首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
彭波  邹华耀 《现代地质》2013,27(6):1399
依据236口井共2 706组的静温数据以及25口井的系统测温数据,分析计算了渤海盆地地温梯度及大地热流;建立地壳分层结构模型,利用回剥法计算现今地幔热流、深部温度以及岩石圈厚度;在此基础上,利用地球动力学方法恢复本区热流演化史。结果表明:渤海盆地背景地温梯度为322 ℃/km,热流值为648 mW/m2;盆地现今热岩石圈厚度在61~69 km之间,地幔热流占地表热流的比例在60%左右,属于“热幔冷壳”型岩石圈热结构,盆地地壳底部或莫霍面温度变动在548~749 ℃之间;热流演化的特征与盆地的构造演化背景吻合,新生代以来盆地经历了3期岩石圈减薄并加热的过程,在东营组沉积末期热流达到最高(70~83 mW/m2),这期间盆地内产出多期碱性玄武岩,表明盆地经历了波及地幔的裂谷过程,随后进入热沉降期,热流逐渐降低,盆地向坳陷型转变。  相似文献   

2.
南华北盆地群岩石圈热-流变结构   总被引:4,自引:0,他引:4  
结合南华北盆地群现代地温场资料和深部地震测深资料及岩石热物性参数,对南华北盆地群的热结构进行了研究。结果表明:南华北盆地群平均热流值为53.7 mW/m2,地幔热流为30~34 mW/m2,莫霍面温度为500~550℃,热岩石圈厚度为110~130 km。在此基础上,进行了岩石圈流变模拟,探讨了研究区的岩石圈流变特征及其地球动力学意义。南华北盆地群岩石圈强度为(7.6~23.3)×1012 N/m,具有显著的 “三明治”结构。上地壳表现为脆性变形,中、下地壳为韧性的流动变形。这一分层变形机制决定了南华北盆地群的成盆演化动力学过程。  相似文献   

3.
放射性生热率是岩石热物性参数之一,也是研究岩石圈热结构和构造热演化的重要参数。针对南海海盆区缺少岩石生热率资料的实际情况,本文通过整理和分析IODP349航次中的测井资料,测试钻井岩心样品的主要放射性生热元素,通过计算得出:玄武岩样品的生热率平均值为0.28±0.07μW/m~3,沉积碎屑岩样品的生热率为1.21±0.34μW/m~3,以及3个钻井的地热流值。获得以下认识:(1)本次研究的沉积碎屑岩样品生热率与中国东南沿海的同类岩石样品的生热率值相近,而洋壳中的基性火山岩生热率明显低于大陆碱性玄武岩。(2)用新资料计算南海西南次海盆段的岩石圈热结构得出其热岩石圈厚度约为39~42 km,平均壳幔热流比值为2.4%,说明西南次海盆岩石圈薄,海底热流主要受深部的地幔热源控制。(3)U1431D和U1433A钻井的热流密度值与附近探针热流密度值相近;而U1431C的热流密度值明显偏小,属于受地下水热循环影响所致。  相似文献   

4.
对桂北豆乍山岩体钻孔样品进行了放射性生热元素含量、岩石密度和岩石热导率测试。结果显示该岩体花岗岩U平均含量为17.49×10~(-6),Th平均含量为27.54×10~(-6),K_2O平均含量为4.64%,放射性生热率平均值6.46μW/m~3,高于地壳平均值及大部分华南其他岩体的放射性生热率值;岩石密度平均在2.57 g/cm~3左右,与世界范围内花岗岩密度的平均值大致相同;岩石热贡献率主要来自Th和U的放射性衰变热,而U的贡献率相对更高。研究区岩石热导率平均为3.389 W/mK,与目前已知的花岗岩热导率平均值相近。通过本文及周边其他岩体的研究结果,结合前人资料,推断豆乍山岩体所在的苗儿山地区,乃至桂北地区的地幔热流值低于地壳热流值贡献,属于"热壳冷幔"型岩石圈热结构。根据豆乍山岩体放射性生热元素和生热率的优势,认为其干热岩开发潜力较大,可对其进行进一步干热岩评价工作。  相似文献   

5.
济阳坳陷地幔热流和深部温度   总被引:8,自引:2,他引:6  
济阳坳陷深部地热状况对于分析岩石圈深部结构特征、探索该盆地形成和演化的地球动力学过程具有重要意义.依据济阳坳陷最新的钻探资料和深部地球物理探测结果, 按沉积盖层、上、中、下地壳4层结构, 建立了分别代表该区凹陷部位和凸起及斜坡带上的2种地壳结构模型.通过多道能谱分析, 测试了区内4 3块岩心样品的放射性元素U、Th、40K含量, 统计得出了济阳坳陷沉积盖层的平均生热率为(1.40±0.26) μW/m3.在研究大地热流分布的基础上, 结合济阳坳陷地壳各岩层放射性生热率, 采用“剥层”法, 从地表开始, 由浅到深逐步扣除各层段所提供的热量, 得到了济阳坳陷的地幔热流.并且采用相似的方法, 利用一维稳态热传导方程, 分析了地壳上地幔顶部的温度状况.结果表明, 济阳坳陷的地幔热流约为38.4~39.2 mW/m2, 占整个地表总热流量的5 8%;地幔顶部温度约为602~636℃.与世界上其他各类地质构造单元相比, 济阳坳陷无论是地幔热流值或其与地表热流之比值都是比较高的, 其深部地热状态具有介于稳定地区和构造活动区之间的特点.   相似文献   

6.
崔晓娜  陈林 《岩石学报》2024,(4):1087-1101
幔源岩浆在地壳内的上升和聚集样式不仅依赖于岩浆自身的性质,还取决于围岩的强度和热状态。已有数值和物理模型大多关注岩浆自身物性对其上升过程的影响,而对围岩流变强度或热状态如何影响岩浆的上升和聚集过程的研究相对薄弱,尤其是周期性的幔源岩浆在壳内分层侵位的受控因素仍然不清楚。本文利用二维热-力学数值模拟方法,通过发展多期岩浆脉冲和岩墙生成算法,研究了岩浆从深部地幔上升至地壳内部侵位的动力学过程,系统测试了地壳(围岩)地温梯度(上、下地壳的地温梯度分别以GUC和GLC表示)和地壳强度对岩浆上升过程和聚集样式的影响。模拟结果表明:(1)地壳地温梯度对岩浆的侵位深度有重要影响,岩浆侵入冷地壳(GUC=GLC=12.5K/km),岩浆主体在岩石圈深度聚集,地表的相对高差小于140m;岩浆侵入温地壳(GUC=GLC=15K/km)在下地壳底部聚集形成岩浆房,上升至上、下地壳界面,岩浆房上方的地表地形呈现中心拗陷两翼隆起的形态,地表最大高程可达3km;岩浆侵入热地壳(G  相似文献   

7.
华南地区广泛发育中生代花岗岩,主要出露于南岭地区和东南沿海地区。受大地构造作用影响,自西向东,莫霍面深度逐渐变薄,深部温度逐渐升高,软流圈顶部上升,花岗岩形成时代也随之逐渐年轻化。南岭和东南沿海地区的地表和钻孔花岗岩放射性生热元素含量测试结果表明,南岭地区放射性生热率平均值为5.18μW/m~3,东南沿海地区为3.01μW/m~3,最高生热率为南岭佛冈岩体7.56μW/m~3;热贡献率主要来自Th和U的放射性衰变热,K的热贡献率一般不超过10%。通过本文研究结果,结合前人地质学、地球物理学和地热学研究成果,发现南岭地区和东南沿海地区地壳热流对地表热流值的贡献率分别为60%~65%和40%~45%,指示两者分别为"热壳冷幔"和"冷壳热幔"型岩石圈热结构。  相似文献   

8.
前寒武纪地球动力学(Ⅲ):前寒武纪地质基本特征   总被引:1,自引:0,他引:1  
地球45.6~5.43亿年处于前寒武纪,具有很多独特的古气候、沉积、岩浆、变质、变形等地质特征,地幔和岩石圈的动力学机制也非常不同。本文通过总结前寒武纪地球动力学进展,系统介绍了前寒武纪地壳和岩石圈物质组成与性质、地壳生长的幕式增生特征、太古宙地幔温度和黏度变化、地壳和岩石圈厚度变化、地壳和岩石圈强度与流变结构演变。地球38~25亿年期间的热流值是现今热流值的2.5~4倍,在热的早期地球期间,下地幔热的积累比上地幔热损失快,导致周期性循环翻转,即上升的下地幔穿过干的橄榄岩固相线,并在大于150km深处经历大规模熔融。这就是太古宙大陆岩石圈地幔形成的机制和能量背景,但在太古宙以后,因地球的长期冷却,这种机制终结了。太古宙高热流值也说明太古宙热地幔难以支撑较大的地形高差,太古宙岩石圈强度也不大,在重力作用下会发生快速地形响应。但是,随着巨型基性岩墙群(大约2.75和2.45Ga)首次出现以及表壳岩系的出现,又意味着太古宙晚期地壳逐步足够刚性,允许熔体上升穿过地壳并冷却固化。前寒武纪重大地质事件的根本原因都是因为地球热振荡衰减的结果,前寒武纪地壳生长(增生)、超大陆形成、岩浆作用、成矿作用等都是不等周期、非线性的幕式演化,从TTG大规模短时间集中式形成,表明早期大陆生长模式可能以垂向增生为主。最后,探讨了冥古宙特征,大陆起源、生长和保存机制,前寒武纪超大陆重建与机制和早期地球环境-生命协同演化等前寒武纪关键科学问题和前沿。  相似文献   

9.
《地学前缘》2017,(3):27-40
南沙海槽前陆盆地是我国南海南缘陆架区重要的含油气盆地,海槽之下陆壳减薄的原因、前陆区逆冲推覆构造的变形机制是南海地球动力学研究的重要科学问题。利用地震、重磁、地热观测资料,依据地震沉积地层分析、重磁反演分析、地幔流应力场分析、热-流变学分析方法,文中计算了南沙海区地壳结构特征、南沙海槽逆冲推覆热-流变学结构。结果表明:南沙海区Moho面深度在18~26km,其中海槽区Moho面最浅,由海槽中心向东南至陆坡,Moho面由20km快速下降到26km深度,说明南沙海区陆壳结构曾发生过强烈的构造变动。南沙海区地壳累积流变强度FC与岩石圈累积流变强度FL之比小于80%,显示为一个整体陆壳地块,岛礁区大部分地段地壳热流QC与海底热流Q0之比大于60%,为"热壳冷幔"型热结构,而海槽区情况正相反,QC/Q0小于40%,为"冷壳热幔"型热结构。南沙海槽Moho面温度在300~700℃,地壳整体温度较低,地温梯度在垂向上高、低相间成层分布,地壳浅层地温梯度在15~30℃/km,深层地温梯度大于45℃/km。南沙海槽南北两侧应力分布特征不同,北侧挤压,南侧伸展。北侧挤压区,地层挤压收缩量由深向浅减小,南侧伸展区,地层伸展量由深向浅增大,类似手风琴风箱结构。北侧黏滞系数高、流变强度大,南侧黏滞系数低、流变强度小。南侧的黏滞系数、流变强度大约比北侧低2~3个数量级,因此南沙海槽南侧比北侧更容易发生构造变形。由计算结果推测,南沙Moho面起伏或陆壳减薄与"地壳重力均衡作用"和"地幔热隆升作用"有关,海槽东南缘逆冲推覆体构造变形机制主要是"地壳缩短"作用,其次是"重力滑脱"作用。文中没有涉及南沙陆块不同地质时期Moho面、"地壳均衡"、"地幔热隆升"之间的演化关系,也没有涉及南沙海槽基底变形中"弹性挠曲"和"逆冲推覆"之间的关系。  相似文献   

10.
《地学前缘》2017,(3):13-26
文章主要利用中—新生代热史、地壳分层结构以及流变学参数,模拟计算渤海湾盆地中—新生代岩石圈热结构和热-流变结构演化特征。结果表明,盆地由三叠纪—侏罗纪时期的"冷幔热壳"型岩石圈热结构转变为白垩纪至今的"热幔冷壳"型岩石圈热结构。从济阳坳陷岩石圈热-流变结构演化特征来看,中生代早期上地壳上部、中地壳上部及上地幔顶部表现为厚的脆性层;早白垩世初期中地壳上部及上地幔顶部的脆性层完全转变为韧性层;晚白垩世开始,中地壳上部出现薄层的脆性层;古近纪早期中地壳上部脆性层变薄变浅;现今则除了发育上地壳上部、中地壳上部脆性层外,上地幔顶部开始在浅部发育薄的脆性层。中—新生代岩石圈总强度演化表明在早白垩世晚期和古近纪早期经历了两期减弱,中生代早期岩石圈总强度远大于中侏罗世之后的岩石圈总强度。岩石圈热-流变结构和强度演化与华北克拉通破坏过程中岩石圈厚度的变化具有良好的对应关系,从侧面反映太平洋板块俯冲和回撤导致华北克拉通东部破坏的地球动力学过程。因此,岩石圈热-流变结构可以为盆地形成、大陆边缘和造山带等的动力学演化过程研究提供科学依据。  相似文献   

11.
The estimates of rheological thickness and total lithospheric strength for the Indian continental lithosphere have been obtained based on the representative rheological properties of upper crust, lower crust and upper mantle, and some of the available heat flow and heat generation data. The rheological thickness, computed at different locations in the Indian shield, shows lateral variation ranging from 79km in the southern part to 65 km in the northern part for a strain rate of 10-14 s-1. The total strength of the continental lithosphere is of the order of 1013 Nm-1 for the same value of strain rate and decreases northward. The computations carried out for a range of strain rates show an increase in the rheological thickness and strength of the lithosphere with increasing strain rate. These results would be important in understanding the flexural response of the Indian continental lithosphere to surface and subsurface loading, and response to tectonic forces acting on it.  相似文献   

12.
The asthenosphere upwelled on a large scale in the western Pacific and South China Sea during the Cenozoic,which formed strong upward throughflow and caused the thermal structure to be changed obviously.The mathematical analysis has demonstrated that the upward throughflow velocity may have varied from 3×1011 to 6×1012 m/s.From the relationship between the lithospheric thickness and the conductive heat flux,the Hthospherie heat flux in the western Pacific should be above 30 mW/m2,which is consistent with the observed data.The huge low-speed zone within the upper mantle of the marginal sea in the western Pacific reflects that the upper mantle melts partially,flows regionally in the regional stress field,forms the upward heat flux at its bottom,and causes the change of the lithospheric thermal structure in the region.The numerical simulation result of the expansion and evolution in the South China Sea has demonstrated that in the early expansion,the upward throughflow velocity was relatively fast,and the effect that it had on the thickness of the lithosphere was relatively great,resulting in the mid-ocean basin expanding rapidly.After the formation of the ocean basin in the South China Sea,the upward throughflow velocity decreased,but the conductive heat flux was relatively high,which is close to the actual situation.Therefore,from the heat transfer point of view,this article discusses how the upward heat flux affects the lithospheric thermal structure in the western Pacific and South China Sea.The conclusions show that the upward heat throughflow at the bottom of the llthospheric mantle resulted in the tectonic deformation at the shallow crust.The intensive uplifts and rifts at the crust led to the continent cracks and the expansion in the South China Sea.  相似文献   

13.
地球深度热状况是深部地球动力学和岩石圈活动性研究的重要内容, 岩石圈热结构和热-流变结构可以很好地揭示岩石圈范围内的热状况。近年来, 在青海共和盆地钻探揭露了深部高温干热岩体, 关于其热源机制尚未有定论。本文以青海共和盆地为研究对象, 分析壳内温度分布和流变强度, 探讨壳内低速体的地质属性。结果表明, 共和盆地的地壳流变结构从上而下分为脆性和韧性两层, 韧性层又包括中地壳和下地壳两层韧性层, 在上地壳尺度均表现为脆性破裂为主, 并逐渐过渡为韧性流变; 恰卜恰地区在脆性破裂的上地壳延伸至中下地壳时, 破裂沿一系列滑脱面发生韧性滑动, 局部地段形成壳内熔融, 为恰卜恰地区提供了额外的热源, 使其大地热流值(109.6 mW/m2)显著高于贵德地区(77.6 mW/m2)。这一认识为共和盆地壳内低速体存在提供了新的佐证, 也为区内干热岩热源分析以及高温地热资源探测开发提供了科学依据。  相似文献   

14.
中国岩石圈的基本特征   总被引:11,自引:2,他引:9  
李廷栋 《地学前缘》2010,17(3):1-13
中国及邻区岩石圈结构构造十分复杂,并具有若干明显的特点:中国大陆地壳西厚东薄、南厚北薄,青藏高原地壳平均厚度为60~65 km,最厚达80 km;东部地区一般为30~35 km,南中国海中央海盆平均只有5 km;中国大陆地壳平均厚度为476 km,大大超过全球地壳392 km的平均厚度。中国大陆及邻区岩石圈亦呈西厚东薄、南厚北薄的变化趋势,青藏高原及西北地区岩石圈平均厚度为165 km,塔里木盆地中东部、帕米尔与昌都地区岩石圈厚度可达180~200 km。大兴安岭-太行山-武陵山以东,包括边缘海为岩石圈减薄区,厚度为50~85 km。西部岩石圈、软流圈“层状结构”明显,反映了板块碰撞汇聚的动力学环境;东部岩石圈、软流圈呈“块状镶嵌结构”,岩石圈薄,软流圈厚,反映了地壳拉张、软流圈物质上涌的特点,并在东亚及西太平洋地区85~250 km深处形成一巨型低速异常体。中国东部上、下地壳及地壳、岩石圈地幔之间普遍存在“上老下新”年龄结构。  相似文献   

15.
http://www.sciencedirect.com/science/article/pii/S1674987110000071   总被引:2,自引:1,他引:1  
<正>The lithospheric structure of China and its adjacent area is very complex and is marked by several prominent characteristics.Firstly,China's continental crust is thick in the west but thins to the east,and thick in the south but thins to the north.Secondly,the continental crust of the Qinghai—Tibet Plateau has an average thickness of 60—65 km with a maximum thickness of 80 km,whereas in eastern China the average thickness is 30—35 km,with a minimum thickness of only 5 km in the center of the South China Sea.The average thickness of continental crust in China is 47.6 km,which greatly exceeds the global average thickness of 39.2 km.Thirdly,as with the crust,the lithosphere of China and its adjacent areas shows a general pattern of thicker in the west and south,and thinner in the east and north.The lithosphere of the Qinghai—Tibet Plateau and northwestern China has an average thickness of 165 km, with a maximum thickness of 180—200 km in the central and eastern parts of the Tarim Basin,Pamir, and Changdu areas.In contrast,the vast areas to the east of the Da Hinggan Ling—Taihang—Wuling Mountains,including the marginal seas,are characterized by lithospheric thicknesses of only 50—85 km.Fourthly,in western China the lithosphere and asthenosphere behave as a "layered structure", reflecting their dynamic background of plate collision and convergence.The lithosphere and asthenosphere in eastern China display a "block mosaic structure",where the lithosphere is thin and the asthenosphere is very thick,a pattern reflecting the consequences of crustal extension and an upsurge of asthenospheric materials.The latter is responsible for a huge low velocity anomaly at a depth of 85—250 km beneath East Asia and the western Pacific Ocean.Finally,in China there is an age structure of "older in the upper layers and younger in the lower layers" between both the upper and lower crusts and between the crust and the lithospheric mantle.  相似文献   

16.
中国大陆岩石圈等效粘滞系数的计算和讨论   总被引:27,自引:0,他引:27  
大陆岩石圈的流变结构对岩石圈动力学过程有很大的影响,因此对岩石圈等效粘度的估计是大陆动力学研究中基础和重要的问题。文中对利用实验室流变实验结果估算岩石圈流变结构的计算方法中包含的多种不确定性进行了讨论,包括岩性、温度、应变速率、实验室速率数据外推到地质构造运动速率等因素对等效粘滞系数估算的影响,并以温度和应变速率的新研究成果为基础,对中国大陆地壳和上地幔等效粘滞系数做出了估计。中国中地壳等效粘滞系数一般在1021~1024Pa.s,下地壳等效粘滞系数在1021~1022Pa.s,其中青藏高原下地壳等效粘滞系数较低,约为1019~1020Pa.s;与前人研究认为青藏高原存在柔性下地壳流动的结论吻合。  相似文献   

17.
青藏高原东北缘岩石圈密度与磁化强度及动力学含义   总被引:4,自引:0,他引:4  
利用横贯柴达木盆地南北的格尔木—花海子剖面岩石圈二维P波速度结构以及地震波速度与介质密度之间的关系,建立了该剖面岩石圈二维密度结构与二维磁化强度的初始模型。依据重磁同源原理,在柴达木盆地重、磁异常的二重约束下完成了重磁联合反演,获得了该剖面岩石圈二维密度结构与二维磁化强度分布。结果表明:柴达木盆地地壳厚度沿测线变化较大,平均厚度约60km。在柴达木盆地南缘地壳厚约50km,达布逊湖附近地壳最厚为63km左右,大柴旦附近地壳较薄,为50km左右。柴达木盆地的地壳纵向上可分为三层,即上地壳、中地壳与下地壳。位于盆地中部的中、下地壳分别发育大范围的壳内低密度体,并处于上地幔隆起的背景之上;横向上可将盆地分成南北两个部分,分界在达布逊湖附近。整个剖面结晶基底埋深变化也很大,在达布逊湖附近为12km,在昆仑山北缘基底几乎出露地表。结晶基底的展布形态与地壳底界,即莫霍面呈近似镜像对称。综合研究认为,柴达木盆地的岩石圈结构存在着明显的南北差异,其分界在达布逊湖的北面。在盆地南部,岩石圈介质横向变化较小,各层介质分布正常;在盆地的北侧,岩石圈结构特别在中、下地壳和上地幔顶部横向上发生了变化。壳内低密度体的存在意味着柴达木盆地具有较热的岩石圈和上地幔,加之基底界面与莫霍面的镜像对称分布,形成与准噶尔盆地和塔里木盆地的构造差异。多种地球物理参数所揭示的地壳上地幔结构及其横向变化特点为柴达木盆地构造演化及青藏高原北部边界的地球动力学研究提供了岩石圈尺度的地球物理证据。  相似文献   

18.
地壳与弱化岩石圈地幔的相互作用:以燕山造山带为例   总被引:11,自引:2,他引:9  
燕山造山带中生代发育4期钙碱性火山活动,它们的源区组成都是受壳幔相互作用的制约,其中髫髻山组和义县组分布广泛,具有代表性.髫髻山组岩性比较单一,地球化学参数变化范围小,岩浆的AFC作用不强烈,源区成分不复杂.依据Kay et al.(1991)的方法,估算了早-中侏罗世燕山地区的地壳厚度为40-45 km.髫髻山组粗安岩是在加厚的地壳 (40-45 km)条件下,源区是含角闪石的石榴石麻粒岩 底侵的基性岩的壳幔过渡带熔融形成.义县组火山岩的源区为下地壳 岩石圈地幔,地幔组分较髫髻山组增加.研究区中生代早期地壳开始加厚,发生下地壳拆沉,进入流变学性质改变了的“弱化的岩石圈地幔”,二者发生作用.岩石圈地幔在中生代晚期受到流体、熔体、地幔矿物中活化的分子水、剪切构造作用,以及温、压条件改变的影响,导致岩石圈地幔发生不均一的局部弱化,为容纳拆沉的下地壳提供了优化场所.推测弱化岩石圈地幔出现于135 Ma以后燕山地区发育的小型拉伸盆地之下,以及对应的小型软流圈底辟体之上.上述模型可以与俯冲带的楔形地幔与俯冲洋壳的相互作用相对比.  相似文献   

19.
The Tibet Geoscience Transect (Yadong-Golmud-Ejin) has revealed the basic structures, tectonic evolution and geodynamic process of the lithosphere of the Qinghai-Tibet plateau. The evidence of northward thrusting of the Indian plate beneath the Himalayans on the southern margin and to southward compression of the Alxa block on the northern margin has been found. They were the driving forces causing the plateau uplift. The plateau is a continent resulting from amalgamation of eight terranes. These tenanes are separated by sutures or large-scale faults, and different terranes have different lateral inhomogeneities and multi-layered lithospheric structures. At depths of about 20-30 km of the crust in the ulterior of the plateau there commonly exists a low-velocity layer. It is an uncoupled layer of the tectonic stress; above the layer, the upper crustal slices were thrust and overlapped each other and the rocks underwent brittle deformation, thus leading to shortening and thickening of the upper crust Belo  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号