首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.  相似文献   

2.
Llullaillaco is one of a chain of Quaternary stratovolcanoes that defines the present Andean Central Volcanic Zone (CVZ), and marks the border between Chile and Argentina/Bolivia. The current edifice is constructed from a series of thick dacitic lava flows, forming the second tallest active volcano in the world (6739 m). K–Ar and new biotite laser 40Ar/39Ar step-heating dates indicate that the volcano was constructed during the Pleistocene (≤1.5 Ma), with a youngest date of 0.048±0.012 Ma being recorded for a fresh dacite flow that descends the southern flank. Additional 40Ar/39Ar measurements for andesitic and dacitic lava flows from the surrounding volcanic terrain yield dates of between 11.94±0.13 Ma and 5.48±0.07 Ma, corresponding to an extended period of Miocene volcanism which defines much of the landscape in this region. Major- and trace-element compositions of lavas from Llullaillaco are typical of Miocene–Pleistocene volcanic rocks from the western margin of the CVZ, and are related to relatively shallow-dipping subduction of the Nazca plate beneath northern Chile and Argentina.Oversteepening of the edifice by stacking of thick, viscous, dacitic lava flows resulted in collapse of its southeastern flank to form a large volcanic debris avalanche. Biotite 40Ar/39Ar dating of lava blocks from the avalanche deposit indicate that collapse occurred at or after 0.15 Ma, and may have been triggered by extrusion of a dacitic flow similar to the one dated at 0.048±0.012 Ma. The avalanche deposits are exceptionally well preserved due to the arid climate, and prominent levées, longitudinal ridges, and megablocks up to 20-m diameter are observed.The avalanche descended 2.8 km vertically, and bifurcated around an older volcano, Cerro Rosado, before debouching onto the salt flats of Salina de Llullaillaco. The north and south limbs of the avalanche traveled 25 and 23 km, respectively, and together cover an area of approximately 165 km2. Estimates of deposit volume are hampered by a lack of thickness information except at the edges, but it is likely to be between 1 and 2 km3. Equivalent coefficients of friction of 0.11 and 0.12, and excess travel distances of 20.5 and 18.5 km, are calculated for the north and south limbs, respectively. The avalanche ascended 400 m where it broke against the western flank of Cerro Rosado, and a minimum flow velocity of 90 m s−1 can be calculated at this point; lower velocities of 45 m s−1 are calculated where distal toes ascend 200 m slopes.It is suggested that the remaining precipitous edifice has a high probability for further avalanche collapse in the event of renewed volcanism.  相似文献   

3.
Volcán Ollagüe is a high-K, calc-alkaline composite volcano constructed upon extremely thick crust in the Andean Central Volcanic Zone. Volcanic activity commenced with the construction of an andesitic to dacitic composite cone composed of numerous lava flows and pyroclastic deposits of the Vinta Loma series and an overlying coalescing dome and coulée sequence of the Chasca Orkho series. Following cone construction, the upper western flank of Ollagüe collapsed toward the west leaving a collapse-amphitheater about 3.5 km in diameter and a debris avalanche deposit on the lower western flank of the volcano. The deposit is similar to the debris avalanche deposit produced during the May 18, 1980 eruption of Mount St. Helens, U.S.A., and was probably formed in a similar manner. It presently covers an area of 100 km2 and extends 16 km from the summit. Subsequent to the collapse event, the upper western flank was reformed via eruption of several small andesitic lava flows from vents located near the western summit and growth of an andesitic dome within the collapse-amphitheater. Additional post-collapse activity included construction of a dacitic dome and coulée of the La Celosa series on the northwest flank. Field relations indicate that vents for the Vinta Loma and post-collapse series were located at or near the summit of the cone. The Vinta Loma series is characterized by an anhydrous, two-pyroxene assemblage. Vents for the La Celosa and Chasca Orkho series are located on the flanks and strike N55 W, radial to the volcano. The pattern of flank eruptions coincides with the distribution in the abundance of amphibole and biotite as the main mafic phenocryst phases in the rocks. A possible explanation for this coincidence is that an unexposed fracture or fault beneath the volcano served as a conduit for both magma ascent and groundwater circulation. In addition to the lava flows at Ollagüe, magmas are also present as blobs of vesiculated basaltic andesite and mafic andesite that occur as inclusions in nearly all of the lavas. All eruptive activity at Ollagüe predates the last glacial episode ( 11.000 a B.P.), because post-collapse lava flows are overlain by moraine and are incised by glacial valleys. Present activity is restricted to emission of a persistent, 100-m-high fumarolic steam plume from a vent located within the summit andesite dome.Sr and Nd isotope ratios for the basaltic andesite and mafic andesite inclusions and lavas suggest that they have assimilated large amounts of crust during crystal fractionation. In contrast, narrow ranges in 143Nd/144Nd and 87Sr/86Sr in the andesitic and dacitic lavas are enigmatic with respect to crustal contamination.  相似文献   

4.
During long-lived basaltic eruptions, overflows from lava channels and breaching of channel levées are important processes in the development of extensive 'a'ā lava flow-fields. Short-lived breaches result in inundation of areas adjacent to the main channel. However, if a breach remains open, lava supply to the original flow front is significantly reduced, and flow-field widening is favoured over lengthening. The development of channel breaches and overflows can therefore exert strong control over the overall flow-field development, but the processes that determine their location and frequency are currently poorly understood. During the final month of the 2008–2009 eruption of Mt. Etna, Sicily, a remote time-lapse camera was deployed to monitor events in a proximal region of a small ephemeral lava flow. For over a period of ~10 h, the flow underwent changes in surface elevation and velocity, repeated overflows of varying vigour and the construction of a channel roof (a required prelude to lava tube formation). Quantitative interpretation of the image sequence was facilitated by a 3D model of the scene constructed using structure-from-motion computer vision techniques. As surface activity waned during the roofing process, overflow sites retreated up the flow towards the vent, and eventually, a new flow was initiated. Our observations and measurements indicate that flow surface stagnation and flow inflation propagated up-flow at an effective rate of ~6 m h−1, and that these processes, rather than effusion rate variations, were ultimately responsible for the most vigorous overflow events. We discuss evidence for similar controls during levée breaching and channel switching events on much larger flows on Etna, such as during the 2001 eruption.  相似文献   

5.
The formation of landslide dams is often induced by earthquakes in mountainous areas.The failure of a landslide dam typically results in catastrophic flash floods or debris flows downstream.Significant attention has been given to the processes and mechanisms involved in the failure of individual landslide dams.However,the processes leading to domino failures of multiple landslide dams remain unclear.In this study,experimental tests were carried out to investigate the domino failure of landslide dams and the consequent enlargement of downstream debris flows.Different blockage conditions were considered,including complete blockage,partial blockage and erodible bed(no blockage).The mean velocity of the flow front was estimated by videos.Total stress transducers(TSTs)and Laser range finders(LRFs) were employed to measure the total stress and the depth of the flow front,respectively.Under a complete blockage pattern,a portion of the debris flow was trapped in front of each retained landslide dam before the latter collapsed completely.This was accompanied by a dramatic decrease in the mean velocity of the flow front.Conversely,under both partial blockage and erodible bed conditions,the mean velocity of the flow front increased gradually downward along the sloping channel.Domino failures of the landslide dams were triggered when a series of dams(complete blockage and partial blockage) were distributed along the flume.However,not all of these domino failures led to enlarged debris flows.The modes of dam failures have significant impacts on the enlargement of debris flows.Therefore,further research is necessary to understand the mechanisms of domino failures of landslide dams and their effects on the enlargement of debris flows.  相似文献   

6.
The internal deformation within debris flows holds essential information on dynamics and flow resistance of such mass-wasting processes. Systematic measurements of velocity profiles in real-scale debris flows are not yet available. Additionally, data on basal stresses of the solid and the fluid phase are rare. Here, we present and analyse measurements of vertical velocity profiles in two debris flows naturally occurring in the Gadria Creek, Italy. The method is based on cross-correlation of paired conductivity signals from an array of sensors installed on a fin-shaped wall located in the middle of the channel. Additionally, we measure normal stress and pore fluid pressure by two force plates with integrated pressure transducers. We find internal deformation throughout the flows. Only at the very front was some en-bloc movement observed. Velocity profiles varied from front to tail and between flows. For one debris flow, pore fluid pressure close to normal stress was measured, whereas the other flow was less liquefied. The median shear rates were mostly less than 5 s−1 and Savage numbers at the basal layer ranged from 0.01 to 1. Our results highlight the variable nature of debris flows and provide quantitative data on shear rate and basal stress distribution to help guide model development for hazard assessment and landscape evolution. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

7.
The history of volcan Popocatepetl can be divided into two main periods: the formation of a large primitive volcano — approximatively 30 km wide — on which is superimposed a modern cone (6–8 km in diameter and 1700m high). A major event of Bezymianny type marks the transition between these two dissimilar periods.The activity of the primitive volcano was essentially effusive and lasted several hundred thousands of years. The total volume of products ejected by the volcano is of the order of 500–600 km3. Its last differentiated magmas are dacitic.A gigantic debris flow (D.F.) spread on the southern side is related to the Bezymianny-type event which destroyed the summit area of the ancient edifice. An elliptical caldera ( 6.5 × 11 km wide) was formed by the landslide. Its deposits, with a typical hummocky surface, cover 300 km2 for a volume of 28–30 km3. Numerous outcrops belonging to this debris flow show “slabs” of more or less fractured and dislocated rocks that come from the primitive volcano. These deposits are compared to two studied debris flows of similar extent and volume: the Mount Shasta and Colima's D.F.This eruption takes a major place in the volcanologic and magmatic history of Popocatepetl: pyroclastic products of surge-type with “laminites” and crude layers, ashflows, and pumiceous airfall layers are directly related to this event and begin the history of the modern volcano probably less than 50,000 years ago. In addition, a second andesitic and dacitic phase rose both from the central vent — forming the basis of modern Popo — and from lateral vents.The terminal cone is characterized by long periods of construction by lava flows alternating with phases of destruction, the duration of these episodes being 1000 to 2000 years. The cone is composed of two edifices: the first, volcan El Fraile, began with effusive activity and was partly destroyed by three periods of intense explosive activity. The first period occurred prior to 10.000 years B.P., the second from 10.000 to 8000 years B.P. and the third from 5000 to 3800 years B.P. Each period of destruction shows cycles producing collapsing pyroclastic flows or nuées of the St Vincent-type related to the opening of large craters, plinian air-fall deposits and minor lava flows. The second edifice, the summit Popo, produced lava flows until 1200 years B.P. and since that time, entered into an explosive period. Two cataclysmic episodes, each including major pyroclastic eruptions, occurred 1200 and 900–1000 years ago. During the Pre-Hispanic and historic times effusive activity was restricted entirely to the summit area alternating with plinian eruptions. Nevertheless, despite the quiet appearance of the volcano, the last period of pyroclastic activity which started 1200 years ago may not have ended and can be very dangerous for the nearby populations.  相似文献   

8.
Mayon Volcano, southeastern Luzon, began a series of explosive eruptions at 0900 April 21, 1968, and by May 15 more than 100 explosions had occurred, at least 6 people had been killed, and roughly 100 square km had been covered by more than 5 cm of airfall ash, blocky ash flows, and a lava flow. All material crupted was porphyritic augite-hypersthene andesite. Explosions from the summit crater (elevation 2460 m) ejected large quantities of ash and incandescent blocks to a height exceeding 600 m and produced ash-laden clouds which rose to heights of 3 to 10 km. Backfall of the coarser material fed nuées ardentes which repeatedly swept down ravines on all sides of the volcanic cone. The velocity of one nuée ardente ranged from 9 to 63 m per sec. The largest nuées descended to the southwest and reached as far as 7 km from the summit. An aa lava flow also descended 3 1/2 km down this flank. The nuées ardentes deposited pyroclastic flows that contained large breadcrust-surfaced blocks averaging about 30 cm across, but occasionally reaching 25 m in greatest dimension. These blocks were still very hot in their interiors several days later. Surrounding the pyroclastic flows is a seared zone as much as 2 km wide, but averaging a few hundred meters, in which vegetation is charred and splintered, but over which only a thin layer of airfall ash was deposited.  相似文献   

9.
The velocity and dynamic pressure of debris flows are critical determinants of the impact of these natural phenomena on infrastructure. Therefore, the prediction of these parameters is critical for hazard assessment and vulnerability analysis. We present here an approach to predict the velocity of debris flows on the basis of the energy line concept. First, we obtained empirically and field‐based estimates of debris flow peak discharge, mean velocity at peak discharge and velocity, at channel bends and within the fans of ten of the debris flow events that occurred in May 1998 in the area of Sarno, Southern Italy. We used this data to calibrate regression models that enable the prediction of velocity as a function of the vertical distance between the energy line and the surface. Despite the complexity in morphology and behaviour of these flows, the statistical fits were good and the debris flow velocities can be predicted with an associated uncertainty of less than 30% and less than 3 m s?1. We wrote code in Visual Basic for Applications (VBA) that runs within ArcGIS® to implement the results of these calibrations and enable the automatic production of velocity and dynamic pressure maps. The collected data and resulting empirical models constitute a realistic basis for more complex numerical modelling. In addition, the GIS implementation constitutes a useful decision‐support tool for real‐time hazard mitigation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Crust formation on basaltic lava flows dictates conditions of both flow cooling and emplacement. For this reason, flow histories are dramatically different depending on whether lava is transported through enclosed lava tubes or through open channels. Recent analog experiments in straight uniform channels (Griffiths et al. J Fluid Mech 496:33–62, 2003) have demonstrated that tube flow, dictated by a stationary surface crust, can be distinguished from a mobile crust regime, where a central solid crust is separated from channel walls by crust-free shear zones, by a simple dimensionless parameter ϑ, such that ϑ<25 produces tube flow and ϑ>25 describes the mobile crust regime. ϑ combines a previously determined parameter ψ, which describes the balance between the formation rate of surface solid and the shear strain that disrupts the solid crust, with the effects of thermal convection (described by the Rayleigh number Ra).Here we explore ways in which ϑ can be used to describe the behavior of basaltic lava channels. To do this we have extended the experimental approach to examine the effects of channel irregularities (expansions, contractions, sinuosity, and bottom roughness) on crust formation and disruption. We find that such changes affect local flow behavior and can thus change channel values of ϑ. For example, gradual widening of a channel results in a decrease in flow velocity that causes a decrease in ϑ and may allow a down-flow transition from the mobile crust to the tube regime. In contrast, narrowing of the channel causes an increase in flow velocity (increasing ϑ), thus inhibiting tube formation.We also quantify the fraction of surface covered by crust in the mobile crust regime. In shallow channels, variations in crust width (d c) with channel width (W) are predicted to follow d cW 5/3. Analysis of channelized lava flows in Hawaii shows crustal coverage consistent with this theoretical result along gradually widening or narrowing channel reaches. An additional control on crustal coverage in both laboratory and basaltic flows is disruption of surface crust because of flow acceleration through constrictions, around bends, and over breaks in slope. Crustal breakage increases local rates of cooling and may cause local blockage of the channel, if crusts rotate and jam in narrow channel reaches. Together these observations illustrate the importance of both flow conditions and channel geometry on surface crust development and thus, by extension, on rates and mechanisms of flow cooling. Moreover, we note that this type of analysis could be easily extended through combined use of FLIR and LiDAR imaging to measure crustal coverage and channel geometry directly.Editorial responsibility: A. Harris  相似文献   

11.
The Llangorse volcanic field is located in northwest British Columbia, Canada, and comprises erosional remnants of Miocene to Holocene volcanic edifices, lava flows or dykes. The focus of this study is a single overthickened, 100-m-thick-valley-filling lava flow that is Middle-Pleistocene in age and located immediately south of Llangorse Mountain. The lava flow is basanitic in composition and contains mantle-derived peridotite xenoliths. The lava directly overlies a sequence of poorly sorted, crudely bedded volcaniclastic debris-flow sediments. The debris flow deposits contain a diverse suite of clast types, including angular clasts of basanite lava, blocks of peridotite coated by basanite, and rounded boulders of granodiorite. Many of the basanite clasts have been palagonitized. The presence and abundance of clasts of vesicular to scoriaceous, palagonitized basanite and peridotite suggest that the debris flows are syngenetic to the overlying lava flow and sampled the same volcanic vent during the early stages of eruption. They may represent lahars or outburst floods related to melting of a snow pack or ice cap during the eruption. The debris flows were water-saturated when deposited. The rapid subsequent emplacement of a thick basanite flow over the sediments heated pore fluids to at least 80–100°C causing in-situ palagonitization of glassy basanite clasts within the sediments. The over-thickened nature of the Llangorse Mountain lavas suggests ponding of the lava against a down-stream barrier. The distribution of similar-aged glaciovolcanic features in the cordillera suggests the possibility that the barrier was a lower-elevation, valley-wide ice-sheet.  相似文献   

12.
Following the eruption of January 1992, episodes of lava dome growth accompanied by generation of dome-collapse nuées ardentes occurred in 1994–1998. In addition, nuées ardentes were generated by fountain-collapse in January 1997, and the 1998 events also suggest an explosive component. Significant tilt and seismic precursors on varying time scales preceded these events. Deformation about the summit has been detected by electronic tiltmeters since November 1992, with inflation corresponding generally to lava dome growth, and deflation (or decreased inflation) corresponding to loss of dome mass. Strong short-term (days to weeks) accelerations in tilt rate and seismicity occurred prior to the major nuées ardentes episodes, apart from those of 22 November 1994 which were preceded by steadily increasing tilt for over 200 days but lacked short-term precursors. Because of the combination of populated hazardous areas and the lack of an issued warning, about 100 casualties occurred in 1994. In contrast, the strong precursors in 1997 and 1998 provided advance warning to observatory scientists, enabled the stepped raising of alert levels, and aided hazard management. As a result of these factors, but also the fortunate fact that the large nuées ardentes did not quite descend into populated areas, no casualties occurred. The nuée ardente episode of 1994 is interpreted as purely due to gravitational collapse, whereas those of 1997 and 1998 were influenced by gas-pressurization of the lava dome.  相似文献   

13.
Etna’s 2001 basaltic lava flow provided a good example of the distal flow segment between the flow front and stable channel, across which the flow evolves from channel-contained to dispersed. This zone was mapped with meter precision using LIDAR data collected during 2004 and 2005. These data, supported by field mapping, show that the flow front comprised eight lobes each 10 to 20 m high. The flow front appears to have advanced not as a single unit, but as a series of lobes moving forward one lobe at a time. Primary lobes were centered on the channel axis and marginal lobes were off-axis. The lobes advanced as breakouts of low-yield-strength lava from the flow core of the stalled flow front. Marginal lobes were abandoned and contributed to marginal levees flanking the transitional channel. For Etna’s 2001 flow, the transitional channel is 140 m wide, 700 m long and fed a 240-m-long zone of dispersed flow; the change from stable to transitional channel occurred at a major reduction in slope. Above this, the stable channel is 5.2 km long, 55 to 105 m wide and bounded by 15- to 25-m-high levees, and the stable channel is located over a previous channel. In a final stage of activity, lava ponding at the break-in-slope that marks the terminus of the stable channel put pressure on the eastern levee, causing it to fail. Liberated lava then fed a final break-out to the east. Similar flow front-features occur at other volcanoes, indicating that similar processes are characteristic of dispersed flow zones.  相似文献   

14.
Pyroclastic flows from the 1991 eruption of Unzen volcano,Japan   总被引:1,自引:0,他引:1  
Pyroclastic flows from Unzen were generated by gravitational collapse of the growing lava dome. As soon as the parental lobe failed at the edge of the dome, spontaneous shattering of lava occurred and induced a gravity flow of blocks and finer debris. The flows had a overhanging, tongue-like head and cone- or rollershaped vortices expanding outward and upward. Most of the flows traveled from 1 to 3 km, but some flows reached more than 4 km, burning houses and killing people in the evacuated zone of Kita-kamikoba on the eastern foot of the volcano. The velocities of the flows ranged from 15 to 25 m/s on the gentle middle flank. Observations of the flows and their deposits suggest that they consisted of a dense basal avalanche and an overlying turbulent ash cloud. The basal avalanche swept down a topographic low and formed to tongue-like lobe having well-defined levees; it is presumed to have moved as a non-Newtonian fluid. The measured velocities and runout distances of the flows can be matched to a Bingham model for the basal avalanche by the addition of turbulent resistance. The rheologic model parameters for the 29 May flow are as follows: the density is 1300 kg/m3, the yield strength is 850 Pa, the viscosity is 90 Pa s, and the thickness of the avalanche is 2 m. The ash cloud is interpreted as a turbulent mixing layer above the basal avalanche. The buoyant portions of the cloud produced ash-fall deposits, whereas the dense portions moved as a surge separated from the parental avalanche. The ash-cloud surges formed a wide devastated zone covered by very thin debris. The initial velocities of the 3 June surges, when they detached from avalanches, are determined by the runout distance and the angle of the energy-line slope. A comparison between the estimated velocities of the 3 June avalanches and the surges indicates that the surges that extended steep slopes along the avalanche path, detached directly from the turbulent heads of the avalanches. The over-running surge that reached Kita-Kamikoba had an estimated velocity higher than that of the avalanche; this farther-travelled surge is presumed to have been generated by collapse of a rising ash-cloud plume.  相似文献   

15.
The 1975 sub-terminal activity was characterised by low effusion rates (0.3–0.5 m3 s−1) and the formation of a compound lava field composed of many thousands of flow units. Several boccas were active simultaneously and effusion rates from individual boccas varied from about 10−4 to 0.25 m3s−1. The morphology of lava flows was determined by effusion rate (E): aa flows with well-developed channels and levees formed when E > 2 × 10−3 m3 s−1, small pahoehoe flows formed when 2 × 10−3 m3 s−1 >E > 5 > 10−4 m3 s−1 and pahoehoe toes formed when E < 5 × 10−4 m3 s−1. There was very little variation with time in the effusion temperature, composition or phenocryst content of the lava.New boccas were commonly formed at the fronts of mature lava flows which had either ceased to flow or were moving slowly. These secondary boccas developed when fluid lava in the interior of mature aa flows either found a weakness in the flow front or was exposed by avalanching of the moving flow front. The resulting release of fluid lava was accompanied by either partial drainage of the mature flow or by the formation of a lava tube in the parent flow. The temperature of the lava forming the new bocca decreased with increasing distance from the source bocca (0.035°C m−1). It is demonstrated from the rate of temperature decrease and from theoretical considerations that many of the Etna lavas still contained a substantial proportion of uncooled material in their interior as they came to rest. The formation of secondary boccas is postulated to be one reason why direct measurements of effusion rates tend, in general, to overestimate the total effusion rates of sub-terminal Etna lava fields.  相似文献   

16.
Mount Hasan is a double-peaked stratovolcano, located in Central Anatolia, Turkey. The magmas erupted from this multi-caldera complex range from basalt to rhyolite, but are dominated by andesite and dacite. Two terminal cones (Big Mt. Hasan and Small Mt. Hasan) culminate at 3253 m and 3069 m respectively. There are four evolutionary stages in the history of the volcanic complex (stage 1: Kecikalesi volcano, 13 Ma, stage 2: Palaeovolcano, 7 Ma, stage 3: Mesovolcano and stage 4: Neovolcano). The eruptive products consist of lava flows, lava domes, and pyroclastic rocks. The later include ignimbrites, phreatomagmatic intrusive breccias and nuées ardentes, sometimes reworked as lahars. The total volume is estimated to be 354 km3, the area extent 760 km2. Textural and mineralogical data suggest that both magma mixing and fractional crystallization were involved in the generation of the andesites and dacites. The magmas erupted from the central volcanoes show a transition with time from tholeite to calc-alkaline. Three generations of basaltic strombolian cones and lava flows were emplaced contemporaneously with the central volcanoes. The corresponding lavas are alkaline with a sodic tendency.  相似文献   

17.
 The Badlands rhyolite, on the Owyhee Plateau of southwestern Idaho, can be demonstrated to be a large lava flow on the basis of its geometry of large and small flow lobes, its well-exposed near-vent features, and its response to pre-existing topography. However, samples of the dense upper vitrophyre of the unit reveal a range of annealed fragmental textures, including material which closely resembles the compressed, welded glass shards which are characteristic of ignimbrites. Formation of these tuff-like textures involved processes probably common to emplacement of most silicic lava flow units. Decompression upon extrusion causes inflation of pumice at the surface of the lava flow; some of this pumice is subsequently comminuted, producing loose bubble-wall shards, bits of pumice, chips of dense glass, and fragments of phenocrysts. This debris sifts down around loose blocks and into open fractures deeper in the flow, where it can be reheated, compressed, and annealed to varying degrees. The end result is a dense vitrophyre layer (beneath the true upper, non-welded carapace breccia) which can be extremely texturally heterogeneous, with areas of flow-foliated lava occurring very near lava which in many aspects looks like welded ignimbrite, complete with flattened pumices. Identical textures in other silicic units have been cited by previous workers as evidence that those units erupted as pyroclastic flows which then underwent sufficient rheomorphism to create a flow-foliated rock which otherwise appears to be lava. The textures described herein indicate that lava flows can come to mimic rheomorphic ignimbrites, at least at scales ranging from thin sections to outcrops. Voluminous silicic units with scattered fragmental textures, but with otherwise lava-like features, are probably true effusive lava flows. Received: January 30, 1995 / Accepted: January 22, 1996  相似文献   

18.
Extreme rainfall in June 1949 and November 1985 triggered numerous large debris flows on the steep slopes of North Fork Mountain, eastern West Virginia. Detailed mapping at four sites and field observations of several others indicate that the debris flows began in steep hillslope hollows, propagated downslope through the channel system, eroded channel sediment, produced complex distributions of deposits in lower gradient channels, and delivered sediment to floodwaters beyond the debris-flow termini. Based on the distribution of deposits and eroded surfaces, up to four zones were identified with each debris flow: an upper failure zone, a middle transport/erosion zone, a lower deposition zone, and a sediment-laden floodwater zone immediately downstream from the debris-flow terminus. Geomorphic effects of the debris flows in these zones are spatially variable. The initiation of debris flows in the failure zones and passage through the transport/erosion zones are characterized by degradation; 2300 to 17 000 m3 of sediment was eroded from these zones. The total volume of channel erosion in the transport/erosion zones was 1·3 to 1·5 times greater than the total volume of sediment that initially failed, indicating that the debris flows were effective erosion agents as they travelled through the transport/erosion zones. The overall response in the deposition zones was aggradation. However, up to 43 per cent of the sediment delivered to these zones was eroded by floodwaters from joining tributaries immediately after debris-flow deposition. This sediment was incorporated into floodwaters downstream from the debris-flow termini causing considerable erosion and deposition in these channels. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Nuées ardentes associated with dome collapse on 22 November 1994, at Merapi volcano traveled to the south–southwest as far as 6.5 km, and collectively accumulated roughly 2.5–3 million cubic meters of deposits. The damaged area comprises 9.5 km2 and is covered by two nuée ardente facies, a conventional “Merapi-type”, valley-fill block-and-ash flow facies and a pyroclastic surge facies. The proximal deposits reflect the accumulation of dozens of nuées ardentes, with many subsidiary flow units. The distal deposits are more simply organized, as only a few individual events reached to distances >3.5 km. The stratigraphic relationships north of Turgo hill indicate that the surge deposits are a facies of particularly mobile nuées ardentes that also deposited channeled block-and-ash flow facies. They further suggest that the surge facies beyond the channel margins correlate laterally with a finer-grained sublayer locally developed at the base of the block-and-ash flow facies. Eyewitness reports suggest that the emplacement of the block-and-ash flow facies in the distal part of the Boyong river may have followed, by a short time interval, the destruction and deposition of the surge facies at Turgo village. The stratigraphy is in accord with the eyewitness reports. The surge facies was emplaced by a dilute surge current, detached from the same dome-collapse nuée ardente that, as a separate flow unit, subsequently emplaced the distal block-and-ash deposit in the Boyong valley. The detachment occurred at higher elevations, likely at or above the slope break at about 2000 m elevation. This flow separation enabled the surge current to shortcut over the landscape and to emplace its deposit even as the block-and-ash flow continued its tortuous southward movement in the Boyong channel. Dome-collapse nuée ardente activity formed the bulk of the eruption, which was accompanied by virtually no significant vertical summit explosive activity.  相似文献   

20.
Old water-delivery tunnels can become leaky and produce water losses of some economic importance. The detection of solution cavities behind the concrete lining was the purpose of an investigation in a 2 km long part of a water-delivery tunnel in Switzerland. A gypsum zone of about 700 m length was considered to be especially critical. Two geophysical methods were used at the same time: resistivity profiling with three different array lengths, and ground-penetrating radar. The cavities were characterized by higher electrical resistivity, principally for the short array (AB = 3 m). Detailed measurements with a pole-dipole array were made for a better depth interpretation of anomalies in some critical zones. The GPR investigations were made with an antenna of 500 MHz. Some transverse profiles were carried out with GPR in order to better delineate the discovered cavernous or weathered zones. GPR located cavities up to a few meters in length, at depths between 0 and 4 m behind the lining. Anomalies found by one investigation method were often confirmed by the other one. Their complementarity thus allowed a more reliable interpretation of the gathered data. Verifying drillholes have mostly confirmed the good correlation between geophysical interpretation and drilling results. Endoscopic investigations in the drillholes enabled us to have a real vision of discovered cavities.Although GPR-profiling has the advantage of a continuous underground imaging and of greater efficiency during data acquisition (investigation speed) we consider the combination of both methods in the present study as a good example of an integrated geophysical survey, which enables a more reliable interpretation of the gathered data.

Résumé

Les galeries d'amenée d'eau d'un certain âge peuvent poser des problèmes à cause de pertes d'eau parfois importantes. L'objectif de cette étude a été la mise en évidence et le positionnement de cavités derrière le revêtement d'une galerie en Suisse, sur une longueur de 2 km. Une zone de gypse longue de 700 m était considérée comme particulièrement critique. Deux méthodes géophysiques ont été conjointement utilisées: le traîné électrique multiple avec trois longueurs de ligne d'envoi de courant et le géoradar. Les cavités, caractérisées par des résistivités élevées, ont surtout été mises en évidence par le dispositif le plus court (AB = 3 m). Des mesures de détail ont été réalisées dans les zones critiques avec un dispositif pôle-dipôle en vue d'une meilleure interprétation des anomalies en profondeur. Les mesures de géoradar ont été exécutées avec une antenne de 500 MHz. Quelques profils transversaux ont été effectués pour vérifier l'extension des zones d'altérations ou des cavités. Le géoradar a pu localiser des cavités mesurant jusqu'à plusieurs mètres en longueur à des profondeurs variant entre 0 et 4 m derrière le revêtement de la galerie. Les anomalies décelées par une méthode ont souvent pu être confirmées par l'autre et leur complémentarité a permis une interprétation plus sûre. Des forages carottés ont montré une bonne corrélation entre les anomalies géophysiques et la réalité. Des mesures de fibroscopie dans les forages nous ont permis de déterminer la géométrie des cavités.Le géoradar possède des avantages certains: imagerie continue du massif rocheux et grande rapidité dans l'acquisition des données. Néanmoins, nous considérons la combinaison des deux méthodes utilisées dans cette étude comme le bon exemple d'une investigation géophysique combinée permettant une interprétation optimale de tous les résultats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号