首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Estero de Urías Lagoon (EUL) is an inner shelf barrier coastal lagoon, located in the Mexican Pacific Coast (SE Gulf of California). It is surrounded by Mazatlán City, one of the most important international tourist areas of Mexico. To provide a comprehensive reassessment of the concentration levels and spatial variability of Hg and 210Pb in the EUL, 40 surface sediment samples were analyzed for several geochemical variables (e.g. grain size distribution, organic matter and reference element concentrations) that could explain the observed variability of Hg and 210Pb. The Hg concentrations ranged from 23 to 214 ng g?1, whereas 210Pb activities varied from 20 to 56 Bq kg?1. No defined distribution pattern was observed for Hg and 210Pb concentrations in the lagoon and no evidence of a common atmospheric delivery route was observed. The sediments from EUL were found contaminated by Hg, and according to international guidelines 48 % of the sampling sites have concentrations that could be harmful to biota.  相似文献   

2.
Intertidal (tidal flat) reclamation along the Chinese coastline, especially which is in Jiangsu Province, has increased markedly in recent years. However, the hydrodynamic disturbance and environmental impacts of this activity are not yet fully understood. In this study, a process-based depth-averaged model is used to evaluate quantitatively the possible impacts of intertidal reclamation for the southern Yellow Sea region. The simulation results show that reclamation of both inshore and offshore intertidal areas of ~1800 km2 (according to the approved governmental reclamation scheme) would result in three remarkable changes in tidal patterns: enhanced M2 and M4 tidal amplitudes in coastal areas, strengthened negative tidal asymmetry in the southern region of the sand ridge system, and an enhanced tidal energy flux toward offshore through the main channels in the south. These changes would result in some negative impacts. The enhancement in local tidal amplitude could increase the probability of coastal hazards, and the offshore sediment transport tendency resulting from negative tidal asymmetry in the south could lead to severe erosion. The enhanced energy flux transported offshore may also affect far-field regions. On the other hand, alternative reclamation of ~400 km2 of offshore intertidal area could significantly minimize hydrodynamic disturbances to the local tidal system. Offshore reclamation with lower environment impacts may be the future for coastal development. To cope with the potential environmental risks caused by reclamation, it is recommended to strengthen environmental impact assessment and overseeing of reclamation plans, and advance international cooperation in terms of coastal management. Our findings provide a reference for coastal management in countries with substantial areas of tidal flats.  相似文献   

3.
Oxygen fluxes across the sediment–water interface reflect primary production and organic matter degradation in coastal sediments and thus provide data that can be used for assessing ecosystem function, carbon cycling and the response to coastal eutrophication. In this study, the aquatic eddy covariance technique was used to measure seafloor–water column oxygen fluxes at shallow coastal sites with highly permeable sandy sediment in the northeastern Gulf of Mexico for which oxygen flux data currently are lacking. Oxygen fluxes at wave-exposed Gulf sites were compared to those at protected Bay sites over a period of 4 years and covering the four seasons. A total of 17 daytime and 14 nighttime deployments, producing 408 flux measurements (14.5 min each), were conducted. Average annual oxygen release and uptake (mean ± standard error) were 191 ± 66 and ?191 ± 45 mmol m?2 day?1 for the Gulf sites and 130 ± 57 and ?152 ± 64 mmol m?2 day?1 for the Bay sites. Seasonal variation in oxygen flux was observed, with high rates typically occurring during spring and lower rates during summer. The ratio of average oxygen release to uptake at both sites was close to 1 (Bay: 0.9, Gulf: 1.0). Close responses of the flux to changes in light, temperature, bottom current velocity, and wave action (significant wave height) documented tight physical–biological, benthic–pelagic coupling. The increase of the sedimentary oxygen uptake with increasing temperature corresponded to a Q10 temperature coefficient of 1.4 ± 0.3. An increase in flow velocity resulted in increased oxygen uptake (by a factor of 1–6 for a doubling in flow), which is explained by the enhanced transport of organic matter and electron acceptors into the permeable sediment. Benthic photosynthetic production and oxygen release from the sediment was modulated by light intensity at the temporal scale (minutes) of the flux measurements. The fluxes measured in this study contribute to baseline data in a region with rapid coastal development and can be used in large-scale assessments and estimates of carbon transformations.  相似文献   

4.
《Quaternary Science Reviews》2007,26(1-2):115-129
The Gulf of California is a marginal seaway under the influence of a monsoon climate that produces cool, dry winters and warm, humid summers. Winds, tidal mixing and coastal-trapped waves forced by climate and the Pacific Ocean control nutrient advection and primary productivity (PP). Strong northwest winds from the subtropical East Pacific High Pressure system begin in November and last until April and drive coastal upwelling along the mainland margin, especially in the central and southern Gulf. In the northern Gulf, particularly around the midrift island, tidal mixing and turbulence occurs year round, advecting nutrients into the mixed layer and high productivity. During summer and early fall months, winds are variable, of less intensity and mainly blow cross-basin except in the most northern Gulf. Summer PP is generally low in the central and southern Gulf except along the mainland where coastal-trapped waves associated with tropical surges and hurricanes generate mixing over the continental shelf. Mesoscale eddies or gyres often associated with jets and filaments extend to depths of 1000 m and transport nutrient-enriched upwelled waters and plankton detritus across the Gulf. The largest and most persistent gyres rotate in an anti-cyclonic direction (east to west) and are a principal source of the plankton export to the peninsula margin.Two major biogenic sediment patterns are present in core-top sediments. Hemipelagic biosiliceous-rich muds are accumulating beneath upwelling areas of high productivity in the central Gulf and along the mainland margin. Calcium carbonate- and organic carbon-rich (OC) sediments are concentrated along the peninsula margin, generally beneath lower productivity waters with the highest OC content in areas with the lowest productivity. The high, uniform biosiliceous content in Guaymas basin, extending southward into Carmen basin reflects the redistribution by mesoscale gyres of phytoplankon debris produced in mainland coastal upwelling and tidally forced areas around the midrift islands.Holocene biogenic patterns are similar to the present day with the major difference in rates of accumulation. Phytoplankton production prior to about 8200 yr BP was significantly higher in the central and southern Gulf, decreased though the mid-Holocene and has been reasonably steady for the past 2500 yr. The strong north–south and east–west gradients in present-day phytoplankton productivity patterns are also reflected in the Holocene sediment record. A series of depositional cycles occur in the biogenic record with the strongest peaks of variability at about 150 (144±18), 200 (198±5) and 350 (350±40) yrs. Longer periodicities are present prior to 3200 yr BP but the 350 yr cycle dominates in the late Holocene where it is best expressed as productivity/dissolution cycles in the carbonate record.  相似文献   

5.
Many coastlines are retreating in response to sea level rise, compounded by glacial–isostatic subsidence in areas marginal to former ice sheets. The resulting barrier and estuarine deposits are dominated by transgressive stratigraphy. Where supplied primarily from relict glacial deposits, this “paraglacial” sediment input may rise and fall, increasing as a new source such as a drumlin headland is exposed to erosion but declining as the source becomes exhausted. Conrads Beach, on the Atlantic coast of Canada, has experienced a succession of barrier growth and reworking as sediment supply from several drumlin sources has varied over the past 3000 years. In the context of long-term regional transgression, there have been intervals of years to centuries characterized by local stability or progradation. Ground-penetrating radar profiles and refraction seismic data were used to image the facies architecture of Conrads Beach to depths of 6–8 and 10–24 m, respectively. Thirteen vibracores provided a record of lithofacies characteristics and geometry. Results show evidence of an estuarine basin at ~2800 years BP. As the outer coast retreated, erosion of drumlins provided multi-century sediment pulses to adjacent beaches and embayments. Locally increased sediment supply fed a prograding beach ridge complex from >600 to ~150 years BP and tidal channels feeding sediment to back-barrier flood delta deposits. This study documents the complexity of coastal adjustment to time- and source-varying sediment supply under long-term rising sea level. It expands and refines previous models, providing guidance required for effective management and hazard mitigation on transgressive paraglacial coasts.  相似文献   

6.
As an essential nutrient for diatoms, silica plays a key role in the estuarine and coastal food web. High concentrations of dissolved silica (DSi) were found in the seepage water of tidal freshwater marshes, which were therefore assumed to contribute to the silica supply to estuarine waters in times of silica limitation. A comprehensive budget calculation for European salt marshes is presented in this study. Earlier, salt marshes were considered to have even higher silica recycling rates than tidal freshwater marshes. Between 2009 and 2011, concentrations, pools and fluxes of silica in two salt marshes at the German Wadden Sea coast were determined (in soil, pore water, aboveground vegetation, freshly deposited sediments and seepage water). Subsequently, a budget was calculated. Special emphasis was placed on the influence of grazing management on silica cycling. Our results show that the two salt marshes were sinks for silica. The average import of biogenic silica (BSi) with freshly deposited sediments (1,334 kmol km?2 year?1) largely exceeded the DSi and BSi exports with seepage water (80 kmol km?2 year?1). Grazing management can affect silica cycling of salt marshes by influencing hydrology and vegetation structure. Abandoned sites had larger DSi export rates than grazed sites. One third of all BSi imports occurred in only one major flooding, underlining the relevance of rare events in the silica budget of tidal marshes. This aspect has been widely neglected in earlier studies, what might have led to an underestimation of silica import rates to tidal marshes hitherto.  相似文献   

7.
Submarine groundwater discharge (SGD) is now recognized as an important source of nutrients and freshwater to some coastal environments. We studied a shallow coastal lagoon (Little Lagoon, AL, USA) in the northern Gulf of Mexico that lacks riverine inputs but has been suspected to receive significant SGD. We observed persistent salinity gradients between the east and west ends of the lagoon and the pass connecting it to the Gulf of Mexico. Covariance between salinity in the lagoon and the groundwater tracer 222Rn indicated that SGD was responsible for the salinity gradients and is the primary source of freshwater to the lagoon. Cluster analysis of 246 biweekly samples based on temperature, salinity, and two proxies of SGD revealed two hydrographic regimes with different drivers for nutrient inputs. In samples characterized by high discharge and low temperatures (generally December–April), total nitrogen (TN) was negatively correlated with salinity, while total phosphorus (TP) was positively correlated with temperature. Total nitrogen in the groundwater was very high (0.36–4.80 mM) while total phosphorus was relatively low (0.3–2.3 μM), consistent with SGD as the source of TN during the high-discharge periods. In periods with low discharge and higher temperatures (approx. May–November), TN and TP had strong positive correlations with temperature and are inferred to originate from benthic efflux. Seasonal changes in nutrient stoichiometry in the lagoon water column also indicate an alternation between low TN/TP sediments and high TN/TP groundwater as the primary sources of nitrogen in this system.  相似文献   

8.
Tidal marshes act as a buffer system for nutrients in the pore water and play important roles in controlling the budget of nutrients and pollutants that reach the sea. Spatial and seasonal dynamics of pore water nutrients were surveyed in three tidal marshes (Chongming Island, Hengsha Island, and Fengxian tidal flat) near the Yangtze Estuary and Hangzhou Bay from August 2007 to May 2008. Nutrient variations in pore water closely followed seawater quality in the estuaries, while the average concentration of NH4 +–N, the main form of inorganic nitrogen in pore water, was over two orders of magnitude higher than that in seawater which was dominated by nitrate. NH4 +–N export (13.81 μmol m?2 h?1) was lower than the import of (NO3 ?+NO2 ?)–N (?24.17 μmol m?2 h?1) into sediment over the 1-year period, hence reducing N-eutrophication in coastal waters. The export of SiO3 2?–Si and PO4 3?–P from tidal marshes regulated nutrient level and composition and lifted the ratio beyond potentidal element limitation in the coastal system. Moreover, macrophyte plants (Spartina alterniflora and Phragmites australis) played significant roles in controlling nutrient concentration in pore water and its exchange between marshes and estuaries. Fengxian marsh was characterized by higher nutrient concentrations and fluxes than other marshes in response to the more serious eutrophication in Hangzhou Bay than in the Yangtze Estuary.  相似文献   

9.
Sediment characteristics are the indicators of the intensity and geological history of the processes active in an area. Their association with different geomorphic features also signifies the present day conditions of deposition. In this study, variations in sediment characteristics associated with different geomorphic features, such as the coastal zone, two islands and a lagoon in the Al-Lith area of central-west coast of Saudi Arabia have been analysed. Whereas, the detrital sediments (sand?+?mud) are common (61–87 %) in most of the subunits of the coastal zone; the nondetrital (carbonate rich) sediments are more common (54–95 %) on the two islands as well as the lagoon; indicating distinct sources of sediments in these regions. The variation of sediment texture between sand and sandy silt in most geomorphic units, also shows that they are exposed to high-energy conditions, whereas occurrence of heavy minerals in small proportions (<7 %) indicates limited inputs from land-based igneous and metamorphic rocks. Sediment mean size vs. standard deviation shows that the sediment characteristics of a geomorphic unit (e.g. beach or sand bar) on the coast and on the island are different owing to different processes responsible for their formation.  相似文献   

10.
Consideration of human influences is crucial to understanding the coastal sediment supply and associated shoreline responses prior to undertaking coastal hazard management studies. Observation of the widening of some selected Indian beaches, especially over the last 6 decades, is of significance. From this perspective, Miramar Beach, Goa, India, was studied using three ground-penetrating radar shallow subsurface profiles (4 m depth). Based on a series of depositional siliciclastic packages, six progradational packages were recognised, which were interrupted by sharp erosional boundaries. These erosional boundaries represent transgressive phases of the shoreline migration. It was observed that the shoreline migration is coupled with the deposition and erosion of sediments, and this is supported by the historical admiralty charts. The optically simulated luminescence dating of the sediments collected at the first progradation period reveals that the age corresponds to the years 1952–1957, which also corroborates the information provided by the local populace. In the past 6 decades, the shoreline growth has been rapid because of the heavy sediment influx from the Mandovi River caused by increased mining activities (since the 1950s) in upstream areas. Since the 1950s, the shoreline has prograded rapidly, building a beach from ~40 to ~280 m wide (average rate of 4 m/year) in response to enhanced sediment supply from the Mandovi River created by mining activities upstream. Superimposed on this overall regressive trend is a series of deposition and erosion cycles. Perhaps, if a similar trend continues, then there will possibly be a further widening of the beach in the future. A close monitoring network is needed to understand the causes of the cycles in shoreline position and to predict their future behaviour. The present investigation on the nature of the coastal response to anthropogenic activities in a river basin as well as the role of short-time cycles on shoreline behaviour in the last 6 decades could be an ideal reference study and motivate the search for similar areas along other coastal locations.  相似文献   

11.
The mercury (Hg) deposition history in the Darién Gulf is reconstructed from three sediment cores spanning up to 1,000 years. Knowledge on the contribution to global Hg budget from the Caribbean is limited. Patterns of water circulation, sediment deposition rates, cataclysmic atmospheric inputs, and post-depositional migration have been considered in Hg trapping in the seabed. The sediment delivery rates to the coastal zone over the Late Holocene have increased from 0.2 to 1 cm year?1 owing to anthropogenic influence. This alteration took the form of geological effects, like coastal morphology change, that played a major role in Hg downcore signal preservation. Natural background Hg levels in Southern Caribbean sediments (77.0 μg kg?1) are up to three times higher than preindustrial signals at other latitudes, because of volcanic contributions from the Pacific ring of fire. Enrichment factors rose from 0.9 to 1.5 (70.1–113.5 μg kg?1) within profiles related to Hg usage since Spanish colonial times between the calendar years 1550 and 1811.  相似文献   

12.
Cool-water skeletal carbonate sediments are forming in Spencer Gulf, South Australia, an area of high salinity and moderate tidal range. Four environments can be distinguished: deeper marine areas (10–20 m); shallow subtidal platforms and banks (2–10 m); intertidal and supratidal zones; and coastal springs and lakes fed by saline continental groundwaters. The sediments are predominately bioclastic carbonate sands; muddy sediments occur in protected intertidal environments. The most common grain types are gastropods, bivalves, foraminifera, coralline algae and quartz. Indurated non-skeletal carbonate grains have not been seen. Composition of the sediment varies little between environments, but considerable textural variation results from variation in the stability of the substrate, hydrodynamic conditions, depth of water, period of tidal inundation, supply of terrigenous grains, temperature, and salinity. The Spencer Gulf data suggests that temperature, and particularly minimum temperature, controls the distribution of skeletal and non-skeletal grain associations in high-salinity environments. The textures of the sedimentary facies of Spencer Gulf closely parallel those of equivalent environments in warm-water carbonate provinces.  相似文献   

13.
A process-based numerical model is applied to investigate sediment transport dynamics and sediment budget in tide-dominated estuaries under different salt marsh erosion scenarios. Using a typical funnel-shaped estuary (Ribble Estuary, UK) as a study site, it is found that the remobilization of sediments within the estuary is increased as a result of the tidal inundation of the eroded salt marsh. The landward export of the finest sediment is also intensified. The relationship between salt marsh erosion and net landward export of sediments has been found to be non-linear—with the first 30% salt marsh erosion causing most of the predicted export. The presence of vegetation also influences the sediment budget. Results suggest that vegetation reduces the amount of sediment being transported upstream. Again, the trapping effect of salt marsh in terms of plant density is non-linear. Whilst a vegetated surface with a stem density of 64 plants/m2 decreased the net landward export of very fine sand by around 50%, a further increase in stem density from 64 to 512 plants/m2 had a relatively small effect.  相似文献   

14.
Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2 marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.  相似文献   

15.
Landsat enhanced thematic mapper imagery (ETM) of 2002 and aerial photography of 1955, combined with published charts and field observations were used to interpret coastal changes in the zone between Kitchener drain and Damietta spit in the northeastern Nile delta, previously recognized as a vulnerable zone to the effects of any sea level rise resulting from global warming. The interpretation resulted in recognition of several changes in nine identified geomorphological land types: beach and coastal flat, coastal dunes, agricultural deltaic land, sabkhas, fish farms, Manzala lagoon, saltpans, marshes and urban centers. Reclamation of vast areas of the coastal dunes and of Manzala lagoon added about 420 km2 to the agricultural deltaic land. About 48 km2 of backshore flats, marshes, salt pans and Manzala lagoon have been converted to productive fish farms. The main urban centers have expanded; nearly 12.1 km2 have been added to their areas, and new urban centers (Damietta harbor and the New Damietta city) with total area reach of ~35.3 km2 have been constructed at the expense of vast areas of Manzala lagoon, coastal dunes, and backshore flats. As a consequence of human activities, the size of Manzala lagoon has been reduced to more than 65%. Shoreline changes have been determined from beach profile survey (1990–2000), and comparison of 1955 aerial photographs and ETM satellite image of 2002 reveal alongshore patterns of erosion versus accretion. The short-term rate of shoreline retreat (1990–2000) has increased in the downdrift side of Damietta harbor (≃14 m/year), whereas areas of accretion exist within the embayment of Gamasa and in the shadow of Ras El Bar detached breakwaters system, with a maximum shoreline advance of ~15 m/year. A sandy spit, 12 km long, has developed southeast of Damietta promontory. These erosion/accretion patterns denote the natural processes of wave-induced longshore currents and sediment transport, in addition, the impact of man-made coastal protection structures.  相似文献   

16.
In situ measurements of the exchange of ammonia, nitrate plus nitrite, phosphate, and dissolved organic phosphorus between sediments and the overlying water column were made in a shallow coastal lagoon on the ocean coast of Rhode Island, U.S.A. The release of ammonia from mud sediments in the dark (20–440 μmol per m2 per h) averaged ten times higher than from a sandy tidal flat (0–60 μmol per m2 per h), and while mud sediments also released nitrate and phosphate, sandy sediments took up these nutrients. Fluxes of nutrients from mud sediments, but not from sandy areas, markedly increased with temperature. Ammonia release rates for mud sediments in the light (0–350 μmol per m2 per h) were lower than those in the dark and it is estimated that some 25% of the ammonia released to the water column on an annual basis may be intercepted by the benthic microfloral community. Estimates of the annual net exchange of nutrients across the sediment-water interface, weighted by sediment type for the lagoon as a whole, showed a release of 450 mmol per m2 of ammonia, 5 mmol per m2 of phosphate, 5 mmol per m2 of dissolved organic phosphorus, and an uptake of 80 mmol per m2 of nitrate. Although rates of ammonia and nitrate exchange were comparable to those described for the deeper heterotrophic bottom communities of nearby Narragansett Bay, rates of benthic phosphate release were significantly lower. On an annual basis the Bay benthos released approximately 20 times more inorganic phosphate per unit area than did the lagoon benthos. As a result., the N/P ratio for the flux from the sediments was 74∶1 in the lagoon, compared with 16∶1 in “average” marine plankton and 8∶1 for the benthic flux from Narragansett Bay. The lack of remineralized phosphate in the lagoon, is reflected in water, column phosphate concentrations (always <1 μm) and water column N/P ratios (annual N/P=27) and suggests that the lagoon may show phosphate limitation rather than the nitrogen limitation commonly associated with marine systems.  相似文献   

17.
Man-made coastal structures directly affect sediment balance and sediment dynamics on the surrounding beaches. The Colombo Harbor Expansion Project has created about 5-km-long breakwater nearly perpendicular to the beach. The present study is focused on quantitatively and qualitatively analyzing the effect of the Colombo Harbor Expansion Project on economically important beaches in and around Colombo city area. In this study, the authors measured monthly variations of beach width, beach profile and the mean grain-size of the sediments at mean sea level for complete annual monsoon cycle. Data were analyzed to establish site-specific erosion vulnerability. Monitoring results show that cumulative beach erosion has increased after the construction of the breakwater (rate = 0.7 m/year from May 2000 to April 2011 and rate = 28.2 m/year from April 2011 to June 2012). In addition, the cumulative and site-specific sand accretion and erosion patterns have a clear relationship with the monsoon seasonality. Beaches were narrower during the stormy southwestern monsoon, whereas beaches were wider during fair weather of northeast monsoon and inter-monsoon periods. In contrast, the constructed breakwater obstructs natural longshore sediment dynamics. For example, a significant amount of sediments from the Kelani-Ganga River were buried in the Colombo Harbor due to alteration of prominent longshore sediments transportation on the western coast of Sri Lanka. Therefore, this study shows enhancement of coastal erosion in the studied southern beaches due to a lack of sediment deposition.  相似文献   

18.
Isotopes have often been used to discern riverine subsidies to coastal food chains, but there are few direct measurements of nutritional quality of riverine particulates. We tested for nutritionally enriched organic matter in the Mississippi River suspended sediment and evidence for its delivery to Louisiana coastal sediments by measuring enzymatically hydrolysable amino acids (EHAA). Riverine suspended sediments contained EHAA concentrations of up to 5 mg g?1, higher than reported in any coastal sediment. Pigment concentrations indicated that EHAA in some river samples were dominated by phytoplankton, but many samples contained significant non-algal EHAA. Coastal sediments showed EHAA concentrations lower than riverine sediments but still higher than most reported shelf values. Incubation of riverine sediment showed losses of 28–34% of their EHAA over 6 days, similar to differences found between riverine and coastal sediments. EHAA concentrations decreased more rapidly than total nitrogen, indicating the relative lability of this pool of material in the studied region. These EHAA-enriched materials provide fuel for various coastal biota whose composition likely depends on factors such as disturbance regimes.  相似文献   

19.
The increasing anthropogenic activities (e.g., constructing touristic resorts) have led to notable changes in the Yemeni Red Sea coastal regions. In this context, recent sediments have been investigated to infer possible natural and man-induced processes on these coastal areas. The target area lies between longitudes 43°13′–43°30′E and latitudes 13°15′–13°55′N. It extends about 90 km along the coastline as a part of the Tihama plain. Geomorphologically, it forms a long-curved stretch with pronounced headlands, embayments and bays. Generally, it is covered by recent sediments (wadi, lagoon, beach and spit deposits along with sabkha, coastal dunes and mangrove). Textural studies reveal that most of the studied sediments are mainly poorly to moderately sorted and are composed mainly of sandy fractions with few gravel and mud, mostly bimodal with minor unimodal patterns. The igneous (granites) as well as basic (basalt, andesite and andesitic pyroclastics) and acidic (dacite and rhyolite) volcanic rocks of Tertiary age, which are exposed to the east of the study area, are believed to be the source of pyroxenes, amphiboles, epidotes, biotite, sphene, zircon, tourmaline and rutile, in a decreasing order of abundance. Moreover, smectite, kaolinite, chlorite, illite and palygorskite are the predominant clay minerals, mainly of detrital origin. The total carbonate content fluctuates from 37.41% (lagoon sediments) to 53.74% (sabkha sediments). The high amount of sea grasses, which covers the tidal flat zone and relates to the fine-grained sediments, accounts for the high organic matter content. The mineralogy of the source rocks has controlled the general distribution of major elements (Fe, Mg, Na, K and Mn) in the beach sediments. In such sediments, the concentrations of the heavy metals (Cu, Zn, Cd, Ni, Pb and Co) may reflect the sediment pollution using different approaches. The enrichment factors (EFs) of the trace metals for most samples reveal values that are greater than 1, referring to three groupings, which are: moderate to moderately severe (Zn, Cu and Mn), minor to moderate (Pb and Co) and zero to minor (Cd and Ni) enrichment. The EFs for Pb, Cd, Ni and Co metals (<5) may be attributed to the crustal materials and/or natural weathering processes. But, those for Zn, Cu and Mn (>5), especially in Al-Khowkhah–Abu-Zahr, Moushij–Zahari–Ruays, Yokhtol and Mokha localities, are possible of anthropogenic contributions.  相似文献   

20.
The study area (the Gulf of Bejaia) is a coastal zone of about 70 km long in the eastern-central part of the Algerian coast. The coastline characterized by sandy beaches, hotels and tourist facilities, airport, port, villages and towns has known during these last decades several threats like storms, floods and erosion. The present work concerns the mapping of the physical and socioeconomic vulnerability of the Gulf Coast of Bejaia to sea level rise, using Coastal Vulnerability Index (CVI) and geospatial tools. The Physical CVI (CVIPhys) is calculated from seven physical variables: geomorphology, coastal slope, coastal regional elevation, sea level rise rate, shoreline erosion/accretion rates, tidal range and significant wave height. On the other hand, the parameters population, cultural heritage, roads, railways, land use and conservation designation constitute, for their part, the socioeconomic CVI (CVIeco). The values obtained from the calculation of CVIPhys vary between 3.53 and 81.83. These results revealed that 22.42 km of the studied coastline has a low physical vulnerability, 21.68 km a high vulnerability and 15.83 km a very high vulnerability, indicating that the most part of the coastline (53.59%) is vulnerable to sea level rise. According to the obtained values of CVIeco, the most vulnerable areas of high and very high risk represent 31.81 km of the total coastline. They were found along the western (Bejaia and Tichy) and eastern (Aokas, Souk El Tenine and Melbou) coast, while the least vulnerable stretches, covering 38.19 km of the total length of the coast, occupy the rest of the area. This study highlighted areas that will be most affected by future sea level rise (SLR) and storm events. It revealed that several development projects of Bejaia Gulf Coast, including tourist expansion areas, are planned in sites identified as very vulnerable. The results obtained from this assessment could guide local planners and decision-makers in developing coastal management plans in the most vulnerable areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号