首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The observations of electron inverted ‘V’ structures by the MGS and MEX spacecraft, their resemblance to similar events in the auroral regions of the Earth, and the discovery of strong localized magnetic field sources of the crustal origin on Mars, raised hypotheses on the existence of Martian aurora produced by electron acceleration in parallel electric fields. Following the theory of this type of structures on Earth we perform a scaling analysis to the Martian conditions. Similar to the Earth, upward field-aligned currents necessary for the generation of parallel potential drops and peaked electron distributions can arise, for example, on the boundary between ‘closed’ and ‘open’ crustal field lines due to shears of the flow velocity of the magnetosheath or magnetospheric plasmas. A steady-state configuration assumes a closure of these currents in the Martian ionosphere. Due to much smaller magnetic fields as compared to the Earth case, the ionospheric Pedersen conductivity is much higher on Mars and auroral field tubes with parallel potential drops and relatively small cross scales to be adjusted to the scales of the localized crustal patches may appear only if the magnetosphere and ionosphere are decoupled by a zone with a strong E. Another scenario suggests a periodic short-circuit of the magnetospheric electric fields by a coupling with the conducting ionosphere.  相似文献   

2.
It is assumed that the three-dimensional current system of a substorm passes three successive stages. (1) When a dawn-to-dusk magnetospheric electric field appears, a current system with field-aligned currents at the poleward boundary of the auroral zone arises. An equivalent ionospheric current system calculated, taking into account a day-night asymmetry of ionospheric conductivity, looks like the well-known DP-2 system including an eastward low-latitude current and a greater magnitude of the dusk vortex in comparison with the dawn one. (2) An electric drift of plasma towards the Earth leads to the appearance of a westward partial ring current increasing in time. This current is closed by field-aligned currents at the equatorward boundary of the auroral zone. The calculated equivalent current system is similar to the well-known one of the precursory phase. (3) An increase of the auroral ionospheric conductivity during the expansive phase produces an increase of all currents and a turning of field-aligned currents at the equatorward boundary of the auroral zone relative to those at the poleward one. The calculated equivalent current system is similar to the DP-1 system.  相似文献   

3.
Assuming a certain horizontal distribution of the convection field at a certain altitude above the ionosphere, the associated electric field and current distributions in a vertical plane are calculated using a model with finite current-dependent conductivity along the magnetic field lines. It is seen that given the kind of horizontal distribution of E6 commonly observed by polar-orbiting satellites at inverted-V electron precipitation events, the calculated distribution of E is able to reproduce the basic spatial structure of the precipitation. It is also seen that the combined effect of a locally increased ionization within auroral forms and a large potential difference (ΔV) along the magnetic field lines at higher altitudes is a strong reduction of E6 within the auroral forms. From the basic features of the electric field, it is concluded that an interpretation of auroral precipitation in terms of a static E may require a mechanism that can support a large (ΔV) even at relatively weak current densities and at the same time allow local enhancements of the parallel conductivity within the region of non-zero E. It is suggested that the magnetic mirroring combined with gyro-resonant wave-particle interactions may be a suitable mechanism.  相似文献   

4.
It is suggested that the quiet day daily magnetic variation in the polar cap region, Sqp, results partly from the short-circuit effect of the magnetotail current by the polar ionosphere. This implies that there is an inward field-aligned current from the dawnside magnetopause to the forenoon sector of the auroral oval (positively charged) and an outward field-aligned current to the duskside magnetopause from the afternoon sector of the oval (negatively charged), together with the ionospheric (Pedersen and Hall) currents. The distribution of the magnetic field vectors of both combined current systems agrees with the observed Sqpvector distribution. The space charges provide an electric field distribution which is similar to that which has been observed by polar orbiting satellites.  相似文献   

5.
Parallel electric fields   总被引:1,自引:0,他引:1  
A steady state one-dimensional model is used to estimate the electron current along a field line from the auroral zone to the plasmasheet when a potential difference exists between its ends. The plasmas at either end, the ionosphere and the plasmasheet, are assumed thermal. When typical experimental values are substituted into the analytic expression obtained it is found that potential differences of the order of 10 kV are required to drive the field-aligned currents sometimes observed.  相似文献   

6.
The bending of geomagnetic field lines towards the geotail produces a curvature drift of charged particles parallel to the geomagnetic axis. The divergence of the current so produced forms Birkeland current to the ionosphere where a meridional electric field is created. This field would drive ionospheric currents to form a negative magnetic bay in the dawn sector of the auroral zone and a positive one in the dusk sector. Also it would cause a dawn-dusk field across the polar cap.  相似文献   

7.
Zmuda and Armstrong (1974) showed that the field-aligned currents consist of two pairs; one is located in the morning sector and the other in the evening sector. Our analysis of magnetic records from the TRIAD satellite suggests that in each pair the poleward field-aligned current is more intense than the equatorward current, a typical ratio being 2:1. This difference has a fundamental importance in understanding the coupling between the magnetosphere and the ionosphere. We demonstrate this importance by computing the ionospheric current distribution by solving the continuity equation ▽ . I = j using the “observed” distribution of j for several models of the ionosphere with a high conductive annular ring (simulating the auroral oval).It is shown that the actual field-aligned and ionospheric current system is neither a simple Birkeland type, Boström type nor Zmuda-Armstrong type, but is a complicated combination of them. The relative importance among them varies considerably, depending on the conductivity distribution, the location of the peak of the field-aligned currents, etc. Further, it is found that the north-south segment of ionospheric current which connects the pair of the field-aligned currents in the morning sector does not close in the same meridian and has a large westward deflection. Thus, it has an appreciable contribution to the westward electrojet. One of the model calculations shows that the entire north-south closure current contributes to the westward electrojet.  相似文献   

8.
In the companion paper (Lam and Rostoker, 1978) we have shown that Pc 5 micropulsations are intimately related to the behaviour and character of the westward auroral electrojet in the morning sector. In this paper we show that Pc 5 micropulsations can be regarded as LC-oscillations of a three-dimensional current loop involving downward field-aligned current flow near noon, which diverges in part to form the ionospheric westward electrojet and returns back along magnetic field lines into the magnetosphere in the vicinity of the ionosphere conductivity discontinuity at the dawn meridian. The current system is driven through the extraction of energy from the magnetospheric plasma drifting sunwards past the flanks of the magnetosphere in a manner discussed by Rostoker and Boström (1976). The polarization characteristics of the pulsations on the ground can be understood in terms of the effects of displacement currents of significant intensity which flow near the F-region peak in the ionosphere and induced currents which flow in the earth. These currents significantly influence the magnetic perturbation pattern at the Earth's surface. Model current system calculations show that the relative phase of the pulsations along a constant meridian can be explained by the composite effect of oscillations of the borders of the electrojet and variations in the intensity of current flow in the electrojet.  相似文献   

9.
It is assumed that the original impulse producing Pi-2 pulsations is generated in the ionosphere at the moment of a brightening of aurora. The electric field is known to decrease in the auroral arc almost by an order of magnitude. The electric impulse that appears will be transferred along magnetic field lines and reflected from the ionosphere of the opposite hemisphere, forming the standing Alfvén wave. The electric field impulse of 100 mVm is capable of causing magnetic field oscillations of order of 100 γ. Reflection of the Alfvén impulse from the ionosphere with horizontal inhomogeneities corresponding to different forms of auroras is studied. The following is found: (a) the resonance is possible only for harmonics with the rotating vector of polarization; (b) the resonance periods appear to depend essentially on the ionospheric conductivity; this may bring a significant error into determination of the magnetospheric plasma density from the pulsation periods; (c) the auroral zone exerts a screening influence on the pulsations excited at latitudes higher than the zone itself.  相似文献   

10.
This paper presents the model equations governing the nonlinear interaction between dispersive Alfvén wave (DAW) and magnetosonic wave in the low-β plasmas (β≪m e/m i; known as inertial Alfvén waves (IAWs); here \upbeta = 8pn0T /B02\upbeta = 8\pi n_{0}T /B_{0}^{2} is thermal to magnetic pressure, n 0 is unperturbed plasma number density, T(=T eT i) represents the plasma temperature, and m e(m i) is the mass of electron (ion)). This nonlinear dynamical system may be considered as the modified Zakharov system of equations (MZSE). These model equations are solved numerically by using a pseudo-spectral method to study the nonlinear evolution of density cavities driven by IAW. We observed the nonlinear evolution of IAW magnetic field structures having chaotic behavior accompanied by density cavities associated with the magnetosonic wave. The relevance of these investigations to low-β plasmas in solar corona and auroral ionospheric plasmas has been pointed out. For the auroral ionosphere, we observed the density fluctuations of ∼ 0.07n 0, consistent with the FAST observation reported by Chaston et al. (Phys. Scr. T84, 64, 2000). The heating of the solar corona observed by Yohkoh and SOHO may be produced by the coupling of IAW and magnetosonic wave via filamentation process as discussed here.  相似文献   

11.
Equivalent ionospheric current systems representing IMF sector effects on the geomagnetic field in high latitudes are examined for each of the twelve calendar months by spherical harmonic analyses of geomagnetic hourly data at 13 northern polar stations for seven years. The main feature of obtained equivalent current systems includes circular currents at about 80° invariant latitude mostly in the daytime in summer and reversed circular currents at about 70° invariant latitude mainly at night in winter. Field-aligned current distributions responsible for equivalent currents, as well as vector distributions of electric fields and ionospheric currents, are approximated numerically from current functions of equivalent current systems by taking assumed distributions of the ionospheric conductivity. Two sets of upward and downward field-aligned current pairs in the auroral region, and also a field-aligned current region near the pole show seasonal variations. Also, ionospheric electric-field propagation along geomagnetic field lines from the summer hemisphere to the winter hemisphere with auroral Hall-conductivity effects may provide an explanation for the winter reversal of sector effects.  相似文献   

12.
The behaviour of a multi-component anisotropic plasma in a magnetic flux tube is studied in the presence of current-driven electrostatic ion-cyclotron turbulence. The plasma transport is considered in both parallel and perpendicular directions with respect to the given tube. As one of the sources of the parallel electric field, the anomalous resistivityof the plasma caused by the turbulence is taken into account. The acceleration and heating processes of the plasma are simulated numerically. It is found that at the upper boundary of the nightside auroral ionosphere, the resonant wave-particle interactions are most effective in the case of upward field-aligned currents with densities of a few 10—6 A/m2. The occurring anomalous resistivity maycause differences of the electric potential along the magnetic field lines of some kV. Further it is shown that the thickness of the magnetic flux tube and the intensity of the convection strongly influence the turbulent plasma heating.  相似文献   

13.
Magnetic-field aligned currents driven by plasma pressure inhomogeneities (plasma clouds) in the distant magnetosphere are analyzed quantitatively. A parallel potential drop is found to be established in the upward current region whenever a spatial scale D0 for the pressure gradient in the equatorial magnetosphere is smaller than ≈ 3g0BiB0, where g0 is a hot electron gyroradius in the equatorial magnetic field B0 (Bi denotes the magnetic induction in the ionosphere). A theoretical derivation is given for the experimentally observed linear relation T = AEp + T0 between the characteristic energy T of precipitating magnetospheric electrons and the peak energy Ep in inverted-V electron spectra. Three-dimensional potential structures accelerating electrons earthward are shown to be established beneath some model clouds which could correspond to a large scale inverted-V structure and to a thin (~ 1 km) auroral arc.  相似文献   

14.
This paper presents a picture of the north polar F layer and topside ionosphere obtained primarily from three satellites (Alouette 2, ISIS 1, ISIS 2), that passed over the region within a time interval of ca. 50 min on 25 April 1971, a magnetically quiet day. The horizontal distribution of electron densities at the peak of the F layer is found to be similar to synoptic results from the IGY. Energetic particle and ionospheric plasma data are also presented, and the F layer data are discussed in terms of these measurements, and also in terms of electric field and neutral N2 density measurements made by other satellites on other occasions. The major features observed are as follows: A tongue of F region ionization extends from the dayside across the polar cap, which is accounted for by antisunward drift due to magnetospheric convection. In the F layer and topside ionosphere, the main effect of auroral precipitation appears to be heating and expansion of the topside. A region of low F layer density appears on the morning side of the polar cap, which may be due to convection and possibly also to enhanced N2 densities.  相似文献   

15.
A numerical model of current F-region theory is use to calculate the diurnal variation of the mid-latitude ionospheric F-region over Millstone Hill on 23–24 March 1970, during quiet geomagnetic conditions. From the solar EUV flux, the model calculates at each altitude and time step primary photoelectron spectra and ionization rates of various ion species. The photoelectron transport equation is solved for the secondary ionization rates, photoelectron spectra, and various airglow excitation rates. Five ion continuity equations that include the effects of transport by diffusion, magnetospheric-ionospheric plasma transport, electric fields, and neutral winds are solved for the ion composition and electron density. The electron and ion temperatures are also calculated using the heating rates determined from chemical reactions, photoelectron collisions, and magnetospheric-ionospheric energy transport. The calculations are performed for a diurnal cycle considering a stationary field tube co-rotating with the Earth; only the vertical plasma drift caused by electric fields perpendicular to the geomagnetic field line is allowed but not the horizontal drift. The boundary conditions used in the model are determined from the incoherent scatter radar measurements of Te, Ti and O+ flux at 800km over Millstone Hill (Evans, 1971a). The component of the neutral thermospheric winds along the geomagnetic field has an important influence on the overall ionospheric structure. It is determined from a separate dynamic model of the neutral thermosphere, using incoherent scatter radar measurements.The calculated diurnal variation of the ionospheric structure agrees well with the values measured by the incoherent scatter radar when certain restrictions are placed on the solar EUV flux and model neutral atmospheric compositions. Namely, the solar EUV fluxes of Hinteregger (1970) are doubled and an atomic oxygen concentration of at least 1011cm3 at 120 km is required for the neutral model atmosphere. Calculations also show that the topside thermal structure of the ionosphere is primarily maintained by a flow of heat from the magnetosphere and the night-time F2-region is maintained in part by neutral winds, diffusion, electric fields, and plasma flow from the magnetosphere. The problem of maintaining the calculated night-time ionosphere at the observed values is also discussed.  相似文献   

16.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

17.
It is now recognized that a number of neutral-plasma interaction processes are of great importance in the formation of the Io torus. One effect not yet considered in detail is the charge exchange between fast torus ions and the atmospheric neutrals producing fast neutrals energetic enough to escape from Io. Since near Io the plasma flow is reduced, the neutrals of charge exchange origin are not energetic enough to leave the Jovian system; these neutrals are therefore distributed over an extensive region as indicated by the sodium cloud. It is estimated here that the total neutral injection rate can reach 1027 s?1 if not more. New ions subsequently created in the distributed neutral atomic cloud as a result of charge exchange or electron impact ionization are picked up by the corotating magnetic field. The pick-up ions are hot with initial gyration speed near the corotation speed. The radial current driven by the pickup process cannot close in the torus but must be connected to the planetary ionosphere by field-aligned currents. These field-aligned currents will flow away from the equator at the outer edge of the neutral cloud and towards it at the inner edge. We find that the Jovian ionospheric photoelectrons alone cannot supply the current flowing away from the equator, and torus ions accelerated by a parallel electric field could be involved. The parallel potential drop is estimated to be several kV which is large enough to push the torus ions into the Jovian atmosphere. This loss could explain the sharp discontinuous change of flux tube content and ion temperature at L = 5.6 as well as the generation of auroral type hiss there. Finally we show that the inner torus should be denser at system III longitudes near 240° as a result of the enhanced secondary electron flux in this region. This effect may be related to the longitudinal brightness variation observed in the SII optical emissions.  相似文献   

18.
In this paper a quantitative analysis of magnetosheath injection regions observed by PROGNOZ-7 in the dayside high latitude boundary layer is performed. Particular emphasis is laid on describing the consequences of the observed excess transverse momentum of solar wind ions (H+ and He2+) as compared to the magnetospheric ions (e.g. He+ and O+) in the magnetosheath injection regions, hereafter referred to as energy transfer regions.An important result of this study is that the observed excess drift velocity of the solar wind ions as compared to the magnetospheric ions can be interpreted as a negative inertia current being present in the boundary layer. This means that the inertia current goes against the local electric field and that particle kinetic energy is converted into electric energy there. The dayside high-latitude boundary layer therefore constitutes a voltage generator (at least with respect to the injected magnetosheath plasma).The MHD-theory predicts a strong coupling of the energy transfer process in the boundary layer and the ionosphere, both regions being connected by field aligned currents. The rate of decay of the inertia current in the injected plasma element is in the range of a few minutes, a value which is directly proportional to the ionospheric resistance. By taking into account both the Hall and the Pedersen conductivities in the ionosphere, the theory also predicts a strong coupling between ionospheric East/West and North/South currents. A considerable part of the inertia current may actually flow in the tangential (East/West) direction due to this coupling. Thus, a consequence of the boundary layer energy transfer process is that it may generate currents, powering other magnetospheric plasma processes, down to ionospheric heights.  相似文献   

19.
An isolated substorm occurred in Northern Scandinavia on 1 March, 1977 around magnetic midnight. The ionospheric phenomena associated with this substorm were studied by ground magnetometers, the Scandinavian Twin Auroral Radar Experiment (STARE), riometers and an all-sky camera. The physical properties of the auroral electrojet are determined from the ground magnetic field and the ionospheric electric field data. Mid and low latitude magnetic field data show evidence of field-aligned current flow. It is shown that the enhancement of the electrojet's current density is essentially determined by an increase in the ionospheric conductivity. The current system derived from the data of this study corresponds to a model of Yasuhara et al. (1975a).  相似文献   

20.
A review of recent experimental results from studies of high latitude Pi 2 pulsations indicates that these pulsations are fundamentally related to the initiation of the auroral breakup and substorm. At high latitudes, the Pi 2's show their peak intensities in the region where the breakup begins and appear to remain in this region after the breakup has spread poleward. In addition, the Pi 2's occur simultaneously with, or before all other ionospheric phenomena associated with the breakup. The field aligned and ionospheric currents associated with the Pi 2 resemble those of a typical substorm, but the ionospheric currents are phase shifted compared to the field aligned current. The periodic oscillations of the Pi 2's are probably caused by a reflection of the initial field aligned current pulse from the auroral ionosphere. This pulse is trapped on dipolar field lines leading to multiple reflections from North and South auroral ionospheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号