issues complicate the compilation and subsequently the inversion of the BT disturbance. The first is associated with the evaluation of normal gravity below the surface of the reference ellipsoid (RE). The latter is tied to the legitimacy of the harmonic continuation of the BT disturbance in these regions. These two issues are proposed to be resolved by the so called reference quasi-ellipsoid (RQE) approach. New bathymetric and topographic corrections are derived based on the RQE and the inverse problem is formulated based on the RQE. The RQE approach enables the computation of normal gravity by means of the international gravity formula, and makes the harmonic continuation in the regions of negative heights of gravity stations legitimate. The gravimetric inversion is then transformed from the RQE approach back to the RE approach, following the now legitimate harmonic upward continuation of the gravity data to stations on or above the RE. Stripping, the removal of an effect of a known density contrast, is considered in the context of the RQE approach. A numerical case study is presented for the RQE approach in a region of NW Canada.  相似文献   

7.
The long-term variations in the second degree sectorial Stokes parameters of the geopotential have been determined from TOPEX-POSEIDON (T/P) satellite altimeter data, covering the period of January 1, 1993 to January 3, 2001 (T/P cycles 11-305). It is the first attempt to determine the variations in the second sectorial harmonics in the Earth’s inertia tensor due to the ocean dynamics. The variations amount to about 1 × 10−10 (J 2 (2) ≈ 1.6 × 10−6 and S 2 (2) ≈ −0.9 × 10−6). The variations are about 5% of the tidal effect. This corresponds to variations in the directions of the equatorial axes of the Earth’s inertia ellipsoid of up to 10 arc-seconds. Consequently, the annual and semi-annual variations of the Earth’s equatorial flattening is about 10−9; i.e. it corresponds to a change of 8 units of its denominator of 91 030. (The equatorial flattening ≈ 1/91 030). Since the coverage of the Earth’s ocean surface is not worldwide, and the inclination of T/P is i = 66°, it is only 58.2% (min. depth of the ocean 2 000 m) of the Earth’s surface which is processed, the torque, resulting from the seasonal transfer of masses within a sea surface layer, is not zero. It amounts up to 1016 kg m2s−2, which is comparable to the total indirect tidal torque due to the Moon and the Sun, ∼ 3.9 × 1016 kg m2s−2. However, the above estimate strongly depends on the adopted thickness of the sea surface layer, ΔR = 50 m. For a larger thickness of ΔR = 100 m, the seasonal torque amounts to about ∼ 2.3 × 1016 kg m2s−2.  相似文献   

8.
The Mohorovičić discontinuity is the boundary between the Earth’s crust and mantle. Several isostatic hypotheses exist for estimating the crustal thickness and density variation of the Earth’s crust from gravity anomalies.  相似文献   

9.
Atmospheric temperature and humidity fields as well as information on other meteorological parameters are nowadays retrieved from radiance measurements recorded by operational meteorological satellites. Up to now, the inversion procedures used only take into account crude information on the topography of the Earth’s surface. However, the applied radiative transfer codes have to consider the Earth’s surface as the lower boundary of the atmospheric model and, therefore, need a more precise mean elevation and a classification of the roughness of the Earth’s surface. The influence of the topography of the Earth surface on retrieved temperature profiles is studied by using a physico-statistical inversion method. An objective analysis is made of the more precise mean elevation and derivation of roughness parameters using a new high-resolution digital elevation model (DEM) with a resolution of 500 m×500 m. By means of a geomorphological process and a newly developed topography rejection test, areas with a high surface roughness are localized and singled out. The influence of topography on the retrieved temperature profiles is illustrated by case studies. Changes are found predominantly in areas with a high variation of topography. Using the new high-resolution DEM and the topography rejection test, the geographical position of the calculated temperature profiles tends to be shifted towards areas with a small vertical variation of topography. The mean elevation determined by the new elevation model better characterizes the area observed. Hence, the temperature profiles can be calculated down to lower atmospheric levels. Furthermore, a guess profile better describing the atmospheric situation is selected by the more precise elevation. In addition, the temperature profiles obtained near the coast are improved considerably by the more precise determination of the surface property ‘sea’ and ‘land,’ respectively. Integration of an independent physical information such as topography leads, on average, to a slight improvement of the results of the physico-statistical inversion procedure. In some cases, however, significant improvements have been achieved regarding the desired accuracy of temperature profiles of the order of 1 K. In future, the spatial resolution of new high-resolution sounding instrumentation on the next generation of operational meteorological satellites will be increased. To exploit the resolving power of this new instrumentation, the different variation of the topography of the Earth surface, especially in regions with a high variation of topography, can be taken into account more precisely by using a high-resolution DEM.  相似文献   

10.
Important problems of tectonophysical analysis of observational results in recent geodynamics are considered. The paradox of low rates of recent horizontal deformations of the Earth’s surface is formulated. This paradox states that, according to GPS measurements, the annual mean rates of relative deformations are 10−9–10−10 per year, whereas, according to ground-based geodetic and deformographic observations, the rates of recent horizontal deformations of the Earth’s surface are on the order of 10−5–10−6 per year. This paradox is shown to appear as a result of the application of the procedure of averaging to the displacements obtained on large measuring bases with a low degree of details of the time of observations. It is established that, according to multiyear (over 40 years) data, the annual mean rate of deformation processes in the Kopet Dagh seismically active region is 4 × 10−8 per annum along the vertical and 3.2 × 10−8 per year along the horizontal.  相似文献   

11.
We present formulas for direct closed-form transformation between geodetic coordinates (φ, λ, h) and ellipsoidal coordinates (β, λ, u) for any oblate ellipsoid of revolution. These will be useful for those dealing with ellipsoidal representations of the Earth’s gravity field or other oblate ellipsoidal figures. The numerical stability of the transformations for near-polar and near-equatorial regions is also considered.  相似文献   

12.
The event of March 12–19, 2009, when a moderately high-speed solar wind stream flew around the Earth’s magnetosphere and carried millihertz ultralow-frequency (ULF) waves, has been analyzed. The stream caused a weak magnetic storm (D st min = −28 nT). Since March 13, fluxes of energetic (up to relativistic) electrons started increasing in the magnetosphere. Comparison of the spectra of ULF oscillations observed in the solar wind and magnetosphere and on the Earth’s surface indicated that a stable common spectral peak was present at frequencies of 3–4 mHz. This fact is interpreted as evidence that waves penetrated directly from the solar wind into the magnetosphere. Possible scenarios describing the participation of oscillations in the acceleration of medium-energy (E > 0.6 MeV) and high-energy (E > 2.0 MeV) electrons in the radiation belt are discussed. Based on comparing the event with the moderate magnetic storm of January 21–22, 2005, we concluded that favorable conditions for analyzing the interaction between the solar wind and the magnetosphere are formed during a deep minimum of solar activity.  相似文献   

13.
The elasto-gravitational deformation response of the Earth’s solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earth’s deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earth’s surface, CMB and ICB, respectively. The characteristics of the Earth’s deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earth’s fluid outer core. Foundation item: State Natural Science Foundation of China (40174022 and 49925411) and the Projects from Chinese Academy of Sciences (KZCX2-106 and KZ952-J1-411).  相似文献   

14.
During the General Assembly of the European Geosciences Union in April 2008, the new Earth Gravitational Model 2008 (EGM08) was released with fully-normalized coefficients in the spherical harmonic expansion of the Earth’s gravitational potential complete to degree and order 2159 (for selected degrees up to 2190). EGM08 was derived through combination of a satellite-based geopotential model and 5 arcmin mean ground gravity data. Spherical harmonic coefficients of the global height function, that describes the surface of the solid Earth with the same angular resolution as EGM08, became available at the same time. This global topographical model can be used for estimation of selected constituents of EGM08, namely the gravitational potentials of the Earth’s atmosphere, ocean water (fluid masses below the geoid) and topographical masses (solid masses above the geoid), which can be evaluated numerically through spherical harmonic expansions. The spectral properties of the respective potential coefficients are studied in terms of power spectra and their relation to the EGM08 potential coefficients is analyzed by using correlation coefficients. The power spectra of the topographical and sea water potentials exceed the power of the EGM08 potential over substantial parts of the considered spectrum indicating large effects of global isostasy. The correlation analysis reveals significant correlations of all three potentials with the EGM08 potential. The potential constituents (namely their functionals such as directional derivatives) can be used for a step known in geodesy and geophysics as the gravity field reduction or stripping. Removing from EGM08 known constituents will help to analyze the internal structure of the Earth (geophysics) as well as to derive the Earth’s gravitational field harmonic outside the geoid (geodesy).  相似文献   

15.
The global stress field appearing in the Earth’s lithosphere under the action of forces caused by the difference of gravitational potential is calculated. An original algorithm is proposed and the operational Earth Stresses program code is developed. The data on the topography, thickness, and density of the Earth’s crust and the upper mantle, as well as the gravitational anomalies and thermal conditions in the lithosphere were taken into account in the calculations. A comparison of the calculation results and the observed data makes it possible to conclude that the action of the forces of the difference of the gravitational potential alone is sufficient to explain the features of the first order of the stress field in the Earth’s lithosphere.  相似文献   

16.
To reduce the numerical complexity of inverse solutions to large systems of discretised integral equations in gravimetric geoid/quasigeoid modelling, the surface domain of Green’s integrals is subdivided into the near-zone and far-zone integration sub-domains. The inversion is performed for the near zone using regional detailed gravity data. The farzone contributions to the gravity field quantities are estimated from an available global geopotential model using techniques for a spherical harmonic analysis of the gravity field. For computing the far-zone contributions by means of Green’s integrals, truncation coefficients are applied. Different forms of truncation coefficients have been derived depending on a type of integrals in solving various geodetic boundary-value problems. In this study, we utilise Molodensky’s truncation coefficients to Green’s integrals for computing the far-zone contributions to the disturbing potential, the gravity disturbance, and the gravity anomaly. We also demonstrate that Molodensky’s truncation coefficients can be uniformly applied to all types of Green’s integrals used in solving the boundaryvalue problems. The numerical example of the far-zone contributions to the gravity field quantities is given over the area of study which comprises the Canadian Rocky Mountains. The coefficients of a global geopotential model and a detailed digital terrain model are used as input data.  相似文献   

17.
Besides generating seismic waves, which eventually dissipate, an earthquake also generates a static displacement field everywhere within the Earth. This global displacement field rearranges the Earth’s mass thereby causing the Earth’s rotation and gravitational field to change. The size of this change depends upon the magnitude, focal mechanism, and location of the earthquake. The Sumatran earthquake of December 26, 2004 is the largest earthquake to have occurred since the 1960 Chilean earthquake. Using a spherical, layered Earth model, the coseismic effect of the Sumatran earthquake upon the Earth’s length-of-day, polar motion, and low-degree harmonic coefficients of the gravitational field are computed. Using a model of the earthquake source that is composed of five subevents having a total moment-magnitude M w of 9.3, it is found that this earthquake should have caused the length-of-day to decrease by 6.8 microseconds, the position of the Earth’s generalized figure axis to shift 2.32 milliarcseconds towards 127° E longitude, the Earth’s oblateness J 2 to decrease by 2.37 × 10−11 and the Earth’s pear-shapedness J 3 to decrease by 0.63 × 10−11. The predicted change in the length-of-day, position of the generalized figure axis, and J 3 are probably not detectable by current measurement systems. But the predicted change in oblateness is perhaps detectable if other effects, such as those of the atmosphere, oceans, and continental water storage, can be adequately removed from the observations.  相似文献   

18.
Precipitation of electrons with energies of 0.3–1.5 MeV has been analyzed based on the CORONAL-F satellite data at polar latitudes of the Northern Hemisphere on December 13, 2003. The instants of electron precipitation have been compared with the ground-based observations of geomagnetic disturbances and auroras near the satellite orbit projection. It has been indicated that precipitation of energetic electrons in the high-latitude nightside sector is accompanied by the simultaneous development of bay-like magnetic field disturbances on the Earth’s surface and the appearance of riometer absorption bursts and Pi3 geomagnetic pulsations, and auroras.  相似文献   

19.
The International Geomagnetic Reference Field models (IGRF) for 1900–2000 are used to calculate the geomagnetic field distribution in the Earth’ interior from the ground surface to the core-mantle boundary (CMB) under the assumption of insulated mantle. Four reversed polarity patches, as one of the most important features of the CMB field, are revealed. Two patches with +Z polarity (downward) at the southern African and the southern American regions stand out against the background of ™Z polarity (upward) in the southern hemisphere, and two patches of ™Z polarity at the North Polar and the northern Pacific regions stand out against the +Z background in the northern hemisphere. During the 1900–2000 period the southern African (SAF) patch has quickly drifted westward at a speed of 0.20–.3° /a; meanwhile its area has expanded 5 times, and the magnetic flux crossing the area has intensified 30 times. On the other hand, other three patches show little if any change during this 100-year period. Extending upward, each of the reversed polarity patches at the CMB forms a chimney-shaped “reversed polarity column” in the mantle with the bottom at the CMB. The height of the SAF column has grown rapidly from 200km in 1900 to 900km in 2000. If the column grows steadily at the same rate in the future, its top will reach to the ground surface in 600–700 years. And then a reversed polarity patch will be observed at the Earth’s surface, which will be an indicator of the beginning of a magnetic field reversal. On the basis of this study, one can describe the process of a geomagnetic polarity reversal, the polarity reversal may be observed firstly in one or several local regions; then the areas of these regions expand, and at the same time, other new reversed polarity regions may appear. Thus several poles may exist during a polarity reversal.  相似文献   

20.
We study the changes in the rate of seismotectonic strains in the Earth’s crust in two of the most seismically active Central Asian areas, the Garm region in Tadjikistan and the Northern Tien Shan, which are excited by high energy pulsed electromagnetic irradiation. It is shown that in both areas the average rates of strain release increase by a factor of 10–20. The increment of the seismotectonic strains initiated during the entire period of electromagnetic treatment is 1.3 × 10−6–6.3 × 10−6, which is comparable with the value of crustal strains observed during the preparation of strong earthquakes and amounts to 3–13% of the ultimate strains for rocks. Such a contribution to the process of quasi-plastic strains of the crust results in the additional relaxation of elastic stresses by 0.4–1.67 bar, which corresponds to approximately 1–17% of the stress released in the sources of strong earthquakes. The spatial variations in the changes of the strain rate during electromagnetic treatment are studied, and their correlation with the level of stresses in the Earth’s crust is revealed. It is shown that the change in the strain rate during the electromagnetic excitation can be used as the criterion for active monitoring of the stress state of the medium for the purposes of predicting the location, time, and magnitude of strong earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号