首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major Proterozoic igneous intrusions in the Swedish sector of the Baltic Shield are the Ragunda complex (1293 m.y., palaeomagnetic pole 165°E, 54°N) and the Nordingrågabbro-granite-anorthosite complex (1385 ± 30 m.y.). The latter body has been partially remagnetised by later post-Jotnian dolerites (1254 m.y.), and sites influenced by the dolerites have a stable magnetisation with a mean direction D = 45°, I = ?39°, (α95 = 4.3°). Elsewhere, the gabbro-anorthosite facies have a magnetisation of dual polarity predating the dolerite and recoverable at various stages of thermal and/or a.f. cleaning with a mean of D = 48°, I = 37° (α95 = 5.3°); medium and high coercivity remanence resides in large magnetite grains and fine, predominantly hematite, rods in feldspar megacrysts. The Nordingrårapakivi granite yields a mean, also including dual polarities, of D = 221°, I = ?25° (α95 = 13°), and the Gävle granite yields a mean of D = 26°, I = 17° (α95 = 13°).New data define the a.p.w. path for the Baltic Shield after final uplift and cooling of the ca. 1800 m.y. Svecofennian mobile belt and prior to intrusion of the post-Jotnian dolerites at 1250 m.y.; this (ca. 1500–1200 m.y.) path defines a double loop similar in size and shape to the contemporaneous path for the Laurentian Shield and the paths can be superimposed to define relative positions of the shields. They were in juxtaposition prior to 1200 m.y. with the optimum reconstruction obtained by rotation of approximately 64° about a Euler pole at 1°E, 36°N. Pre-1500 m.y. palaeomagnetic data are also shown to fit this same unique reconstruction. The main geological correlations are an alignment of the Lower/Middle Proterozoic major strike-slip zones, the structural trends within the pre-1700 m.y. mobile belts, and the Grenville and Sveconorwegian (ca. 1100 m.y.) mobile belts. The anorogenic magmatism characteristic of Proterozoic times became gradually more restricted to one active margin of the continental reconstruction as temperature gradients decreased and the crust consolidated. All of these Proterozoic tectonic/magmatic trends are parallel to the long axis of the continental reconstruction.  相似文献   

2.
A paleomagnetic study was made of the granitic rock farsundite, exposed in southern Norway. An objective was to test the contemporaneity of this body with the neighbouring Egersund anorthosite of presumed age about 900 m.y. Two of the nine sites sampled were rejected, as the magnetization was dominantly unstable. At the seven other sites, this unstable component was either absent or it could be equally well removed by AF or thermal demagnetization: after AF treatment, all samples from these sites were left with a very stable remanence, directed steeply upwards. This magnetization was probably acquired at the time of either emplacement or recrystallization of the farsundite. A magnetic test for anisotropy indicated that the stable remanence is misaligned with the ancient Earth's field direction by about 3°, apparently due to layering of the rock fabric. After correction for this anisotropy, the mean direction from the seven sites is D = 341°, I = 82.2°, k = 142, α = 5.0°, corresponding to a paleomagnetic north pole at 43.3°S, 166.0°W, dp = 9.3°, dm = 9.7°, which lies on Spall's European polar wandering curve. The farsundite pole is not significantly different from a pole position based on the Egersund anorthosite, which supports the supposition that the two rock formations are cogenetic.  相似文献   

3.
Proterozoic supracrustal rocks of southwest Greenland and amphibolite dykes intruding the basement possess a thermal remanent magnetisation acquired during slow regional uplift and cooling between 1800 and 1600 m.y. following the Ketilidian mobile episode. Most samples from amphibolite dykes (mean palaeomagnetic pole 214°E, 31°N) possess a stable remanence associated with development of hematite during regional thermal metamorphism. Metavolcanics from the eastern part (eight sites, palaeomagnetic pole 230°E, 60°N, A95 = 15°) and western part (twelve sites, 279°E, 59°N, A95 = 17°) of Ars?k Island have magnetisations postdating folding and are related to KAr ages dating regional cooling (1700-1600 m.y.); magnetic properties are highly variable and partially stable remanence resides predominantly in pyrrhotite.These results agree in part with other palaeomagnetic results from the northern margin of the same craton, and currently available palaeomagnetic results assigned to the interval 1850-1600 m.y. are evaluated to define apparent polar wander movements. Two large polar movements are recognised during this interval with the possibility of a third at ca. 1800 m.y. It is concluded that apparent polar wander movements in Proterozoic times are most accurately described in terms of closed loops.  相似文献   

4.
Detailed alternating field demagnetisation of Upper Llandovery volcanics of the Mendip Hills and Gloucestershire has isolated remanence directions interpreted as primary from each of five sites. Well-defined high-coercivity secondary magnetisation is present in six samples of one site and low-coercivity secondary remanence is present in all samples from another site; the former component was apparently acquired in Permo-Triassic times. Primary directions of magnetisation show marked improvement in precision after correction for penecontemporaneous folding, and show a late Llandovery reversal in the sense R → N.The group mean directions of magnetisation isD = 243.5°,I = 47.5° (precision parameterk = 29). Petrographic examination confirms observations from magnetic properties that relict titanomagnetite (oxidation classes 3 to 5) is the remanence carrier in most samples. Hematite, probably mostly late magmatic in origin, is widely developed in all samples, but only the principal remanence carrier where it has thoroughly replaced the titanomagnetite. Low-coercivity remanence is apparently caused by weathering effects but there is no clear visible cause for secondary high-coercivity remanence carried by some samples.The mean virtual geomagnetic pole position is close to Upper Silurian/Lower Devonian pole positions from other parts of Britain and defines a minimum apparent polar shift of 60° between late Ordovician and Upper Llandovery times. Reference to absolute age dates suggests that this shift took place between ca. 447 and 434 m.y. followed by slight polar movement between ca. 434 and 394 m.y.  相似文献   

5.
Basaltic lavas from the southern Alborz, an area about 40 km northeast of Tehran, Iran, have been paleomagnetically investigated. The lavas are of Late Devonian-Early Carboniferous age, and belong to the basal member of the Geirud Formation. At 11 sites a total of 80 cores was drilled.Detailed analyses by means of progressive demagnetization of the natural remanent magnetization (NRM) were made both by the application of alternating magnetic fields and by heating. Also, on a number of specimens a study was done both with thin sections and with polished sections. There proved to be general agreement between the properties of the characteristic NRM and the kind of Fe-Ti oxides in the lavas. In the case of specimens containing magnetite only the characteristic NRM was entirely removed at temperatures just below 600°C, or in alternating fields up to 1500/2000 Oe peak value; on the other hand, in specimens containing both magnetite and a substantial part of hematite (martite) the final part of the characteristic remanence was removed at temperatures above 600°C, and this remanence resisted alternating fields above 2000 Oe peak value. From the characteristic site-mean directions of 5 sites an average paleomagnetic direction is computed withD = 210.8°,I = 66.9°, and α95 = 3.9°.This result might be taken as an indication that at the Devono-Carboniferous transition the southern part of the Alborz was located in the present Indian Ocean off the Arabian coast.  相似文献   

6.
In the western part of the Gardar Igneous Province of southern Greenland, lamprophyre dykes intruded at ca. 1276-1254 m.y. RbSr biotite ages yield a palaeomagnetic pole at 206.5°E,3°N (nine sites, dψ = 5.1°, dχ = 10.1°) Slightly younger dolerite dykes with RbSr biotite ages in the range 1278-1263 m.y. give a pole at 201.5°E,8.5°N (24 sites, dψ = 4.7°, dχ = 9.4°), and the syeno-gabbro ring dyke of the Kûngnât complex (RbSr isochron age 1245 ± 17 m.y.) cutting both of these dykes swarms, gives a pole at 198.5°E, 3.5°N (four sites, dψ = 2.3°,dχ = 4.4°). All these rock units have the same polarity and the poles are identical to those from Mackenzie and related igneous rocks of North America (1280-1220 m.y.) after closure of the Davis Strait; they confirm that this part of the Gardar Province is a lateral extension of the Mackenzie igneous episode within the Laurentian craton.In the Tugtutôq region of the eastern part of the Gardar Province 47 NNE-trending dykes of various petrologic types, and intruded between 1175 ± 9 and 1168 ± 37 m.y. (RbSr isochron ages) yield a palaeomagnetic pole at 223.9° E, 36.4°N (dψ = 4.1°, dχ = 6.1°). Fifteen other dykes in this swarm were intruded during a transitional phase of the magnetic field which, however, does not appear to have achieved a complete reversal over a period of several millions of years. The majority of dykes studied are highly stable to AF and thermal demagnetisation and contain single high blocking temperature components with single Curie points in the range 380–560°C.Palaeomagnetic poles from the Gardar Province between ca. 1330 and 1160 m.y. in age define the earlier part of the Great Logan apparent polar-wander loop; they correlate closely with contemporaneous North American results and confirm the coherence of the Laurentian craton in Upper Proterozoic times.  相似文献   

7.
To evaluate the change in magnetic remanence with altitude through a slowly-cooled Precambrian basement terrain three vertical sections have been sampled in West Greenland. The study employs the principle that higher structural levels passed through their blocking temperatures earlier than lower levels and therefore record earlier pole positions, and it utilises dolerites and diorites intruded late in, or after, the tectonic history to minimise anisotropy effects. In the amphibolite facies terrain at Qa´qatoqaq (1400 m) highly-stable magnetite-held remanences move on demagnetisation progressively along small circles interpreted to record younger to older apparent polar wander (a.p.w.) motions during cooling through the blocking temperature ranges. Although the raw data show no systematic variation with altitude, when account is taken of the blocking temperature spectra as defined by thermal demagnetisation there is a systematic change in palaeofield direction in the same sense as that recorded by the demagnetisation trends. Granulite facies terrain at Igdlu´nguit qula?t (600 m) again shows systematic variation with altitude when the sites are divided into those with a remanence dominated by hemo-ilmenite and those dominated by magnetite. A third section at Praestefjeldet (250 m) yields a palaeofield reversal and a high blocking temperature component.The age evidence is evaluated to suggest that the a.p.w. path defined by 5 mean palaeopoles between 318°E, 1°N and 247°E, 38°N represents up to 50 Ma of palaeofield motion recorded by the uplift and cooling of this basement terrain at crustal depths of the order of 10 km. The calculated rate of a.p.w. motion is 1–2°/Ma and the rate of crustal uplift 10–20 m/Ma, these rates are respectively up to an order higher, and at least an order lower, than Phanerozoic rates. The collective data from Greenland agree closely with post-“Hudsonian” poles from the Laurentian Shield and represent part of a very widespread uplift event following this mobile episode. They show that altitude sections can yield a systematic record of the magnitude and direction of Precambrian a.p.w. motions provided that the blocking temperature spectra are taken into account.  相似文献   

8.
We report paleomagnetic results from oriented drill core samples collected at 10 sites (80 samples) from the Covey Hill and 19 sites (96 samples) from the overlying, fossiliferous Cha?teauguay Formations of the gently dipping Late Cambrian Potsdam Group sandstones exposed in the St. Lawrence Lowlands of Quebec. Stepwise thermal demagnetization analyses ave revealed the presence of two predominant groups of coherent magnetizations C-1 and C-2, after simple correction for bedding tilt. The C-1 group magnetization is a stable direction (D=332°, I=+18°) with unblocking temperatures (TUB) between 550 and 650°C, present in the older Covey Hill Formation; this direction is probably a chemical remanence acquired during the Covey Hill diagenesis and carried predominantly by hematite. The C-2 group magnetization (D=322°, I=+9°) is present at 13 sites of the younger Cha?teauguay Formation; this is probably carried by magnetite and represents a penecontemporaneous, depositional DRM, characterized by TUB spectra 400–550°C. We believe that C-2 is relatively younger than C-1 based on a combination of arguments such as the presence of opposite polarities, internal consistency, similarity and common occurrence of C-1 and C-2 respectively in the Covey Hill and Cha?teauguay members. The corresponding paleomagnetic poles C-1 (46°N, 149°E; dp, dm=3°, 5°) and C-2 (37°N, 156°E; dp, dm=2°, 5°) are not significantly different from most of the other Late Cambrian (Dresbachian-Franconian) poles derived from sediments exposed in the southern region (Texas) of the North American craton which are also believed to have been deposited during Croixian Sauk sea transgression similar to the Potsdam sandstones. Although adequate faunal control is lacking (in particular for the Covey Hill Formation), this comparison with the Cratonic poles suggests a Late Cambrian age to the Potsdam poles. The agreement between the results also gives the evidence for internal consistency of cratonic poles at least for Late Cambrian.The incoherent C-3 group remanence (D=250°, I=?15°) is commonly present at 7 sites in both the formations; this may not correspond to a reliable paleomagnetic signal. The other remanence C-4 (D=180°, I=+10°) is found only at 3 sites located in the uppermost stratigraphic levels of the Cha?teauguay Formation; the corresponding paleomagnetic pole (40°N, 107°E) does not differ significantly from the Ordovician and some Late Cambrian poles. The present data are insufficient to resolve a problem in apparent polar wander for Middle and Late Cambrian time posed by the existence of high-latitude poles for some strata of Middle Cambrian age and low-latitude poles for some strata of Late Cambrian age.  相似文献   

9.
A Precambrian metadolerite dyke has two distinct types of remanence carriers; those with medium/high coercivities (unblocking fields of 20–120 mT) and those with low coercivities (unblocking fields of <15 mT). Optical examination reveals numerous submicron probably opaque inclusions in the plagioclase feldspar and also large opaque grains consisting of coarse oxidation-exsolution intergrowths of magnetite and ilmenite. All opaque phases have been examined using transmission electron microscopy together with microanalysis and electron diffraction. The submicron inclusions in the plagioclase are titanomagnetites(0 < x ≤ 0.14) with a size range between about 0.01 and 0.5 μm and axial ratios between 1 (equidimensional) and about 0.3. Many of these inclusions fall in the single-domain field but some are probably pseudo-single-domain. The large opaque grains contain almost pure magnetite and ilmenite and show no fine-scale exsolution; the magnetite regions of the intergrowths are of multidomain size and reveal multidomain structure under Lorentz electron microscopy. There are also some primary ilmenites containing very fine exsolved haematite, and there are very fine plates of ilmenite and very elongate needles of magnetite within the augite. Experiments on artificial samples containing very carefully prepared separates of plagioclase and large opaque grains show that the pure plagioclase acquires a remanence with unblocking fields of 20–140 mT and blocking temperatures of 390–590°C and the large opaque grains acquire a remanence with unblocking fields of less than 15 mT but a wide range of blocking temperatures up to about 570°C. It is concluded that the medium/high coercivity component of remanence in the rock is carried largely or possibly entirely by the submicron magnetites within the plagioclase and that the low coercivity component is carried largely or entirely by the multidomain magnetites in the large opaques. The contribution of the magnetite needles in the augite is uncertain as the rock does not contain any detectable component of remanence with the extremely high coercivities expected from their very elongate shape.  相似文献   

10.
The Sulitjelma Gabbro situated at 67.2°N, 15.4°E was intruded close to the Late Ordovician climax of regional metamorphism in the northern Scandinavian Caledonides. Magnetic properties have been examined from samples collected at seven localities in the south western part of this body. Total NRM directions show a tendency to be aligned near the present earth's magnetic field direction in this region. Stability to a.f. demagnetisation is low and commensurate with low Koenigsberger ratios (0.001–0.16) and the presence of unoxidised magnetite as the principal remanence carrier. After cleaning the site mean directions no longer show an alignment near the present earth's field and of six statistically significant sites three are approximately reversed with respect to remainder. The combined mean direction after cleaning isD = 195°,I = 15° (precision parameterk = 6) and the derived virtual geomagnetic pole is at 0°E, 14°S (α95 = 23°). This pole is close to poles of comparable age from the British Isles and suggests that Britain and Norway were part of the same crustal plate in Ordovician times. Discrepancies between Siluro-Devonian results from the two regions may be due to inadequate age coverage of present results.  相似文献   

11.
Oolitic hematite-bearing ironstones of the Silurian Red Mountain Formation of Alabama are shown to carry a single-component remanence stable enough to have survived major folding (of probable Permian age). Nevertheless, the remanence direction (ten sites yielding a paleopole at 38.0°N, 132.4°E with dm = 3.6°, dp = 1.9°), its reverse polarity and a negative intraformational conglomerate test show that the remanence was very likely acquired during the Pennsylvanian—some 130 Ma after deposition. This remanence is likely a chemical remanent magnetization (CRM) acquired during diagenesis induced by heating due to deep burial under a Pennsylvanian clastic wedge. Two possible mechanisms for acquisition of CRM during deep-burial diagenesis are considered. In hypothesis I, the oolitic hematite transformed from original geothite when heated to about 80°C, acquiring CRM. In hypothesis II, the oolitic hematite originated from ferrihydrite and was too fine-grained to acquire stable CRM until heat raised the solubility of hematite allowing grain growth. Hypothesis I explains the timing of remanence acquisition better, but there is some evidence that oolitic goethites may be stable to considerably more than 80°C. Hypothesis II has some difficulty explaining preliminary paleomagnetic results from oolitic hematite-bearing ironstones of the Silurian Clinton Group, New York State. We prefer hypothesis I but both hypotheses remain plausible. Both hypotheses warn that continental red beds may also acquire CRM during diagenesis induced by deep-burial heating, long after deposition but before folding.  相似文献   

12.
The Svecofennian mobile zone occupies the bulk of the Fennoscandian shield and represents terrain subjected to profound tectonic activity and granite intrusion at ~1800 My. This study covers the palaeomagnetism of basic rocks within this belt in Sweden between 65.5 and 67.5°N (gabbros and diorites of Kallax, Niemisel, Sangis, Stora Lulevatten and the Gällivare, Jokkmokk and Voullerim regions) magnetised during uplift and cooling of this belt at ~1750-1550 My. AF and thermal demagnetisation define a consistent sequence of high to low blocking-temperature components identifying a migration of the geomagnetic field during part of this interval. Together with the Rådmansö gabbro-diorite of central-east Sweden (palaeomagnetic pole 201°E, 36°N) these components yield a comparable sequence of palaeopoles to those derived from uplift magnetisations of the contemporaneous Svecokarelian terrain of Finland. The post-tectonic, Uppsala metabasite suite possesses a magnetite-held (“A”) remanence comparable to Svecofennian uplift magnetisations from elsewhere; within the aureole of the Almunge alkaline complex this has been largely displaced by a low blocking temperature (“B”) remanence, possibly related to a late stage in the Svecofennian uplift cycle. The Hälleforsnäs giant dyke possesses a magnetite-held remanence attributed to initial cooling at 1518 My (palaeomagnetic pole 167°E, 27°N) and at least two high blocking-temperature components. One of these is correlated with the ~1000-800 My Sveconorwegian mobile activity of southwest Sweden; this latter component is represented as the univectorial remanence in dolerite dykes of this age, and sporadically as a secondary component in the adjacent Svecofennian terrain.The results are compiled with other palaeomagnetic poles from the Fennoscandian shield to derive a generalised apparent polar wandering path for the interval ~1750-1550 My. They define segments of a large loop which agrees closely with uplift magnetisations from the contemporaneous Hudsonian mobile terrain of the Laurentian shield on a single reconstruction derived from Upper Proterozoic (1450-1200 My) palaeomagnetic data. The two shields thus appear to have formed an integral continental unit during the interval 1750-1200 My. A geological reconstruction of the Siberian and Laurentian shields is also tested and found to yield general agreement with the palaeomagnetic evidence. The major geological implications of the collective reconstruction are an alignment of major tectonic trends and a gradual restriction of anorthosite-Rapakivi magmatism between the termination of the ~1800 and ~1100 My mobile episodes.  相似文献   

13.
The Precambrian basement of the British region south of the Caledonian orogenic belt is only observed in a few small inliers; this paper reports a detailed paleomagnetic study of four of these inliers. The Stanner-Hanter amphibolitised gabbro-dolerite complex of uncertain age yields a mean direction of magnetisation D = 282°, I = 51° (15 sites,α95 = 11.4°) after AF and thermal cleaning. Uriconian lavas and tuffs (~700-600 m.y.) of the Pontesford and Wrekin inliers require both thermal and AF cleaning for complete analysis of NRM. The former region (Western Uriconian) yields a mean of D = 136°, I = ?25° (6 sites,α95 = 15.3°) and the latter region (Eastern Uriconian) a mean of D = 78°, I = 17° (9 sites, α95 = 12.8°); the Eastern Uriconian shows a marked improvement in precision after a two-stage fold test, and the palaeomagnetic data suggest that some apparent polar movement took place between eruption of the two sequences. The Uriconian rocks in both areas were intruded by dolerites which yield a mean direction of magnetisation D = 72°, I = 54° (11 sites,α95 = 13.2°).The collective data give palaeomagnetic poles related to Upper Proterozoic metamorphic episodes (Stanner-Hanter Complex and Rushton Schist) which are in close agreement with earlier studies of the Malvernian metamorphic rocks, and to the late Precambrian Uriconian volcanic/hypabyssal igneous episode. All of these magnetisations are probably confined to the interval 700-600 m.y., and are indicative of appreciable polar movement during this interval. The palaeomagnetic poles define an apparent polar wander path for this crustal block between Late Precambrian and Lower Cambrian times and show that cratonic Britain south of the Caledonian suture is unrelated to the Baltic Shield.  相似文献   

14.
From a collection of 39 oriented hand-samples at 16 sites, total N.R.M. directions at 12 sites from the Elmina Sandstone (Devonian or possibly Carboniferous) of the Ghana coast fall in a group. Their in-situ mean (D = 334°, I = +1112°) is significantly divergent from the local geomagnetic field, and does not correlate with expected Palaeozoic remanence directions. A bedding-tilt test suggests that the magnetisation is secondary, and comparison with other African data suggests a Mesozoic (possibly Cretaceous) age. The remanence is only partially stable against thermal demagnetisation. The observations are consistent with a remanence originating at the time of faulting, tilting and uplift which marked the beginning of rifting of South America from Africa.  相似文献   

15.
The palaeomagnetism of Middle Triassic (224 ± 5 m.y.) igneous rocks from the Ischigualasto-Ischichuca Basin (67°40′W, 30°20′S) was investigated through 86 oriented hand samples from 11 sites. At least one reversal of the geomagnetic field has been found in these rocks. Nine sites yield a palaeomagnetic pole at 239°E, 79°S (α95 = 15°, k = 13).The K-Ar age determinations of five igneous units of the Puesto Viejo Formation give a mean age of 232 ± 4 m.y. (Early Triassic). The palaeomagnetism of six igneous units of the Puesto Viejo Formation (68°W, 35°S) was investigated through 60 oriented samples. These units, two reversed relative to the present magnetic field of the Earth and four normal, yield a pole at 236°E, 76°S (α95 = 18°, k = 14).Data from the Puesto Viejo Formation indicate, for the first time on the basis of palaeomagnetic and radiometric data, that the Illawarra Zone, which defines the end of the Kiaman Magnetic Interval, extends at least down to 232 ± 4 m.y. within the Early Triassic. The palaeomagnetic poles for the igneous rocks of the Ischigualasto-Ischichuca Basin and Puesto Viejo Formation form an “age group” with the South American Triassic palaeomagnetic poles (mean pole position: 239°E, 77°S; α95 = 6.6°, k = 190). The Middle and Upper Permian, Triassic and Middle Jurassic palaeomagnetic poles for South America would define a “time group” reflecting a quasi-static interval (mean pole position: 232°E, 81°S; α95 = 4°, k = 131).  相似文献   

16.
Since the 1990s, a large number of paleomagneticstudies have been carried out in the North China block(NCB) and Tarim block[1-8], and more and more geo-physicists recently believe that the last collision andconvergence between Siberia and the Mongolia-NorthChina plate happened in the Late Jurassic, which wascontributed to a paleomagnetic study on these areas byZhao and his colleagues[2]. However, we lack paleo-magnetic results obtained directly from the orogenicbelt between Siberia and th…  相似文献   

17.
One hundred samples from nine sites in Upper Cretaceous volcanics (K/Ar age 85–99 m.y.) of the magmatic province of Cabo de Santo Agostinho, Pernambuco (8.4°S, 35.0°W) yield a mean direction of magnetizationD = 0.4°, I = ?20.6°withα95 = 4.8°, k = 114 after AF cleaning. All sites have normal polarity with a mean pole, named SAK10, at 87.6°N, 135°E withA95 = 4.5° which is close to other Upper Cretaceous poles for South America. These poles are compared with Upper Cretaceous poles of Africa for various reconstructions of the two continents.  相似文献   

18.
Summary Rock magnetism and magnetostratigraphy of the lower part of the Hadar Formation (Afar, Ethiopia) is presented after analysis of multiple new collection of samples from over 84 horizons. The Hadar Formation is composed of lacustrine, lake margin, fluvial and flood plain sediments and known for important Pliocene vertebrate faunas including Australopithecus afarensis. Hysteresis measurements, thermomagnetic analysis, growth and decay of isothermal remanent magnetisation are used to unravel the complex magnetic mineralogy of the different representative lithologies. Ferrimagnetic minerals of magnetite or titanomagnetite in composition, in the stable pseudo-single domain (PSD) size range are found to be the main carriers of the remanence. In most sites the characteristic remanence was isolated using stepwise thermal demagnetisation. The overall mean direction for about 72 horizons (434 samples) is D=358·6°, I=7° (k=17·9, α95=4°) implying some 14° of inclination shallowing, related to sediment compaction due to the very rapid sedimentation history of the site. Five successive polarity zones (N1-R1-N2-R2-N3) are identified and correlation with the lower Gauss chron of the astronomically calibrated geomagnetic polarity time scale (GPTS) is proposed using the existing40Ar/39Ar ages. This implies the existence of a short normal polarity event (N2), identified on six different sites, within the reversed Mammoth subchron, called the Kada-Hadar event. The age calculated for the Kada-Hadar event, using linear interpolation of the dated horizons, assuming a constant rate of sedimentation is 3.246 Ma and its duration is about 8 kyr.  相似文献   

19.
40Ar/39Ar incremental heating experiments were applied to hornblendes, coarse-grained biotites and K-feldspars from 1400 m.y. old rocks near the contact with the ~60 m.y. old Eldora stock in the Front Range of Colorado. The aim was to distinguish, on the basis of argon isotopic data alone, a partially re-set K-Ar date from an undisturbed or a completely overprinted K-Ar date. In the laboratory heating of biotites the radiogenic argon (40Ar*) and potassium-derived39Ar (39Ar*) were released in two stages — in the range ~600–900°C and above ~900°C. The two biotites furthest from the contact and the one adjacent to the contact give well-defined apparent-age plateaus at ~1230 m.y. and 63 m.y. respectively for all argon released above ~600°C. The 1230-m.y. date may represent a thermal event or the end of a long cooling while the 63-m.y. date essentially represents the time of reheating. Partially overprinted biotites at intermediate distances have significantly anomalous plunges in apparent ages for argon released above ~900°C, thus distinguishing them from undisturbed and completely outgassed biotites.The bulk of the40Ar* and39Ar* in the hornblendes was released in the range ~950–1100°C. The hornblende furthest from the contact gives a well-defined plateau at 1400 m.y. for the 98% of the argon that was released above ~950°C. A partially overprinted hornblende from near the contact gives an apparent plateau at ~1050 m.y. The existence of such a false plateau precludes the distinction of partially overprinted K-Ar hornblende dates from undisturbed K-Ar hornblende dates without independent evidence. Reasonable estimates of the time of reheating are not recovered in the age spectra for partially overprinted hornblende and biotites.For the feldspars the bulk of the40Ar* and39Ar* was released in the laboratory heating between about 900°C and 1200°C, probably reflecting phase changes near these temperatures. The argon released below about 900°C records reasonable maximum dates for the time of the thermal overprinting. For the microcline 22500 (the sample number specifies the distance, in feet, from the contact) this effect is slight — a minimum date of 147 m.y. occurs in 2.3% of the total39Ar*. For samples 2400, 1070, and 85 the respective minimum dates are similar at 72, 81, and 68 m.y. and dramatically improve on the total or integrated dates of 238, 358 and 211 m.y. The high-temperature (>900°C) apparent ages for these three feldspars do not define plateaus and are geologically meaningless. The high-temperature apparent ages for the last 50% of the39Ar* released from 22500 do define a plateau, but the 1060-m.y. date is also probably geologically meaningless.  相似文献   

20.
Absolute geomagnetic paleointensity measurements were made on 255 samples from 38 lava flows of the ~1.09 Ga Lake Shore Traps exposed on the Keweenaw Peninsula (Michigan, USA). Samples from the lava flows yield a well-defined characteristic remanent magnetization (ChRM) component within a ~375°C–590°C unblocking temperature range. Detailed rock magnetic analyses indicate that the ChRM is carried by nearly stoichiometric pseudo-single-domain magnetite and/or low-Ti titanomagnetite. Scanning electron microscopy reveals that the (titano)magnetite is present in the form of fine intergrowths with ilmenite, formed by oxyexsolution during initial cooling. Paleointensity values were determined using the Thellier double-heating method supplemented by low-temperature demagnetization in order to reduce the effect of magnetic remanence carried by large pseudosingle-domain and multidomain grains. One hundred and two samples from twenty independent cooling units meet our paleointensity reliability criteria and yield consistent paleofield values with a mean value of 26.3 ± 4.7μT, which corresponds to a virtual dipole moment of 5.9 ± 1.1×1022 Am2. The mean and range of paleofield values are similar to those of the recent Earth’s magnetic field and incompatible with a “Proterozoic dipole low”. These results are consistent with a stable compositionally-driven geodynamo operating by the end of Mesoproterozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号