首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of the ionospheric disturbances associated with geomagnetic storms is examined with the goal of searching for a relationship between the time-developments of the two phenomena. Faraday rotation measurements of total electron content (NT) are used to monitor the ionospheric F-region at a mid-latitude site, while a variety of geomagnetic parameters are examined as possible ways of following the geomagnetic variations. The ionospheric and geomagnetic data taken during 28 individual storms from 1967 to 1969 are used to search for a predictive scheme which can be tested using data from 17 storms in 1970. The specific aim is to find the geomagnetic parameter whose time-development can best forecast whether or not the ionospheric response will include an initial positive phase prior to the normally extended period of F-region depletions. Correlations between NT and the geomagnetic indices Kp, and equatorial Dst(H) prove to be wholly inadequate. The local times of main-phase-onset (MPO) determined from the equatorial Dst(H) indices as well as from local horizontal component data, also prove to be unsatisfactory. The best correlations are obtained using local measurements of the total geomagnetic field (F). These results show that a storm commencement (SC) will produce an enhancement in nt during the afternoon period following the SC unless there is an intervening post-midnight period with a strong depression of the geomagnetic field. Operationally this is taken to be a depression in F of at least 100γ near 03:00 LT  相似文献   

2.
A modelling study of the electron content of the mid-latitude ionosphere and protonosphere has been carried out for solstice conditions using the mathematical model of Bailey (1983). In the model calculations coupled time-dependent O+, H+ continuity and momentum equations and O+, H+ and electron heat balance equations are solved for a magnetic shell extending over both hemispheres. The inclusion of interhemispheric flow of plasma and of heat balance has enabled us to investigate the role of interhemispheric coupling on the electron content and related shape parameters. The computed results are compared with results from slant path observations of the ATS-6 radio beacon made at Lancaster (U.K.) and Boulder, Colorado (U.S.A.).It has been found that the conjugate photoelectron heating has a major effect on the shape of the daily variation of slant slab thickness (τ) and also on the magnitude of the protonospheric content (Np). Some of the main features of τ are closely related to the sunrise and sunset times in the conjugate ionosphere. Also it is found that night-time increases in total electron content (NT) and F2 region peak electron density (Nmax) in winter are natural consequences of ionization loss at low altitudes causing an enhanced downward flow of plasma from the protonosphere which is coupled to the summer hemisphere. One other important consequence of the coupled protonosphere is that the effects on NT of the neutral air wind are not much different in winter from those in summer.  相似文献   

3.
Total electron content (Nt) variations in the ionosphere above the magnetic equator (Thumba dip 0.6°S) obtained by the Faraday rotation measurements of beacon signals from S66 satellites are described for the period December 1965–August 1968. The Nt value reaches a minimum around 05 hr and a broad maximum between 14–18 hr, the diurnal ratio being more than 20. During no-echo condition at pre-sunrise hours, Nt is found to be abnormally low. The equivalent slab-thickness at Thumba is between 150 and 250 km except around 14 hr when it reaches a high value around 500 km. The electrons are almost equally distributed above and below the peak for the daytime hours, but in the latter part of the night the ratio of top-side to the bottom-side electron content exceeds the value of 5. This high ratio is suggested as being due to very low value of maximum electron density which during the pre-sunrise period becomes comparable to the electron density at great heights where there is no diurnal change of electron density. Combining the data of Thumba and Ahmedabad, the diurnal development of the equatorial anomaly in Nt is described.  相似文献   

4.
Time-varying solutions of the full continuity equation for electrons in the F2-region are obtained. The effects of production, loss, diffusion and electrodynamic ‘E × B’ drift are taken into account. The ‘E × B’ drift term consists of a solar and a lunar component. The solar component of drift is assumed diurnal with 14.6m/sec maximum upward speed at mid-day. The lunar component is assumed sinusoidal with period of half lunar day and amplitude one tenth of the solar drift; the phase is assumed to remain constant in lunar time, in accordance with Chapman's phase law.The results show that the lunar variations in the F2-region are markedly dependent on solar time and latitude. It is also shown that the average semi-diurnal lunar variations in NmF2 and hmF2 at any particular lunar time are almost opposite in phase to each other (i.e. out of phase by 6 hr) in the magnetic equatorial zone, and out of phase by 2 hr at moderate latitudes. The phase of δhmF2 is 10 hr at low latitudes and 9 hr at moderate latitudes. The phase of δNmF2 is 4 hr at low latitudes and 11 lunar hr at moderate latitudes.The results also show that the phase of the lunar semi-monthly oscillations in NmF2 undergoes a rapid shift of about 5 lunar hr in going from 8 to 12° and the so called phase reversal occurs at about 10° lat at which the amplitude of NmF2. becomes extremely small.These and other results are in good agreement with observations. Thus it is shown that the main features of the observed lunar tidal variations of the F2-region within 20° of the magnetic equator can be explained satisfactorily by the superposition of a small lunar drift on a large solar drift.  相似文献   

5.
The UCL 3-dimensional time-dependent thermospheric model, with atomic and molecular components, is used to study composition changes in the neutral gas at F-layer heights produced by a severe magnetic storm. The computations give the mean molecular weight (MW), temperature and winds as functions of latitude, longitude, height and time for a period of 30 h.Starting from quiet-day conditions, the simulation starts with a 6-h “substorm” period in which strong electric fields are imposed in the auroral ovals, accompanied by particle input. Weaker electric fields are imposed for the remaining 24 h of the simulation. The energy input causes upwelling of air in the northern and southern auroral ovals, accompanied by localized composition changes (increases of MW), which spread no more than a few hundred kilometres from the energy sources. There is a corresponding downward settling of air at winter midlatitudes and low latitudes, producing widespread decreases of MW at a fixed pressure-level. These storm effects are superimposed on the quiet-day summer-to-winter circulation, in which upwelling occurs in the summer hemisphere and down welling in the winter hemisphere. The composition changes seen at a fixed height differ somewhat from those at a fixed pressure-level, because of the expansion resulting from the storm heating.The results can be related to the well-known prevalence of “negative” F-layer storms (with decreases of F2-layer electron density) in summer, and “positive” F-layer storms in winter and at low latitudes. However, the modelled composition changes are not propagated far enough to account for the observed occurrence of negative storms at some distance from the auroral ovals. This difficulty might be overcome if particle heating occurs well equatorward of the auroral ovals during magnetic storms, producing composition changes and negative storm effects at midlatitudes. Winds do not seem a likely cause of negative storm effects, but other factors (such as increases of vibrationally-excited N2) are possibly important.  相似文献   

6.
Neutral air winds blowing across the magnetic field cause a slow transverse drift of the positive ions, perpendicular to both the winds and the magnetic field. This drift sets up an electric polarization field which can only be neutralized by currents flowing along magnetic field lines and through the E-layer. But at night the E-layer conductivity may be too small to close this circuit, so that polarization fields build up in the F-layer, causing the plasma to drift with the wind. This polarization effect may influence the behaviour of the nighttime equatorial F-layer and contribute to ‘superrotation’ of the atmosphere.  相似文献   

7.
A new solution of the magnetospheric heat equations capable of covering the whole region from 300 km along a field line to the equatorial plane has been achieved by adapting the searching procedure of Murphy (1974). It has been found that the protonospheric heat reservoir is sufficient to maintain Te >Tn down to the height of the F2-peak electron density all through the night at mid-latitudes. Full solution of the equations has also shown that Ti >Te in the protonosphere at night and the ions constitute a significant source of heat for the electrons.  相似文献   

8.
We have studied the extent to which various transport processes affect the dispersal of a gas artificially injected into the night-time atmosphere at F-region altitudes. In addition to diffusion, we have found that nonlinear acceleration, viscous stress, and thermospheric winds affect the dispersal of the injected gas. The magnitude of the effect depends on the atmospheric density, which is a function of solar activity. For an injected H2 gas, non-linear acceleration and viscous stress rapidly become more important than diffusion above about 300 km for low solar activity (T = 750K), 340 km for moderate solar activity (T = 1000K), and 400 km for high solar activity (T = 1500K). For an injected H2O gas, the corresponding altitudes are 350, 400, and 470 km for low, moderate and high solar activity, respectively. The effect of nonlinear acceleration and viscous stress is to retard the expansion of the injected gas. Thermospheric winds of 150–400 m s?1 are important at altitudes near and below the F-region peak electron density. These winds act to transport the injected gas in the wind direction and this affects the shape and temporal development of the subsequent ionospheric hole. Because the H2O diffusion coefficient is smaller than the H2 diffusion coefficient, winds are more important for H2O than for H2.  相似文献   

9.
Foster  V. J.  Keenan  F. P.  Reid  R. H. G.  Doyle  J. G.  Zhang  H. L.  Pradhan  A. K.  Widing  K. G. 《Solar physics》1997,170(2):217-225
Recent calculations of Mgviii electron and proton impact excitations rates are used to derive theoretical electron temperature (T e)- and density (N e)-sensitive emission line ratios involving transitions in the 315–782 Å wavelength range. Some of these ratios are presented in the form of ratio–ratio diagrams, which should in principle allow both N e and T e to be deduced. These results are compared with solar observational data from Skylab, but agreement between theory and observation is very poor, probably due to blending.  相似文献   

10.
We investigate the dissociative recombination contribution to I(5577) and I(6300) of [OI] as a function of low energy cutoff for two measured solar proton spectra. The volume ionization rate profiles used in the calculation are obtained using a detailed atomic cross section approach in the continuous slowing down approximation. The ratio of the dissociative recombination contribution to the direct impact contribution for both the 5577 Å and 6300 Å [OI] emissions is found to be dependent upon the low energy cutoff. This ratio has a nominal value of ~2.0 for the 5577 Å [OI] emission and ~0.25 for the 6300 Å [OI] emission. The I(5577)/I(3914) and I(6300)/I(3914) ratios including the direct and dissociative recombination contributions are strongly dependent upon the low energy cutoff of the spectrum. We have also investigated F-layer enhancements resulting from the low energy spectrum component. For the Mizera et al. (1972) spectrum with a low energy cutoff of 12.4 keV, we find an NmF2 of ~4.5 × 103 electrons/cm3 or about 10 per cent of the ionization required to maintain the dip pole at a value of 5 × 104 electrons/cm3. Extension of the cutoff to 1 keV results in ~1 × 104 electrons/cm3, or about 20 per cent of the required maintenance ionization.  相似文献   

11.
The effects of spatial variations of the coronal electron temperature (spatially localized disturbances in T e ) on the propagation of a cloud of hot electrons through solar corona plasma and generation of Langmuir waves are investigated using numerical simulations of the quasilinear equations. It is found that the level of Langmuir waves decreases (increases) in the presence of localized enhancement (suppression) in T e . The average velocity of the beam propagation at the points where T e has disturbances decreases (increases) in the presence of localized enhancement (suppression) in T e and is constant at otherwhere as in a plasma with constant temperature. Also the influence of the presence of localized T e disturbances on the evolution of gas-dynamical parameters is investigated. The spatially localized disturbances in T e doesn’t affect the upper boundary of plateau while lower boundary increases (decreases) in the presence of localized enhancement (suppression) in T e . It is shown that the self-similar characteristic of the system is preserved in the presence of fluctuations in the electron temperature. The local velocity of the beam (velocity spread of the beam) increases (decreases) in the presence of localized enhancement (suppression) in T e .  相似文献   

12.
The stability of modulation of ion-acoustic waves in a collisionless electron–positron–ion plasma with warm adiabatic ions is studied. Using the Krylov–Bogoliubov–Mitropolosky (KBM) perturbation technique a nonlinear Schrödinger equation governing the slow modulation of the wave amplitude is derived for the system. It is found that for given set of parameters having finite ion temperature ratio (T i /T e ) the waves are unstable for the values of k lying in the range k min<k<k max. On increasing the ion temperature ratio (T i /T e ), it is found that k min and k max, both decreases and product PQ increases. The range of unstable region shifts towards the small wave number k, as temperature ratio (T i /T e ) increases. The positron concentration and temperature ratio of positron to electron, change the unstable region slightly. As positron concentration increases both k min and k max for modulational instability increases and maximum value of the product PQ shifts towards the larger value of k.  相似文献   

13.
F-lacuna event is a typical phenomenon of the high latitude ionosphere occurring during summer days. It consists in a disappearance of echoes from the F-layer on ionograms and a simultaneous extra absorption of about 0.1 to 0.4 dB on 30 MHz cosmic waves. This paper, based on data from the Dumont d'Urville station, describes the properties of this phenomenon: correlation with magnetic activity, convection electric field, interplanetary magnetic field, absorption in the lower ionosphere and electron density in the F-layer. A tentative model of interpretation in terms of large scale electron density irregularities in the F-layer is suggested.  相似文献   

14.
Using ion temperature and density data at specific points and times in June 1969 provided by the OGO 6 satellite, and altitude profiles of the ion and electron temperature and concentration provided by the Arecibo radar facility over the period February 1972–April 1974, the diurnal and solar cycle variation of the charge exchange induced hydrogen escape flux was investigated. It was calculated that for low to moderate solar activity at Arecibo, the diurnal ratio of the maximum-to-minimum charge exchange induced hydrogen escape flux was approximately 6 with a peak around noon and a minimum somewhere between 0100 and 0300 h L.T. This study of a limited amount of OGO 6 and Arecibo data seems to indicate that the charge exchange induced hydrogen escape flux increases as the F10.7 flux increases for low to moderate solar activity.  相似文献   

15.
Four series of coronal images have been obtained by the expedition of Abastumani Astrophysical Observatory during the August 11, 1999 total solar eclipse with the help of a photographic mirror–lens polarimeter (D = 100 mm, F = 1000 mm). Each series include three images corresponding to three positions of the polarization analyzer. The position of the solar disk center relative to the Moon's center has been determined beforehand. In addition, the background skylight polarization and intensity are calculated. All measurements are absolute given in units of the Sun's average surface brightness. A new technique for separation of the F- and K-coronae is used. It was found that in the equatorial regions the model of hydrostatic distribution of the density with T = constant is not quite accurate for the August 11, 1999 corona and there is a temperature gradient in this region. For r1 = 1.3R and r2 = 1.8R we derived T1 = 1.25×106 K and T2 = 1.07×106 K, respectively. The average polarization degree in the equatorial regions changes from 10 to 40%, while in the polar regions the maximum value reaches only 10%. The values of electron densities Ne(r) vary from 1.32×108 cm−3 (r = 1.1R) to 2.0×106 cm−3 (r = 2.0R). Our data are compared with previous measurements.  相似文献   

16.
The transient response of the topside ionosphere to precipitation   总被引:1,自引:0,他引:1  
A numerical time-dependent model of the topside and F-layer ionosphere is used to describe how the density of O+ ions and the plasma temperatures change as a result of transient electron precipitation with a soft energy spectrum (ca. 100 eV per electron). The response time for electron gas heating is about 2 min; for changes in topside scale height it is from 5 to 15 min, depending on altitude; and for changes in F-layer peak density, it is more than an hour. The low-density topside ion gas is thermally isolated on a short time scale; consequently the ion temperature responds almost adiabatically to volume changes. A transient precipitation event (of, say, 10 min duration) initiates a disturbance that propagates upward at approximately the sonic upeed in the plasma (ca. 2km/s), growing in amplitude with height. Such an event has little effect on the density at the peak of the F layer. An element of ionosphere that drifts horizontally in an antisunward direction through the magnetospheric cleft and into the polar cap recieves some ionization from the cleft, but not enough to be decisive in its survival. The collapse of the topside when heating is removed increases temporarily the density of the F layer.  相似文献   

17.
The effects of neutral air winds on the electron content (NT) and other parameters of the mid-latitude ionosphere have been modelled by means of mathematical solutions of the time-dependent continuity and momentum equations for oxygen and hydrogen ions. The geometry is chosen to represent a propagation path between a geosynchronous satellite and a ground station, and the computations are compared with results from slant path observations of the ATS-6 radio beacon made at Lancaster (U.K.) and Boulder, Colorado (U.S.A.).It is demonstrated that the electron content responds markedly to the magnitude and phase of the neutral air winds and that the effect induced by the wind on the electron content shows a consistent quantitative relationship with the wind velocity, especially during daytime. Reasonable variations in the phase and magnitude of the wind produce a range of daily electron content patterns which encompass the range of daily variations observed.The computations show that the wind gives rise to enhanced filling of the protonosphere. This shows as a depressed value of the shape factor (F), which by definition means that a greater fraction of the ionization is at higher altitudes. The depression of F is enhanced by a poleward wind and is suppressed or even superseded by an equatorward wind through changes of the electron density distribution with altitude.  相似文献   

18.
The correlation coefficients of the linear regression of six solar indices versus 10.7 cm radio flux F 10.7 were analysed in solar cycles 21, 22 and 23. We also analysed the interconnection between these indices and F 10.7 with help of approximation by polynomials of second order. The indices we have studied in this paper are: the relative sunspot numbers – SSN, 530.3 nm coronal line flux – F 530, the total solar irradiance – TSI, Mg II 280 nm core-to-wing ratio UV-index, the Flare Index – FI and the counts of flares. In most cases the regressions of these solar indices vs. F 10.7 are close to the linear regression except the moments of time near the minimums and maximums of the 11-year activity. For the linear regressions, we found that correlation coefficients K corr(t) for the solar indices vs. F 10.7 and SSN dropped to their minimum values twice during each 11-year cycle.  相似文献   

19.
Measurements of the Lyman α airglow intensity were made between June 1969 and June 1970 by a u.v. photometer experiment on the OGO-6 satellite. The data for the zenith intensity at altitudes between 400 and 1100 km were fitted to theoretical airglow models to derive atomic hydrogen density nc at a reference altitude, taken to be 500 km. nc was determined for each of 286 orbits throughout the year. The mean exospheric temperature T∞(J) during this period varied from 900 to 1300 K according to the Jacchia model. The solar Lyman α flux at line center F0 was also determined over each 90-min orbit in the model-fitting procedure. F0 was found to be correlated with sunspot number, in agreement with previous results. A nearly-exact linear relationship was found for F0, when averaged over ‘bins’ which are 20 sunspot numbers in width. nc was found to be inversely correlated with T∞(J); however the dependence is not that predicted by steady-state models whose only escape mechanism is Jeans evaporative escape. Unless the total atmospheric loss rate depends upon 27-day changes in the solar EUV, which is unlikely, an additional upper atmospheric loss is required in order that the total loss remain constant with T∞(J). This extra loss may be largely due to charge-exchange reactions in the exosphere, wherein energetic protons are converted to fast hydrogen atoms, as suggested previously by a number of authors. An additional result is suggested by the apparent spherical symmetry of the inferred density, namely that the familiar diurnal variation of hydrogen is absent at the high latitudes preferentially sampled by the OGO-6 data.  相似文献   

20.
Using incoherent scatter data from Millstone Hill, we investigated the variations in the shape of the daytime, mid-latitude ionospheric electron density profile associated with changes in geomagnetic activity. The analysis performed was to deduce the dependence upon the 3-hr geomagnetic index Kp of h(Nm), h(0·7 Nm) above and below Nm, the plasma scale height HT in the range 500–1000 km, and the ratio N(1000)N(hm). The electron density data used spanned the solar maximum years 1968–1971. Daytime data from the period 1000 to 1600 LT were averaged separately for summer, winter and spring-fall. It is shown that the mean value M of the factor M = B cos θ sec χ used by Titheridge (1972) to relate the Faraday rotation Ω from a geostationary satellite to the total electron content NN up to 2000 km is practically the same (to within 1–2 per cent) as the M value used to relate the NT and Ω values both computed up to 1000 km. Taking advantage of this identity, we have used the linear relationship obtained between the ionospheric parameters and Kp to deduce the height at which M should be evaluated as a function of Kp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号