首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present results from an investigation of the plasma sheet encounter signatures observed in the Jovian magnetosphere by the Energetic Particles Detector (EPD) and Magnetometer (MAG) onboard the Galileo spacecraft. Maxima in ion flux were used to identify over 500 spacecraft encounters with the plasma sheet between radial distances from Jupiter from 20 to 140RJ during the first 25 orbits (4 years of data). Typical signatures of plasma sheet encounters show a characteristic periodicity of either 5 or 10 hours that is attributed to an oscillation in the relative distance between the spacecraft and the plasma sheet that arises from the combination of planetary rotation and offset magnetic and rotational axes. However, the energetic particle and field data also display much variability, including instances of intense fluxes having little to no periodicity that persist for several Jovian rotation periods. Abrupt changes in the mean distance between the plasma sheet and the spacecraft are suggested to account for some of the transitions between typical flux periodicities associated with plasma sheet encounters. Additional changes in the plasma sheet thickness and/or amplitude of the plasma sheet displacement from the location of the spacecraft are required to explain the cases where the periodicity breaks down but fluxes remain high. These changes in plasma sheet characteristics do not display an obvious periodicity; however, the observations suggest that dawn/dusk asymmetries in both the structure of the plasma sheet and the frequency of anomalous plasma sheet encounters are present. Evidence of a thin, well-ordered plasma sheet is found out to 110RJ in the dawn and midnight local time sectors, while the dusk magnetosphere is characterized by a thicker, more disordered plasma sheet and has a potentially more pronounced response to an impulsive trigger. Temporal variations associated with changing solar wind conditions are suggested to account for the anomalous plasma sheet encounters there.  相似文献   

2.
We present results from a theoretical model which has been used to investigate the modulation of the magnetosphere-ionosphere coupling currents in the Jovian middle magnetosphere by solar wind-induced compressions and expansions of the magnetosphere. We consider an initial system in which the current sheet field lines extend to 50RJ in the equatorial plane, and where the iogenic plasma in the current sheet undergoes steady outward radial diffusion under the influence of the ionospheric torque which tends to maintain corotation with the planet. We show using typical Jovian parameters that the upward-directed field-aligned currents flowing throughout the middle magnetosphere region in this system peak at values requiring the existence of significant field-aligned voltages to drive them, resulting in large precipitating energy fluxes of accelerated electrons and bright ‘main oval’ UV auroras. We then consider the changes in these parameters which take place due to sudden expansions or compressions of the magnetosphere, resulting from changes in the solar wind dynamic pressure. Two cases are considered and compared, these being first the initial response of the system to the change, determined approximately from conservation of angular momentum of the radially displaced plasma and frozen-in field lines, and second the subsequent steady state of steady outward radial diffusion applied to the compressed or expanded system. We show that moderate inward compressions of the outer boundary of the current sheet field lines, e.g. from 50 to 40RJ, are effective in significantly reducing the coupling currents and precipitation in the initial state, the latter then recovering, but only partly so, during the evolution to the steady state. Strong inward compressions, e.g. to 30RJ cause significant super-corotation of the plasma and a reversal in sense of the current system in the initial state, such that bright auroras may then be formed poleward of the usual ‘main auroral oval’ due to the ‘return’ currents. The sense of the currents subsequently reverts back to the usual direction as steady-state conditions are restored, but they are weak, and so is the consequent electron precipitation. For outward expansions of the current sheet, however, the field-aligned currents and electron precipitation are strongly enhanced, particularly at the poleward border mapping to the outer weak field region of the current sheet. In this case there is little evolution of the parameters between the initial expansion and the subsequent steady state. Overall, the results suggest that the Jovian middle magnetosphere coupling currents and resulting ‘main oval’ auroral acceleration and precipitation will be strongly modulated by the solar wind dynamic pressure in the sense of anti-correlation, through the resulting compressions and expansions in the size of the magnetosphere.  相似文献   

3.
The magnetic field in the middle magnetosphere of Jupiter was suggested to be the planetary dipole field plus a perturbation field due to a current sheet (Smith et al, 1974). Since no data of the low energy plasma are available the existence of a plasma sheet could not be confirmed directly. In this paper we show how the plasma pressure and density-can be derived from the magnetic field in the framework of a self-consistent theory. For the magnetic field model proposed by Goertz et al. (1976c) we compute the isobars and isodensity lines and confirm the existence of a thin plasma sheet.  相似文献   

4.
Flapping motions of the magnetotail with an amplitude of several earth radii are studied by analysing the observations made in the near (x = ?25 ~ ?30 RE and the distant (x? ?60 RE) tail regions. It is found that the flapping motions result from fluctuations in the interplanetary magnetic field, especially Alfvénic fluctuations, when the magnitude of the interplanetary magnetic field is larger than ~10 γ and they propagate behind the Earth with the solar wind flow. Flappings tend to be observed in early phases of the magnetospheric substorm, and they have two fundamental modes with periods of ~200 and ~500 sec. In some limited cases a good correspondence with the long period micropulsations (Pc5) in the polar cap region is observed. These observational results are explained by the model in which the Alfvénic fluctuations in the solar wind penetrate into the magnetosphere along the connected interplanetary-magnetospheric field lines. The characteristics of the flapping reveal that the geomagnetic tail is a good resonator for the hydromagnetic disturbances in the solar wind.  相似文献   

5.
Observed magnetospheric asymmetries which occur in response to the y-component of the IMF are discussed in terms of the open model of the magnetosphere. The torque which the IMF exerts on the magnetosphere about the Earth-Sun axis results in asymmetric addition of open flux tubes to the tail lobes about the noon-midnight meridian. In response an IMF-associated By field appears across the tail lobes. The ratio between internal and external By fields will generally be same as the ratio between internal and external electric fields. If the tail flux asymmetry is related to an asymmetric distribution of the field normal to the tail magnetopause then an asymmetry in tail lobe electric field and plasma populations will immediately result, as observed. If the flux asymmetry is associated with a twist in the tail then the By field will appear but not necessary the electric field and plasma asymmetries. Generally both effects may occur together. Simple open tail lobe models are derived which demonstrate the asymmetry effects. These represent more physically satisfactory models of the tail and its plasma populations than available hitherto, but they remain somewhat unrealistic in a number of respects. Finally, it is shown that the observed asymmetry effects on closed (auroral zone) field lines may be at least qualitatively accounted for if the cross-magnetosphere IMF-associated By field pervades not only the open but also the closed field line regime, as may be generally expected.  相似文献   

6.
We employ Mariner 10 measurements of the interplanetary magnetic field in the vicinity of Mercury to estimate the rate of magnetic reconnection between the interplanetary magnetic field and the Hermean magnetosphere. We derive a time-series of the open magnetic flux in Mercury's magnetosphere, from which we can deduce the length of the magnetotail. The length of the magnetotail is shown to be highly variable, with open field lines stretching between 15RH and 850RH downstream of the planet (median 150RH). Scaling laws allow the tail length at perihelion to be deduced from the aphelion Mariner 10 observations.  相似文献   

7.
Hydrodynamic and electrodynamic problems of solar wind interaction with the Earth's magnetosphere on the day-side are investigated.The initial fact, well established, is that the density of the magnetic field energy in the solar wind is rather small. Magnetic field intensity and orientation are shown to determine the character of the solar wind flow around the magnetosphere. For mean parameters of the wind, if the tangential component of the magnetic field is more or equal 5γ, the flow in the magneto-sheath will be laminar. For other cases the flow is of a turbulent type.For turbulent flow, typical plasma parameters are estimated: mean free path, internal scale of inhomogeneities and dissipated energy. The results obtained are compared with experimental data.For the case of laminar flow, special attention is paid to the situation when magnetic fields of the solar wind and Earth are antiparallel. It is suggested, on the basis of solid arguments, that the southward interplanetary field diffuses from the magnetosheath into the Earth's magnetosphere. These ideas are used for the estimation of the distance to the magnetopause subsolar point. A detailed comparison with results of observation is made. The coincidence is satisfactory. Theoretical investigation has been made to a great extent for thin magnetopause with thickness δRHe-gyroradius of an electron.It is shown that during magnetospheric substorms relaxation oscillations with the period τ = 100–300 sec must appear. A theorem is proved about the appearance of a westward electrical field during the substorm development, when the magnetosphere's day-side boundary moves Earthward and about the recovery phase, when the magnetopause motion is away from the Earth, when there is an eastward electrical field.In the Appendix, plasma wave exitation in the magnetopause is considered and conductivity magnitudes are calculated, including the reduction due to the scattering by plasma turbulence.  相似文献   

8.
To identify temporal variations of the characteristics of Jupiter’s cloud layer, we take into account the geometric modulation caused by the rotation of the planet and planetary orbital motion. Inclination of the rotation axis to the orbital plane of Jupiter is 3.13°, and the angle between the magnetic axis and the rotation axis is β ≈ 10°. Therefore, over a Jovian year, the jovicentric magnetic declination of the Earth φ m varies from–13.13° to +13.13°, and the subsolar point on Jupiter’s magnetosphere is shifted by 26.26° per orbital period. In this connection, variations of the Earth’s jovimagnetic latitude on Jupiter will have a prevailing influence in the solar-driven changes of reflective properties of the cloud cover and overcloud haze on Jupiter. Because of the orbit eccentricity (e = 0.048450), the northern hemisphere receives 21% greater solar energy inflow to the atmosphere, because Jupiter is at perihelion near the time of the summer solstice. The results of our studies have shown that the brightness ratio A j of northern to southern tropical and temperate regions is an evident factor of photometric activity of Jupiter’s atmospheric processes. The analysis of observational data for the period from 1962 to 2015 reveals the existence of cyclic variations of the activity factor A j of the planetary hemispheres with a period of 11.86 years, which allows us to talk about the seasonal rearrangement of Jupiter’s atmosphere.  相似文献   

9.
Using the data obtained from the Pioneer 10 and 11 observations, a theoretical model is proposed for the bow shock and the magentosphere of Jupiter. This indicates that the distance of the magnetopause from Jupiter on the sunlit side is (50–55) × rJ (rJ: Jupiter radius, = 7 × 109 cm) and that the ratio of the stand-off distance to this distance is about equal to or slightly larger than unity. Hence the Mach number of the solar wind seems to be less than 1.5 at Jupiter's orbit. This result necessarily leads to a blunt body model of the Jovian magnetosphere, the tail region of which is not as extended as observed in the Earth's case.  相似文献   

10.
The geometry of the open flux area in the polar region is computed by superposing a uniform interplanetary magnetic field (IMF) with various orientation angles to a model of the magnetosphere. It is confirmed that the IMF By component is as important as the Bz component in “opening” the magnetosphere. It is also shown that the computed area of open field lines is remarkably similar to the observed ones which were determined by using the entry of solar electrons. In particular, when the IMF vector is confined in the X-Z-plane and the Bz component has a large positive value, the open area becomes crescent-shaped, coinciding approximately with the cusp region.  相似文献   

11.
We discuss some interesting plasma observations in the Jovian magnetosheath by the onboard plasma instruments of the Cassini spacecraft during the 2000-2001 Jupiter flyby. We propose that the observations are consistent with a slow-mode shock transition. In the terrestrial magnetosheath, a number of observations have been made that are consistent with slow-mode waves or shocks. In addition, a number of observations have established that, at least occasionally, slow-mode structures form at the plasma sheet-lobe boundary in the terrestrial magnetotail, related to X lines associated with reconnection. There has been only one previously reported observation of a slow-mode shock-like transition in the Jovian plasma environment. This observation was made in the dayside magnetosheath. The observation we report here was made well downstream of the magnetosphere in Jupiter’s magnetosheath, at local time ∼19:10. For our analysis we have used the data from the Cassini Plasma Spectrometer (CAPS) the Magnetospheric Imaging Instrument (MIMI) and the Magnetometer (MAG). The bow shock crossings observed by Cassini ranged downstream to −600 RJ from the planet  相似文献   

12.
J.G. Luhmann  R.J. Walker 《Icarus》1980,44(2):361-366
The ionospheric plasma density on magnetic field lines threading the Jovian rings which are located inside ~1.8 RJ on the jovigraphic equatorial plane, is calculated by using a rotating ion exosphere model. It is found that the bulk of the ionospheric particles on these field lines are on ballistic trajectories. On field lines approximately symmetric with respect to the jovigraphic equator, the ring, which to a first approximation would absorb the population of trapped particles, consequently has little effect. On field lines which are made asymmetric by the higher-order multipoles of Jupiter's field and the tilt of the dipole axis, the rings may have a significant effect. It is suggested that better definition of the rings' atmospheric and ionospheric properties is required to model these localized effects. If the rings are found to be an important plasma source for the inner magnetosphere, the present exospheric model will have to be revised.  相似文献   

13.
The distance to the dayside magnetopause is statistically analyzed in order to detect the possible dependence of the dayside magnetic flux on the polarity of the interplanetary magnetic field. The effect of changing solar wind pressure is eliminated by normalizing the observed magnetopause distances by the simultaneous solar wind pressure data. It is confirmed that the normalized size of the dayside magnetosphere at the time of southward interplanetary magnetic field is smaller than that at the time of northward interplanetary magnetic field. The difference in the magnetopause position between the two interplanetary field polarity conditions ranges from 0 to 2RE. Statistics of the relation between the magnetopause distance and the magnetic field intensity just inside the magnetopause testifies that the difference in the magnetopause position is not due to a difference in the magnetosheath plasma pressure. The effect of the southward interplanetary magnetic field is seen for all longitudes and latitudes investigated (|λGM|? 45°, |φSM|? 90°). These results strongly suggest that a part of the dayside magnetic flux is removed from the dayside at the time of southward interplanetary magnetic field.  相似文献   

14.
Based on the method of dimensional analysis, the energy transfer rate from the solar wind into the magnetosphere can be characterized by a magnetic coupling parameter α on open field lines and by a viscous coupling parameter β on closed field lines. By assuming that the energy transfer rate can be monitored by the total energy dissipation rate of the magnetosphere, the histogram of α is constructed and is found to peak around ?0.1 < α < 0.1. This result implies that the energy transfer is governed primarily by the MHD dynamo process on open field lines and indicates that the ? function obtained by Perreault and Akasofu is verified as the first approximation of the solar wind-magnetosphere energy coupling function.  相似文献   

15.
The effect of parallel electrostatic field on the amplification of whistler mode waves in an anisotropic bi-Maxwellian weakly ionized plasma for Jovian magnetospheric conditions has been carried out. The growth rate for different Jovian magnetospheric plasma parameters forL = 5.6R j has been computed with the help of general dispersion relation for the whistler mode electromagnetic wave of a drifted bi-Maxwellian distribution function. It is observed that the growth or damping of whistler mode waves in Jovian magnetosphere is possible when the wave vector is parallel or antiparallel to the static magnetic field and the effect of this field is more pronounced at low frequency wave spectrum.  相似文献   

16.
A solar wind parameter ε, known as the energy coupling function, has been shown to correlate with the power consumption in the magnetosphere. It is shown in the present paper that the parameter ε can be identified semi-quantitatively as the dynamo power delivered from the solar wind to an open magnetosphere. This identification not only provides a theoretical basis for the energy coupling function, but also constitutes an observational verification of the solar wind-magnetosphere dynamo along the magnetotail. Moreover, one can now conclude that a substorm results when the dynamo power exceeds 1018 ergs ?1.  相似文献   

17.
We examine the energetic (MeV) ion data obtained by the Anisotropy Telescopes instrument of the Ulysses COSPIN package during two northern high-latitude excursions prior to closest approach to Jupiter, when the spacecraft left the region of trapped fluxes on closed magnetic field lines at lower latitudes and entered a region of open field lines which we term the polar cap. During these intervals the ion fluxes dropped by 4–5 orders of magnitude to low but very steady values, and the ion spectrum was consistent with the observation of an essentially unprocessed interplanetary population. Ion anisotropies observed at these distances (within 16RJ, of Jupiter) indicate that in the low-latitude, high-flux regions the flows are principally azimuthail and in the sense of corotation, with speeds which are within a factor of 2 (in either direction) of rigid corotation. In the higher latitude trapped flux regions the flows rotate to become northward as the polar cap is approached, while in the polar cap itself the flows rotate further to become anti-corotational (and anti-sunward in the morning sector) and northward. These results provide primary evidence of the existence of solar wind-driven flows in the outer Jovian magnetosphere mapping to the high-latitude ionosphere. Investigation of concurrent magnetic data for the signatures of related field-aligned currents reveals only weak signatures with an amplitude of order 1 nT. The implication is that the height-integrated Pedersen conductivity of the ionosphere to which the spacecraft was connected was low, of order 0.01 mho or less. We also examine the ion observations during the two northern high-latitude excursions previous to those discussed above. These data indicate that the spacecraft approached but did not penetrate the open flux region during these intervals.  相似文献   

18.
In this paper we study a possible existence of surface wave (SW) global modes of the outer magnetosphere. The SW modes are supported by two plasma discontinuities: the plasmapause and the boundary between the open and closed field lines of the magnetosphere. Conditions under which the SW global modes can propagate azimuthally and along the magnetic field lines are examined. The ionosphere at the ends of the field lines is considered as reflecting boundaries of these SW modes. As a result SW standing wave structures along the magnetic field fluxes can be formed. Two branches of SW modes are derived. The low frequency branch, fs,1 falls in the Pc5 range, while the high frequency branch, fs,2—in the Pc4 range, where fs,1(2) is the fundamental SW global mode frequency. Their frequencies possess quantized properties in the following way: f≡(1,2,3, …)fs,1(2). The high frequency SW branch, fs,2 exists only for relatively great azimuthal wavenumbers k. It is pointed out that most of the SW global mode characteristics are similar to those of the FLR. These results are applied to 1.8 mHz global mode observations on 11 January 1997. Spectral, phase and polarization properties of this Pc5 pulsation event under northward IMF conditions are examined as we see them from ground-based (L’Aquila and TNB observatories) and satellite (POLAR and INTERBALL) observations.  相似文献   

19.
A quantitative magnetospheric magnetic field model has been calculated in three dimensions. The model is based on an analytical solution of the Chapman-Ferraro problem. For this solution, the magnetopause was assumed to be an infinitesimally thin discontinuity with given geometry. The shape of the dayside magnetopause is in agreement with measurements derived from spacecraft boundary crossings.The magnetic field of the magnetopause currents can be derived from scalar potentials. The scalar potentials result from solutions of Laplace's equation with Neumann's boundary conditions. The boundary values and the magnetic flux through the magnetopause are determined by all magnetic sources which are located inside and outside the magnetospheric cavity. They include the Earth's dipole field, the fields of the equatorial ring current and tail current systems, and the homogeneous interplanetary magnetic field. In addition, the flux through the magnetopause depends on two constants of interconnection which provide the possibility of calculating static interconnection between magnetospheric and interplanetary field lines. Realistic numerical values for both constants have been derived empirically from observed displacements of the polar cusps which are due to changes in the orientation of the interplanetary field. The transition from a closed to an open magnetosphere and vice versa can be computed in terms of a change of the magnetic boundary conditions on the magnetopause. The magnetic field configuration of the closed magnetosphere is independent of the amount and orientation of the interplanetary field. In contrast, the configuration of the open magnetosphere confirms the observational finding that field line interconnection occurs primarily in the polar cusp and high latitude tail regions.The tail current system reflects explicitly the effect of dayside magnetospheric compression which is caused by the solar wind. In addition, the position of the plasma sheet relative to the ecliptic plane depends explicitly on the tilt angle of the Earth's dipole. Near the tail axis, the tail field is approximately in a self-consistent equilibrium with the tail currents and the isotropic thermal plasma.The models for the equatorial ring current depend on the Dst-parameter. They are self-consistent with respect to measured energy distributions of ring current protons and the axially symmetric part of the magnetospheric field.  相似文献   

20.
A dispersion relation for left hand circularly polarized electromagnetic wave propagation in an anisotropic magnetoplasma in the presence of a very weak parallel electrostatic field has been derived with the help of linearized Vlasov and Maxwell equations. An expression of the growth rate has been derived in presence of parallel electric field for ion-cyclotron electromagnetic wave in an anisotropic media. The modification made in the growth rate by introducing parallel electric field and temperature anisotropy has been studied for fully ionized hydrogen plasma with the help of observations made on Jovian ionosphere and magnetosphere atL = 5.6 Rj. It is concluded that the growth (damping) of ion-cyclotron electromagnetic wave is possible when the wave vector is parallel (antiparallel) to the static electric field and effect is more pronounced at higher wave number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号