首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In the mining environments of the Iberian Pyrite Belt (IPB), the oxidation of sulphide wastes generates acid drainage with high concentrations of SO4, metals and metalloids (Acid Mine Drainage, AMD). These acid and extremely contaminated discharges are drained by the fluvial courses of the Huelva province (SW Spain) which deliver high concentrations of potentially toxic elements into the Gulf of Cádiz. In this work, the oxidation process of mine tailings in the IPB, the generation of AMD and the potential use of coal combustion fly ash as a possible alkaline treatment for neutralization of and metal removal from AMD, was studied in non-saturated column experiments. The laboratory column tests were conducted on a mine residue (71.6 wt% pyrite) with artificial rainfall or irrigation. A non-saturated column filled solely with the pyrite residue leached solutions with an acid pH (approx. 2) and high concentrations of SO4 and metals. These leachates have the same composition as typical AMD, and the oxidation process can be compared with the natural oxidation of mine tailings in the IPB. However, the application of fly ash to the same amount of mine residue in another two non-saturated columns significantly increased the pH and decreased the SO4 and metal concentrations in the leaching solutions. The improvement in the quality of leachates by fly ash addition in the laboratory was so effective that the leachate reached the pre-potability requirements of water for human consumption under EU regulations. The extrapolation of these experiments to the field is a promising solution for the decontamination of the fluvial courses of the IPB, and therefore, the decrease of pollutant loads discharging to the Gulf of Cádiz.  相似文献   

2.
On the basis of investigations on the composition and contents of heavy metals in the domestic refuse in the Three-Gorges region of the Yangtze River, in combination with the experimental results, this paper deals with the distribution rule of heavy metals in the various compartments of an incineration system: leachate pool, fly ash and residue. It is concluded that in the leachate pool heavy metals should not be neglectable since about 30% of Pb and 10% of Cr are leached here; in the incineration system, above 74% of Cr, As and Pb exists in residue; above 96% of Hg exists in fly ash and the contents of Cd in fly ash are close to those of residue. It is also concluded that the physical conditions of incineration have a significant influence on the distribution of heavy metals in the incineration system.  相似文献   

3.
Abstract. Municipal solid waste combustion leads to concentration of various metals in the solid residue (fly ash) remaining after combustion. These metals pose serious environmental hazard and require proper handling and monitoring in order to control their harmful effects. Leachability of some metals from fly ash was examined in fly ash and Milli-Q water mixture (liquid-to-solid ratio, 100) under various temperature and pH conditions in the laboratory. The leaching experiments conducted for 24 hours showed that pH was generally more important than temperature in controlling the amount of metals leached out of the fly ash. However, at a given pH, rise in temperature led to different degree of (usually one to two fold) enhanced or reduced leaching of metals. Owing to amphoteric nature of oxides of Al, Cr, Pb and Zn, these metals often yielded typical pattern of increase and decrease in their concentrations with change in pH. The extent of leaching of Cr and Pb in our experiments suggests that decrease of pH to acidic range in the case of Pb and to neutral to acidic range for Cr over a long period of storage of fly ash at solid waste dumping site may facilitate leaching of these metals from fly ash, leading to contamination of groundwater to the level that exceeds beyond the level permitted by the environmental laws.  相似文献   

4.
Hydro-mechanical evaluation of stabilized mine tailings   总被引:3,自引:0,他引:3  
. In this study, mine tailings waste was stabilized using a combination of lime, fly ash type "C", and aluminum. Treated samples were subjected to mineral identification for evaluating the formation of ettringite and gypsum. Also, unconfined compression, hydraulic conductivity, and cyclic freeze and thaw tests were performed to evaluate the hydro-mechanical properties of the stabilized samples. Experimental results have shown that the application of lime and fly ash type "C" to high sulfate content tailings has improved its plasticity, workability, and volume stability. Moreover, upon addition of aluminum to lime and fly ash in a sulfate-rich environment, ettringite and calcium sulfo-aluminate hydrate are formed in these samples. Application of 5% lime, 10% fly ash type "C", in combination with 110 ppm aluminum, resulted in the formation of a solid monolith capable of producing more than 1,000 kPa of unconfined compressive strength, and reduced tailings permeability to 1.96᎒–6 cm s–1, which is less than the recommended permeability of 10–5 cm s–1 by most environmental protection agencies for reusability of solidified/stabilized samples. The permeability of the treated tailings samples remained below the recommended permeability, even after exposing the treated samples to 12 freeze and thaw cycles. Therefore, based on the experimental results, it is concluded that treatment of high sulfate-content tailings with lime and fly ash, combined with the availability of aluminum for reactions, is a successful method of solidifying highly reactive mine tailings.  相似文献   

5.
Redistribution of potentially harmful metals and As was studied based on selective extractions in two active sulphide mine tailings impoundments in Finland. The Hitura tailings area contains residue from Ni ore processing, while the Luikonlahti site includes tailings from the processing of Cu–Co–Zn–Ni and talc ores. To characterize the element solid-phase speciation with respect to sulphide oxidation intensity and the water saturation level of the tailings, drill cores were collected from border zones and mid-impoundment locations. The mobility and solid-phase fractionation of Ni, Cu, Co, Zn, Cr, Fe, Ca, Al, As, and S were analysed using a 5-step non-sequential (parallel) selective extraction procedure. The results indicated that metal redistribution and sulphide oxidation intensity were largely controlled by the disposal history and strategy of the tailings (sorting, exposure of sulphides due to delayed burial), impoundment structure and water table, and reactivity of the tailings. Metal redistribution suggested sulphide weathering in the tailings surface, but also in unsaturated proximal areas beside the earthen dams, and in water-saturated bottom layers, where O2-rich infiltration is possible. Sulphide oxidation released trace metals from sulphide minerals at both locations. In the Hitura tailings, with sufficient buffering capacity, pH remained neutral and the mobilized metals were retained by secondary Fe precipitates deeper in the oxidized zone. In contrast, sulphide oxidation-induced acidity and rise in the water table after oxidation apparently remobilized the previously retained metals in Luikonlahti. In general, continuous disposal of tailings decreased the sulphide oxidation intensity in active tailings, unless there was a delay in burial and the reactive tailings were unsaturated after deposition.  相似文献   

6.
Establishing a shallow water cover over tailings deposited in a designated storage facility is one option to limit oxygen diffusion and retard oxidation of sulfides which have the potential to form acid mine drainage (AMD). The Old Tailings Dam (OTD) located at the Savage River mine, western Tasmania contains 38 million tonnes of pyritic tailings deposited from 1967 to 1982, and is actively generating AMD. The OTD was constructed on a natural gradient, resulting in sub-aerial exposure of the southern area, with the northern area under a natural water cover. This physical contrast allowed for the examination of tailings mineralogy and geochemistry as a function of water cover depth across the OTD. Tailings samples (n = 144, depth: ≤ 1.5 m) were collected and subjected to a range of geochemical and mineralogical evaluations. Tailings from the southern and northern extents of the OTD showed similar AMD potential based on geochemical (NAG pH range: 2.1 to 4.2) and bulk mineralogical parameters, particularly at depth. However, sulfide alteration index (SAI) assessments highlighted the microscale contrast in oxidation. In the sub-aerial zone pyrite grains are moderately oxidized to a depth of 0.3 m (maximum SAI of 6/10), under both gravel fill and oxidized covers, with secondary minerals (e.g., ferrihydrite and goethite) developed along rims and fractures. Beneath this, mildly oxidized pyrite is seen in fresh tailings (SAI = 2.9/10 to 5.8/10). In the sub-aqueous zone, the degree of pyrite oxidation demonstrates a direct relationship with cover depth, with unoxidized, potentially reactive tailings identified from 2.5 m, directly beneath an organic-rich sediment layer (SAI = 0 to 1/10). These findings are broadly similar to other tailings storage facilities e.g., Fox Lake, Sherritt-Gordon ZnCu mine, Canada and Stekenjokk mine, Sweden where water covers up to 2 m have successfully reduced AMD. Whilst geotechnical properties of the OTD restrict the extension of the water cover, pyrite is enriched in cobalt (up to 2.6 wt%) indicating reprocessing of tailings as an alternative management option. Through adoption of an integrated mineralogical and geochemical characterization approach for tailings assessment robust management strategies after mine closure can be developed.  相似文献   

7.
 Oxidation of a flotation-derived, low-sulfide tailings containing approximately 0.4 wt.% S was compared with simultaneously oxidized tailings containing 1.0 wt.% S and 2.5 wt.% S to assess their acid generating characteristics. Each tailings type was exposed to oxidation for three years in laboratory columns and in lysimeter pits in the field. In these tailings the sulfide mineral of principal concern with respect to acid generation is pyrrhotite (Fe 1-x S). In past studies the alteration of pyrrhotite has been characterized by initial replacement with marcasite (FeS2) and ferric iron sulfates, which are followed by development of ferric oxyhydroxides such as goethite and lepidocrocite. Macroscopic characterization of the tailings shows varying and progressive degrees of oxidation correlative with the three different sulfur contents. As expected, the tailings with the lowest sulfur content are the least oxidized, and those with the highest sulfur content have reacted the most. The column tests, which represent accelerated reaction conditions relative to those for the lysimeter pits, show much higher degrees of oxidation, and a markedly more distinct boundary between the oxidized and unoxidized zones; as well, differences among the three tailings types are more pronounced. Received: 31 October 1997 · Accepted: 27 May 1997  相似文献   

8.
Metals released from oxidation and weathering of sulphide minerals in mine tailings are to a high degree retained at deeper levels within the tailings themselves. To be able to predict what could happen in the future with these secondarily retained metals, it is important to understand the retention mechanisms. In this study an attempt to use laser ablation high-resolution ICP-MS (LA-ICP-SMS) to quantify enrichment of trace elements on pyrite surfaces in mine tailings was performed. Pyrite grains were collected from a profile through the pyrite-rich tailings at the Kristineberg mine in northern Sweden. At each spot hit by the laser, the surface layer was analyzed in the first shot, and a second shot on the same spot gave the chemical composition of the pyrite immediately below. The crater diameter for a laser shot was known, and by estimating the crater depth and total pyrite surface, the total enrichment on pyrite grains was calculated. Results are presented for As, Cd, Co, Cu, Ni and Zn. The results clearly show that there was an enrichment of As, Cd, Cu and Zn on the pyrite surfaces below the oxidation front in the tailings, but not of Co and Ni. Arsenic was also enriched on the pyrite grains that survived in the oxidized zone. Copper has been enriched on pyrite surfaces in unoxidized tailings in the largest amount, followed by Zn and As. However, only 1.4 to 3.1% of the Cd and Zn released by sulphide oxidation in the oxidized zone have been enriched on the pyrite surfaces in the unoxidized tailings, but for As and Cu corresponding figures are about 64 and 43%, respectively. There were many uncertainties in these calculations, and the results shall not be taken too literally but allowed the conclusion that enrichment on pyrite surfaces is an important process for retention of As and Cu below the oxidation front in pyrite rich tailings. Laser ablation is not a surface analysis technique, but more of a thin layer method, and gives no information on the type of processes resulting in enrichment on the pyrite surfaces. Although only pyrite grains that appeared to be fresh and without surface coatings were used in this study, the possibility that a thin layer of Fe-hydroxides occurred must be considered. Both adsorption to the pyrite directly or to Fe-oxyhydroxides may explain the enrichment of As, Cd, Cu and Zn on the pyrite surfaces, and, in the case of Cu, also the replacement of Fe(II) by Cu(II) in pyrite.  相似文献   

9.
Historical gold mining operations in Nova Scotia, Canada, resulted in numerous deposits of publicly accessible, arsenic (As)-rich mine waste that has weathered in situ for 75–150 years, resulting in a wide range of As-bearing secondary minerals. The geochemical heterogeneity of this mine waste creates a challenge for identifying a single remediation approach that will limit As mobility. A 30-cm-thick, low-organic content soil cover was evaluated in a laboratory leaching experiment where, to simulate natural conditions, the equivalent of 2 years of synthetic rainwater was leached through each column and two dry seasons were incorporated into the leaching protocol. Each column was a stratigraphic representation of the four major tailings types found at the historical Montague and Goldenville gold mine districts: hardpan tailings, oxic tailings, wetland tailings, and high Ca tailings. Hardpan tailings released acidic, As-rich waters (max 12 mg/L) under the soil cover but this acidity was buffered by surrounding oxic tailings. Leachate from the oxic tailings was circumneutral, with average As concentrations between 4.4 and 9.7 mg/L throughout the experiment. The presence of carbonates in the high Ca tailings resulted in near-neutral to weakly alkaline leachate pH values and average As concentrations between 2.1 and 6.1 mg/L. Oxidation of sulfides in the wetland tailings led to acidic leachate over time and a decrease in As concentrations to values that were generally less than 1 mg/L. This study shows that the use of a low-organic content soil cover does not create reducing conditions that would destabilize oxidized, As-bearing secondary phases in these tailings. However, oxygen penetration through the cover during dry seasons would continue to release As to tailings pore waters via sulfide oxidation reactions.  相似文献   

10.
Mining and milling of base metal ore deposits can result in the release of metals to the environment. When sulfide minerals contained in mine tailings are exposed to oxygen and water, they oxidize and dissolve. Two principal antagonistic geochemical processes affect the migration of dissolved metals in tailings impoundments: sulfide oxidation and acid neutralization. This study focuses on acid neutralization reactions occurring in the saturated zone of tailings impoundments. To simulate conditions prevailing in many tailings impoundments, 0.1 mol/L sulfuric acid was passed continuously through columns containing fresh, unoxidized tailings, collected at Kidd Creek metallurgical site. The results of this column experiment represent a detailed temporal observation of pH, Eh, and metal concentrations. The results are consistent with previous field observations, which suggest that a series of mineral dissolution-precipitation reactions control pH and metal mobility. Typically, the series consists of carbonate minerals, Al and Fe(III) hydroxides, and aluminosilicates. In the case of Kidd Creek tailings, the dissolution series consists of ankerite-dolomite, siderite, gibbsite, and aluminosilicates. In the column experiment, three distinct pH plateaus were observed: 5.7, 4.0, and 1.3. The releases of trace elements such as Cd, Co, Cr, Cu, Li, Ni, Pb, V, and Zn were observed to be related to the pH buffering zones. High concentrations of Zn, Ni, and Co were observed at the first pH plateau (pH 5.7), whereas Cd, Cr, Pb, As, V, and Al were released as the pH of the pore water decreased to 4.0 or less.  相似文献   

11.
Secondary copper enrichment in tailings at the Laver mine, northern Sweden   总被引:3,自引:2,他引:1  
 Field and laboratory studies of the sulphide-bearing tailings at Laver, northern Sweden, show that the present release of metals from the tailings is low, especially with regard to Cu. A large part of the Cu released by sulphide oxidation is enriched in a distinct zone just below the oxidation front. The enrichment zone occurs almost all over the tailings area except in areas with a shallow groundwater table. The Cu enrichment is caused by formation of covellite and adsorption onto mineral surfaces. The transport of Zn, Co, Cd, Ni and S seems to be controlled mainly by adsorption. No secondary zone or secondary minerals containing these metals have been found. Just below the groundwater table, metals are released into solution when the enrichment zone reaches the groundwater due to the low pH. An increased release of metals, especially Cu, can be expected in the future, since the enrichment zone is moving towards the groundwater table. Received: 4 December 1997 · Accepted: 17 December 1998  相似文献   

12.
Fly ash is a waste by-product obtained from the burning of coal by thermal power plants for generating electricity. When bulk quantities are involved, in order to arrest the fugitive dust, it is stored wet rather than dry. Fly ash contains trace concentrations of heavy metals and other substances in sufficient quantities to be able to leach out over a period of time. In this study an attempt was made to study the leachabilities of a few selected trace metals: Cd, Cu, Cr, Mn, Pb and Zn from two different types of class F fly ashes. Emphasis is also laid on developing an alternative in order to arrest the relative leachabilities of heavy metals after amending them with suitable additives. A standard laboratory leaching test for combustion residues has been employed to study the leachabilities of these trace elements as a function of liquid to solid ratio and pH. The leachability tests were conducted on powdered fly ash samples before and after amending them suitably with the matrices lime and gypsum; they were compacted to their respective proctor densities and cured for periods of 28 and 180 days. A marked reduction in the relative leachabilities of the trace elements was observed to be present at the end of 28 days. These relative leachability values further reduced marginally when tests were performed at the end of 180 days.  相似文献   

13.
Pozzolanic fly ash as a hydraulic barrier in land fills   总被引:2,自引:0,他引:2  
The liner plays an important role in controlling migration of contaminants present in the leachate in waste containment systems such as land fills and impoundments. Although questions have been raised about the performance of clay liners, they are increasingly used singly or as double liners in disposal sites. Though the clay liners possess many advantages such as low permeability and large attenuative capacity, they also possess high shrinkage potential and hence can crack under unsaturated conditions causing instability and increase in leakage rates. Further, the permeability of the clay linear can increase due to clay–pollutant interaction. This study examines the potential of pozzolanic fly ash as a hydraulic barrier in land fill. The behaviour of three different types of fly ashes, showing a range of physical properties and chemical composition from three different sources are reported in the study. Geotechnical properties, needed to evaluate the use of fly ashes as barriers, such as shrinkage, compaction, permeability, consolidation and strength characteristics are reported. The results show that fly ashes possess low shrinkage and hence do not crack. Compacted fly ashes undergo very little volume changes. They also show that pozzolanic fly ashes develop good strength properties with time. Pozzolanic fly ashes containing sufficient lime develop strength even without addition of lime. Non-pozzolanic fly ashes do not develop strength even on addition of lime. Fly ashes generally consist of silt size particles and consequently possess high permeability. However, pozzolanic fly ashes with lime exhibit low permeability on curing because of the formation of gelatinous compounds which block the pores. Thus, pozzolanic fly ashes appear to be promising for construction of liners to contain alkaline leachate.  相似文献   

14.
《Applied Geochemistry》2002,17(2):93-103
Mimicking geochemical processes to solve environmental problems was implemented in dealing with waste acidic jarosite and alkaline coal fly ash. By placing these two chemically different materials adjacent to one another, a self-sealing layer was formed at the interface between both wastes, isolating and immobilizing chemical constituents in the process. A series of leaching experiments were performed on each material separately to study the release behavior of the principal constituents. Radiotracer experiments were conducted to explore diffusion and reaction of constituents such as Fe3+ in a combined jarosite/fly ash system. A model has been developed to simulate the coupled processes of diffusion and precipitation taking into account porosity change due to pore filling by precipitates. The formation of a self-sealing isolation layer in a hypothetical jarosite/fly ash disposal site was modelled. Leaching results indicate that the release of elements from jarosite is much larger than that from fly ash, and that the highly pH dependent release of Fe, Al, and Zn was controlled by the solubility of their hydroxides. Leaching results also suggest that precipitation reactions can be expected to occur at the interface between jarosite and alkaline coal fly ash where a large pH gradient exists. Radiotracer experiments showed that accumulation of constituents occurred at the interface. Modeled Fe3+ profiles in layered jarosite/fly ash were well validated by experiments. Modeling results also showed that with the accumulation of constituents at the interface, a new layer with low porosity was formed. Application of this model suggests that there is a potential use to form a self-sealing layer in jarosite/fly ash co-disposal sites.  相似文献   

15.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been applied to determine the elemental composition of the surface layer, as well as of the first interior layer, of quartz grains from the mine tailings from Kristineberg (northern Sweden) in order to determine concentration gradients between these two layers. The quartz grains were collected from the oxidized and unoxidized zones within the tailings. The aim of this study is to assess the role of quartz surfaces as sites for the attenuation of solutes from the mine-tailings porewater. Concentrations of Cu, Ag, Sb, Pb and Bi are highest near the surface of each grain and decrease towards the interior. The surface concentration of Cu, Zn and Pb is more pronounced within the unoxidized than within the oxidized zone of the tailings. Cu exhibits a distinct concentration peak at the surface of the quartz grains below the pre-remediation oxidation front. For Zn and Ce the trend of high surface concentration is less pronounced than for Cu or Pb. Silver, Bi and As are preferably adsorbed within the uppermost layers of the oxidized zone where the pH is as high as 6.2. The conversion of intensity signals of the elements to concentration values in ppm was done by using external standards (NIST silicate glass).  相似文献   

16.
Weathering of Hitura (W Finland) nickel sulphide mine tailings and release of heavy metals into pore water was studied with mineralogical (optical and electron microscopy, X-ray diffraction) and geochemical methods (selective extractions). Tailings were composed largely of serpentine, micas and amphiboles with only minor carbonates and sulphides. Sulphides, especially pyrrhotite, have oxidized intensively in the shallow tailings in 10–15 years, but a majority of the tailings have remained unchanged. Oxidation has resulted in depletion of carbonates, slightly decreased pH, and heavy metal (Ni, Zn) release in pore water as well as in the precipitation of secondary Fe precipitates. Nevertheless, in the middle of the tailings area, where the oxidation front moves primarily downward, released heavy metals have been adsorbed and immobilized with these precipitates deeper in the oxidation zone. In contrast to what was seen in pore water pH, but in accordance with static tests of the previous studies, the neutralisation potential ratio (NPR) calculated based on the mineralogical composition and the total sulphur content suggested that tailings are ‘not potentially acid mine drainage (AMD) generating’. However, the calculated buffering capacity of the tailings resulted largely from the abundant serpentine because of the low carbonate content. Despite its slow weathering rate, serpentine may buffer the acidity to some extent through ion exchange processes in fine ground tailings. Nevertheless, in practice, acid production capacity of the tailings depends primarily on the balance between Ca–Mg carbonates and iron sulphides. NPR calculation based on carbonate and sulphur contents suggested, that the Hitura tailings are ‘likely AMD generating’. The study shows that sulphide oxidation can be significant in mobilisation of heavy metals even in apparently non-acid producing, low sulphide tailings. Therefore, prevention of oxygen diffusion into tailings is also essential in this type of sulphide tailings.  相似文献   

17.
Backfilling of mine voids is mandatory to avoid subsequent ground stability problems in the form of subsidence. River sand and mill tailings have been widely used since a long time as backfilling materials. However, with a strict regulation banning river sand mining in India, research for developing alternative engineering materials substituting sand has gained importance. In the present study four fly ash composite materials (FCMs) was developed from the fly ash obtained from a captive thermal unit of Rourkela Steel Plant (RSP). The main constituent of the composite were fly ash, lime and gypsum. Detailed physical, and engineering properties were determined for the FCMs. Significant increases in the compressive strength were obtained after 56 days of curing time. A detailed SEM studies was undertaken to account for the increase in strength with time. The fly ash composite developed from RSP has potential to be used as substitute to sand for backfilling the mine voids.  相似文献   

18.
The generation of municipal solid waste incinerator fly ash (MSWIF) has been increasing significantly over the recent past, and its disposal is problematic and costly due to high concentration of leachable heavy metals present in the material. This study explored a potential stabilization of MSWIF by blending with a natural sorbent material with low permeability, clay, and assessed the potential release of heavy metals from the stabilized mixtures under various simulated subsurface environments. The leachability of heavy metals such as Pb, Cd, Cr, Zn and Cu in the MSWIF-clay mixtures cured for 1 to 360 days was investigated by performing leaching tests and sequential chemical extractions (SCE). Leaching tests were performed at acidic, neutral and alkaline pH values. The leaching test results suggested that the natural clay could turn the MSWIF into non-hazardous material. All the MSWIF-clay mixtures demonstrated leaching behavior different from that of the original MSWIF. SCE results revealed that the acidic and reducing conditions were the most unfavorable to the immobilization of the heavy metals in the stabilized MSWIF-clay matrix. Conversely, the oxidizing and alkaline conditions were not critical to the stabilized MSWIF-clay mixtures. Apparently, clay in the mixtures could function as an adsorptive micro-barrier to retain the heavy metals within the MSWIF-clay matrices.  相似文献   

19.
工业废渣加固土强度特性   总被引:3,自引:0,他引:3  
章定文  曹智国 《岩土力学》2013,34(Z1):54-59
工业废渣的资源化是解决工业废渣环境污染的有效途径之一。以粉煤灰和高炉矿渣为固化剂,石灰为碱性激发剂,对黏土进行加固。通过室内试验的方法,分析固化剂掺入量、养护龄期等对固化土无侧限抗压强度、pH值和饱和度等发展规律的影响。试验结果表明,固化土的无侧限抗压强度随固化剂掺入量的增加而增大,随养护龄期的增加而增大,提出一个综合反映固化剂掺入量、养护龄期和压实度等因素对固化土强度影响规律的综合影响因子,固化土强度与综合影响因子呈负指数函数关系;粉煤灰+石灰和高炉矿渣+石灰可有效改良土体无侧限抗压强度特性;石灰是一种有效的碱性激发剂,可提供工业废渣发生火山灰反应的高碱性环境。试验成果为工业废渣改良不良土质的设计提供试验依据。  相似文献   

20.
为拓展粉煤灰的资源化利用,以宁夏宁东能源化工基地鸳鸯湖电厂粉煤灰为研究对象,使用扫描电镜、能谱分析和X射线衍射等测试方法对粉煤灰理化特性进行表征和分析,并采用酸消解法、DTPA浸提法和Tessier五步提取法,对粉煤灰中铅(Pb)、铬(Cr)、镍(Ni)、铜(Cu)、镉(Cd)和砷(As)6种重金属的全量、有效态、不同形态含量进行了测定。采用风险评价编码法(RAC)、次生相与原生相比值法(RSP)和潜在生态风险指数法评估粉煤灰重金属生态风险。结果表明:(1) 粉煤灰微观结构良好,密度小,速效钾和速效磷含量丰富。(2) 粉煤灰中6种重金属元素全量和平均值均超过宁夏地区土壤环境背景值,但未超过其他农用地土壤污染风险筛选值(基本项目),超标倍数大小顺序为Pb、Cu、Cr、As、Cd、Ni。6种重金属元素有效态含量均未超过宁夏地区土壤环境背景值和其他农用地土壤污染风险筛选值。(3) RAC评价结果表明,As具有极高生态风险,Cd、Cu和Ni具有中高风险,Cr、Pb分别为低风险和无风险。RSP评价结果表明,重金属As为轻度污染,Pb、Cr、Ni、Cu、Cd均为无污染。潜在生态风险指数法结果表明,粉煤灰中6种元素全量和有效态潜在生态危害指数(RI)处于Ⅰ级,轻微生态危害水平,其中Cd是生态风险的主要贡献元素。因此,粉煤灰可以作为煤矿胶结充填材料进行大规模资源化利用。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号