首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Neutral air winds blowing across the magnetic field cause a slow transverse drift of the positive ions, perpendicular to both the winds and the magnetic field. This drift sets up an electric polarization field which can only be neutralized by currents flowing along magnetic field lines and through the E-layer. But at night the E-layer conductivity may be too small to close this circuit, so that polarization fields build up in the F-layer, causing the plasma to drift with the wind. This polarization effect may influence the behaviour of the nighttime equatorial F-layer and contribute to ‘superrotation’ of the atmosphere.  相似文献   

2.
Quantitative estimates of ionization sources that maintain the night-time E- and F-region ionosphere are given. Starlight (stellar continuum radiation in the spectral inverval 911–1026 Å) and resonance scattering of solar Ly-β into the night sector are the most important sources in the E-region and are capable of maintaining observable electron densities of order (1–4) × 103 cm?3. Starlight ionization rates have substantial variations (factors of 2–4) with latitude and time of year since the brightest stars in the night sky occur in the southern Milky Way and Orion regions. In the lower F-region the major O+ source in the equatorial ionosphere is 910 Å radiation from the O+ recombination in the F2-region, whereas in the extratropical ionosphere interplanetary 584 Å radiation only exceeds resonance scattering of solar 584 and 304 Å radiation as the dominant O+ source during the month of December.  相似文献   

3.
A survey of metallic ions detected by the Bennett Ion Mass Spectrometers flown on the Atmosphere Explorer satellites, including both circular and eccentric orbital configurations, shows that patches of these ions of meteoric origin are frequently present during magnetically active periods on the bottomside of the F-layer at middle and high latitudes. In particular the F-region metals statistically tend to appear at night in the vicinity of the main ionospheric trough (in a band of invariant latitudes approx. 10 degrees wide) and on the day side of the polar cap. These distributions were previously associated with the expected dynamics of ions in the F-region above 140 km where meridional neutral wind drag and convection electric fields are the dominant ion transport mechanisms. However, the main meteor deposition layer—the presumed source region of the metals—is located below 100 km where these transport mechanisms do not prevail. It is demonstrated that the Pedersen ion drifts driven by intense electric fields such as those associated with sub-auroral ion drifts (SAID) are sufficient to transport the long-lived metallic ions upward from the main meteor layer to altitudes where the drag of equatorial directed neutral winds and electric field convection can support them against the downward pull of gravity and transport them to other locations. The spatial and temporal distribution of the middle and high latitude F-region metals are consistent with the known characteristics of the electric fields and with the expected F-region ion dynamics.  相似文献   

4.
This paper describes a new method of solution of the time-dependent continuity and momentum equations for H+ and O+ in mid-latitude magnetic field tubes from the F-region to the equator. For each ion the equations are expressed as an integro-differential equation. This equation is treated as an ordinary differential equation and solved by a searching method. By means of this method, the distribution of H+ in the O+?H+ transition region and the protonosphere can be investigated and the influence of H+ fluxes on the F layer examined.As an example of application of the method a suggestion by Park (1971) about observed night-time enhancements of NmF2 is examined. He suggested that lowering of the F layer some hours after a magnetic substorm may cause NmF2 to increase because of increased ion influx from the protonosphere. In the present calculations the Flayer is maintained around a constant height for some time and then abruptly lowered. Under the conditions adopted the resulting increase in downward H+ flux is sufficient to maintain NmF2 against the increased recombination but not to increase NmF2 significantly. It is emphasised that these results are not conclusive.  相似文献   

5.
Investigations have been made of the effects produced by thermospheric winds, composition changes and magnetospheric electric fields on the ionospheric F-layer during disturbed conditions. The results of the computations suggest that a combination of realistic temperature and electric field changes would explain fairly satisfactorily the observed changes in total electron content.  相似文献   

6.
Under magnetically quiet conditions, ionospheric plasma in the midlatitude F-region corotates with the Earth and relative east-west drifts are small compared to the corotation velocity. During magnetic storms, however, the enhanced dawn-to-dusk magnetospheric convection electric field often penetrates into the midlatitude region, where it maps into the ionosphere as a poleward electric field in the 18:00 LT sector, producing a strong westward plasma drift. To evaluate the ionospheric response to this east-west drift, the time-dependent O+ continuity equation is solved numerically, including the effects of production by photoionization, loss by charge exchange and transport by diffusion, neutral wind and E × B drift. In this investigation only the neutral wind's meridional component and east-west E × B drift are included. It is found that an enhanced equatorward wind coupled with westward drift produces an enhancement in the peak electron density (NMAX(F2)) and in the electron content (up to 1000 km) in the afternoon sector and a subsequent greater-than-normal decay in ionization after 18:00 LT. These results agree in general with midlatitude F-region ionospheric storm observations of NMAX(F2) and electron content which show an afternoon enhancement over quiet-time values followed by an abrupt transition to lower-than-normal values. Westward drift appears to be a sufficient mechanism in bringing about this sharp transition.  相似文献   

7.
In the mid-latitude E-region, the wind-shear mechanism produces thin ionized layers at levels where the vertical ion velocity is zero. We show that such layers conduct electric current only towards the magnetic equator, and not in the zonal direction. We surmise that this property may influence the electric field distribution in the nocturnal ionosphere, and possibly also the coupling between ion drifts and neutral air winds in the F-region. Detailed case studies of nocturnal layers located near the peak of ion Pedersen conductivity (around 130km) are needed to test this idea.  相似文献   

8.
We have solved the coupled momentum and continuity equations for NO+, O2+, and O+ions in the E- and F-regions of the ionosphere. This theoretical model has enabled us to examine the relative importance of various processes that affect molecular ion densities. We find that transport processes are not important during the day; the molecular ions are in chemical equilibrium at all altitudes. At night, however, both diffusion and vertical drifts induced by winds or electric fields are important in determining molecular ion densities below about 200 km. Molecular ion densities are insensitive to the O+ density distribution and so are little affected by decay of the nocturnal F-region or by processes, such as a protonospheric flux, that retard this decay. The O+ density profile, on the other hand, is insensitive to molecular ion densities, although the O+ diffusion equation is formally coupled to molecular ion densities by the polarization electrostatic field. Nitric oxide plays an important role in determining the NO+ to O2+ ratio in the E-region, particularly at night. Nocturnal sources of ionization are required to maintain the E-region through the night. Vertical velocities induced by expansion and contraction of the neutral atmosphere are too small to affect ion densities at any altitude.  相似文献   

9.
A three-dimensional, time-dependent model of thermospheric dynamics has been used to interpret recent experimental measurements of high altitude winds by rocket-borne and ground-based techniques. The model is global and includes a self-consistent treatment of the non-linear, Coriolis and viscosity terms. The solar u.v. and e.u.v. energy input provides the major energy source for the thermosphere. Solar u.v. and e.u.v. heating appear to be inadequate to explain observed thermospheric temperatures if e.u.v. heating efficiency (ε) lies in the range 0.3 < ε < 0.35. If the recent solar e.u.v. data are correct, then a value of ε between 0.4 and 0.45 would bring fluxes and observed temperatures into agreement. The Heppner (1977) and Volland (1978) models of high-latitude electric field are used to provide sources of both momentum (via ion drag) and energy (via Joule heating). We find that the Heppner Model CO (equivalent to Volland Model 1) is most appropriate for very quiet geomagnetic conditions (Kp ? 2) while Model A (equivalent to Volland Model 2) provides the necessary enhancement at high latitudes for conditions of moderate activity (Kp ~ 4). Even with the addition of a polar electric field, there still appears to be a shortage of high-latitude energy input in that model winds tend to be 10 m s?1 poleward of observed winds under quiet or average geomagnetic conditions. This extra energy cannot be provided by enhancing the polar electric fields since the extra momentum would cause disagreement with the observed high latitude winds. High latitude particulate sources of relatively low energies, ~100 eV, seem the most likely candidates depositing their energy above about 200km. Relatively modest amounts of energy are then required, < 1010W global, to bring the model into agreement with both high- and mid-latitude neutral wind results.  相似文献   

10.
F-lacuna event is a typical phenomenon of the high latitude ionosphere occurring during summer days. It consists in a disappearance of echoes from the F-layer on ionograms and a simultaneous extra absorption of about 0.1 to 0.4 dB on 30 MHz cosmic waves. This paper, based on data from the Dumont d'Urville station, describes the properties of this phenomenon: correlation with magnetic activity, convection electric field, interplanetary magnetic field, absorption in the lower ionosphere and electron density in the F-layer. A tentative model of interpretation in terms of large scale electron density irregularities in the F-layer is suggested.  相似文献   

11.
A magnetic type mass spectrometer has been flown on two ESRO sounding rockets from ESRANGE (Kiruna 68°N) on February 25 and 26, 1970. The first launch was at sunset (16:33 UT) and the second the next morning, during sunrise (04:47 UT). For both flights the solar zenith angle was approximately 98°. The instrument was measuring simultaneously the neutral gas and positive ion composition and the total ion density. In this paper the results of the ion composition measurements are presented. For both flights the main ion constituents measured between approximately 110–220 km were O+, NO+ and O2+. Only at sunset were N+ and N2+ detected above 200 km. In spite of the identical solar UV-radiation, pronounced sunset/sunrise variations in the positive ion composition were found. The total ion densities at sunrise were between 5×103 and 5 × 104 ions cm?3 and therefore too high to be explained without a night-time ionization by precipitated particles. At sunrise the NO+ and O2+ profiles show a correlated wavelike structure with three pronounced almost equally spaced layers in the E-region. Only the highest layer is present in the O+ profile. Locally enhanced field aligned ionization originated by particle precipitation and an E × B instability are the most likely source for this structure. In the E- and lower F-regions the NO+O2+ ration increased overnight from values around 7 at sunset to 15 at sunrise, correlated with an increase of the local magnetic activity index K from 0+ to 2°. This could be explained if the NO density and magnetic activity are correlated.  相似文献   

12.
13.
Monte Carlo models of the distribution of atomic hydrogen in the exosphere of Venus were computed which simulate the effects of thermospheric winds and the production of a “hot” hydrogen component by charge exchange of H+ and H and O in the exosphere, as well as classic exospheric processes. A thermosphere wind system that is approximated by a retrograde rotating component with equatorial speed of 100 m/sec superimposed on a diurnal solar tide with cross-terminator day-to-night winds of 200 m/sec is shown to be compatible with the thermospheric hydrogen distribution deduced from Pioneer Venus orbiter measurements.  相似文献   

14.
The data from observations of the geomagnetic field, ionospheric parameters and atmospheric emissions, carried out at four midlatitude station in Bulgaria are analysed. The observations refer to the geomagnetic disturbance on 28/30 October 1973 (Kpmax = 7) and also to a very quiet period before it. It is shown that all four geomagnetic substorms during the night of 29/30 October influenced the midlatitude F-region. This is indicated by a lowering of the height of the F-region by ca. 50–70 km. Owing to this downward drift of ionisation the dissociative recombination and the intensity of the red line is accordingly increased. As an explanation of this phenomenon we suggest the action of the electric fields, which can at the same time be transported from the magnetosphere to the ionosphere.  相似文献   

15.
Extreme low frequency electromagnetic waves have been observed below the F peak in the equatorial ionosphere by instruments onboard OGO-6. Electrostatic wave observations indicate that the steep gradient was unstable to the process which causes equatorial spread F above the region where the electromagnetic waves were observed. The data are very similar to observations near the polar cusp and give further evidence that ELF waves are excluded from regions of rapid and irregular density increases. Low level electromagnetic waves with similar properties were occasionally observed on the nightside by the OVI-17 electric field sensor and may be plasmaspheric hiss which has propagated to low altitude.  相似文献   

16.
A numerical model of current F-region theory is use to calculate the diurnal variation of the mid-latitude ionospheric F-region over Millstone Hill on 23–24 March 1970, during quiet geomagnetic conditions. From the solar EUV flux, the model calculates at each altitude and time step primary photoelectron spectra and ionization rates of various ion species. The photoelectron transport equation is solved for the secondary ionization rates, photoelectron spectra, and various airglow excitation rates. Five ion continuity equations that include the effects of transport by diffusion, magnetospheric-ionospheric plasma transport, electric fields, and neutral winds are solved for the ion composition and electron density. The electron and ion temperatures are also calculated using the heating rates determined from chemical reactions, photoelectron collisions, and magnetospheric-ionospheric energy transport. The calculations are performed for a diurnal cycle considering a stationary field tube co-rotating with the Earth; only the vertical plasma drift caused by electric fields perpendicular to the geomagnetic field line is allowed but not the horizontal drift. The boundary conditions used in the model are determined from the incoherent scatter radar measurements of Te, Ti and O+ flux at 800km over Millstone Hill (Evans, 1971a). The component of the neutral thermospheric winds along the geomagnetic field has an important influence on the overall ionospheric structure. It is determined from a separate dynamic model of the neutral thermosphere, using incoherent scatter radar measurements.The calculated diurnal variation of the ionospheric structure agrees well with the values measured by the incoherent scatter radar when certain restrictions are placed on the solar EUV flux and model neutral atmospheric compositions. Namely, the solar EUV fluxes of Hinteregger (1970) are doubled and an atomic oxygen concentration of at least 1011cm3 at 120 km is required for the neutral model atmosphere. Calculations also show that the topside thermal structure of the ionosphere is primarily maintained by a flow of heat from the magnetosphere and the night-time F2-region is maintained in part by neutral winds, diffusion, electric fields, and plasma flow from the magnetosphere. The problem of maintaining the calculated night-time ionosphere at the observed values is also discussed.  相似文献   

17.
We have studied the extent to which various transport processes affect the dispersal of a gas artificially injected into the night-time atmosphere at F-region altitudes. In addition to diffusion, we have found that nonlinear acceleration, viscous stress, and thermospheric winds affect the dispersal of the injected gas. The magnitude of the effect depends on the atmospheric density, which is a function of solar activity. For an injected H2 gas, non-linear acceleration and viscous stress rapidly become more important than diffusion above about 300 km for low solar activity (T = 750K), 340 km for moderate solar activity (T = 1000K), and 400 km for high solar activity (T = 1500K). For an injected H2O gas, the corresponding altitudes are 350, 400, and 470 km for low, moderate and high solar activity, respectively. The effect of nonlinear acceleration and viscous stress is to retard the expansion of the injected gas. Thermospheric winds of 150–400 m s?1 are important at altitudes near and below the F-region peak electron density. These winds act to transport the injected gas in the wind direction and this affects the shape and temporal development of the subsequent ionospheric hole. Because the H2O diffusion coefficient is smaller than the H2 diffusion coefficient, winds are more important for H2O than for H2.  相似文献   

18.
Recent observations of strong vertical thermospheric winds and the associated horizontal wind structures, using the 01(3P-1D)nm emission line, by ground-based Fabry-Perot interferometers in Northern Scandinavia have been described in an accompanying paper (Paper I). The high latitude thermosphere at a height of 200–300 km displays strong vertical winds (30–50m ms?1)of a persistent nature in the vicinity of the auroral oval even during relatively quiet geomagnetic conditions. During an auroral substorm, the vertical (upward) wind in the active region, including that invaded by a Westward Travelling Surge, may briefly(10–30 min)exceed 150 m s?1. Very large and rapid changes of horizontal wind structure (up to 500 m?1 in 30 min) usually accompany such large impulsive vertical winds. Magnetospheric energy and momentum sources generate large vertical winds of both a quasi-steady nature and of a strongly time-dependent nature. The thermospheric effects of these sources can be evaluated using the UCL three-dimensional, time-dependent thermospheric model. The auroral oval is, under average geomagnetic conditions, a stationary source of significant vertical winds (10–40 m s?1). In large convective events (directly driven by a strong momentum coupling from the solar wind) the magnitude may increase considerably. Auroral substorms and Westward Travelling Surges appear to be associated with total energy disposition rates of several tens to more than 100 erg cm?2s?1, over regions of a few hours local time, and typically 2–5° of geomagnetic latitude (approximately centred on magnetic midnight). Such deposition rates are needed to drive observed time-dependent vertical (upward) winds of the order of 100–200m s?1.The response of the vertical winds to significant energy inputs is very rapid, and initially the vertical lifting of the atmosphere absorbs a large fraction (30% or more) of the total substorm input. Regions of strong upward winds tend to be accompanied in space (and time) by regions of rather lower downward winds, and the equatorward propagation of thermospheric waves launched by auroral substorms is extremely complex.  相似文献   

19.
Ionogram and all-sky camera data have been recorded on the Air Force Cambridge Research Laboratories' Flying Ionospheric Laboratory in the day sector of the auroral oval under conditions of darkness. The airborne measurements show that the polar F-layer irregularity zone, which is characterized on ionograms by a generally non-retarded and spread F type echo, exhibits meridional motions similar to the day-sector auroras. The polar F-layer irregularity zone and the day-sector auroras move equatorward and then move poleward in harmony with the development and decay of a magnetospheric substorm. We suggest that the polar cusp also moves in essentially the same fashion.  相似文献   

20.
The effects of F-region neutral winds on the distribution of He+ in the equatorial ionosphere have been examined using a theoretical model and an observational data set. It is shown by the model that components of neutral wind in the magnetic meridian up to only 50 m s? can produce He+ gradients in the northern and southern sectors of a flux tube that differ by more than 80%. This is associated with interhemisphere transport velocities of He+ as large as 15 m s?1 at 800 km. A substantial latitude gradient in the He+ distribution across the dip equator also results from the redistribution of He+ The changes in the He+ concentration at the dip equator and the latitude distribution of He+ in response to different neutral wind components is determined from the model and used to construct longitude distributions of He+ to compare with observations made at equinox. Good agreement between the calculations and observations is obtained both at the geographic and geomagnetic equators using the relationship between neutral winds, interhemispheric transport velocity and He+ concentration derived from the model. If these relationships can be extrapolated to accommodate the different conditions expected during solstice, we can also discuss the He+ distributions expected during this season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号