首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First order reliability method (FORM) is generally used for reliability analysis in geotechnical engineering. This article adopts generalized regression neural network (GRNN) based FORM, Gaussian process regression (GPR) based FORM and multivariate adaptive regression spline (MARS) based FORM for reliability analysis of quick sand condition. GRNN is related to the radial basis function (RBF) network. GPR is developed based on probabilistic framework. MARS is a nonparametric regression technique. A comparative study has been carried out between the developed models. The performance of GPR based FORM and MARS based FORM match well with the FORM. This article gives the alternative methods for reliability analysis of quick sand condition.  相似文献   

2.
System effects should be considered in the probabilistic analysis of a layered soil slope due to the potential existence of multiple failure modes. This paper presents a system reliability analysis approach for layered soil slopes based on multivariate adaptive regression splines (MARS) and Monte Carlo simulation (MCS). The proposed approach is achieved in a two-phase process. First, MARS is constructed based on a group of training samples that are generated by Latin hypercube sampling (LHS). MARS is validated by a specific number of testing samples which are randomly generated per the underlying distributions. Second, the established MARS is integrated with MCS to estimate the system failure probability of slopes. Two types of multi-layered soil slopes (cohesive slope and cφ slope) are examined to assess the capability and validity of the proposed approach. Each type of slope includes two examples with different statistics and system failure probability levels. The proposed approach can provide an accurate estimation of the system failure probability of a soil slope. In addition, the proposed approach is more accurate than the quadratic response surface method (QRSM) and the second-order stochastic response surface method (SRSM) for slopes with highly nonlinear limit state functions (LSFs). The results show that the proposed MARS-based MCS is a favorable and useful tool for the system reliability analysis of soil slopes.  相似文献   

3.
朱剑锋  陈昌富  徐日庆 《岩土力学》2010,31(7):2336-2341
针对基坑工程中岩土参数存在随机性和变异性的特点,基于响应面重构法、遗传算法和禁忌搜索方法研究了土钉墙边坡可靠性分析方法。考虑土钉的加固作用,建立了适用于土钉墙边坡任意形状滑面安全系数计算的改进Morgenstern-Price法。基于响应面原理,将改进Morgenstern-Price法取代传统响应面法中的有限单元法来随机抽样构造响应面函数,建立了一种近似的土钉墙边坡可靠度计算方法。以土体的抗剪强度指标 、 为随机变量,提出了一种能同时确定土钉墙边坡最小可靠度指标 及相应最危险滑面的全局优化计算方法--土钉墙可靠性分析自适应禁忌搜索遗传算法(ATSGA)。结合算例,分别以土钉墙边坡的最小可靠度指标和最小中值安全系数为目标函数,采用ATSGA法搜索其相应的最危险滑动面,结果表明,二者相差较大。  相似文献   

4.
This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs.  相似文献   

5.
In this study, a Multivariate Adaptive Regression Spline (MARS) based lead seven days minimum and maximum surface air temperature prediction system is modelled for station Chennai, India. To emphasize the effectiveness of the proposed system, comparison is made with the models created using statistical learning technique Support Vector Machine Regression (SVMr). The analysis highlights that prediction accuracy of MARS models for minimum temperature forecast are promising for short term forecast (lead days 1 to 3) with mean absolute error (MAE) less than 1 °C and the prediction efficiency and skill degrades in medium term forecast (lead days 4 to 7) with slightly above 1 °C. The MAE of maximum temperature is little higher than minimum temperature forecast varying from 0.87 °C for day-one to 1.27 °C for lag day-seven with MARS approach. The statistical error analysis emphasizes that MARS models perform well with an average 0.2 °C of reduction in MAE over SVMr models for all ahead seven days and provide significant guidance for the prediction of temperature event. The study also suggests that the correlation between the atmospheric parameters used as predictors and the temperature event decreases as the lag increases with both approaches.  相似文献   

6.
《地学前缘(英文版)》2018,9(6):1631-1638
To meet the high demand for reliability based design of slopes, we present in this paper a simplified HLRF(Hasofere Linde Rackwitze Fiessler) iterative algorithm for first-order reliability method(FORM). It is simply formulated in x-space and requires neither transformation of correlated random variables nor optimization tools. The solution can be easily improved by iteratively adjusting the step length. The algorithm is particularly useful to practicing engineers for geotechnical reliability analysis where standalone(deterministic) numerical packages are used. Based on the proposed algorithm and through direct perturbation analysis of random variables, we conducted a case study of earth slope reliability with complete consideration of soil uncertainty and spatial variability.  相似文献   

7.
傅方煜  郑小瑶  吕庆  朱益军 《岩土力学》2014,35(12):3460-3466
提出了基于响应面法的边坡稳定二阶可靠度分析的实用算法。选择U空间中的随机变量,通过空间变换和相关矩阵分解,计算试验点的功能函数;通过迭代算法构造响应面、以确保通过最小的计算量获得最优精度,并在此基础上进行FORM/SORM计算。以一岩石边坡的平面滑动问题为例,通过与蒙特卡洛模拟、FORM及随机响应面法的比较,证明了该方法的准确性和高效性。分析了参数的相关性及试验点取值范围对计算结果的影响,讨论了可靠度分析结果中参数敏感性和物理属性问题。该方法可为实际边坡问题的可靠度分析提供参考,并可以用来进行基于可靠度分析的加固设计。  相似文献   

8.
Reliability-based analysis of cantilever retaining walls requires consideration of different failure mechanisms. In this paper, the reliability of soil-wall system is assessed considering two failure modes: rotational and structural stability, and the system reliability is assumed as a series system. The methodology is based on Monte Carlo Simulation (MCS), and it deals with the variability of the design parameters in the limit equilibrium analysis of a wall embedded in granular soil. Results of the MCS indicate that the reliability of the failure components increases exponentially by increasing the variability of design parameters. The results of the system reliability indicate how the system reliability is different from the component reliabilities. The strength of the weakest component influences the reliability of the system. The system reliability index increases with the wall section gradually. However it remains constant for the rotational failure mode.  相似文献   

9.
范雷  唐辉明  胡斌  倪俊 《岩土力学》2008,29(3):624-628
极限平衡分析方法是斜坡稳定性评价中的常用方法,在长期的工程实践中积累了丰富的经验,但其不能考虑斜坡岩土体中实际存在的不确定性,在应用中具有一定的局限性。可靠度分析方法可有效地考虑斜坡系统内的不确定性和相关性,但因状态函数偏导数的求解比较困难,使可靠度分析方法在实际中应用不便。为解决上述问题,根据二元函数插值逼近原理,在矩形区域上构造拉格朗日不完全双二次多项式逼近状态函数,从而近似地计算状态函数的偏导数,求得状态函数的均值和方差,并利用精度较高的一次二阶矩方法来计算斜坡的可靠指标和破坏概率。据鄂西恩施地区马堡营滑坡实例分析表明,引入二元函数插值逼近的一次二阶矩方法计算结果与剩余推力法及Monte-carlo模拟方法结果一致,其精度可满足工程需求。  相似文献   

10.
基于遗传算法的冻土路基融沉可靠性分析   总被引:2,自引:0,他引:2  
祁长青  吴青柏  施斌  唐朝生 《岩土力学》2006,27(8):1429-1432
在冻土路基融沉变形极限状态方程的基础上,从可靠度指标的几何涵义出发,提出了基于遗传算法的冻土路基融沉可靠度指标和失效概率的计算方法。该法是一种全局优化算法,能有效克服传统搜索算法易陷入局部极小值的缺点,不需要对功能函数进行直接转换,避免了功能函数比较复杂时所带来的求解困难,特别适合求解非线性规划问题。以青藏铁路冻土路基的具体实例,验证了本方法的准确性和有效性  相似文献   

11.
This paper deals with slope reliability analysis incorporating two-dimensional spatial variation. Two methods, namely the method of autocorrelated slices and the method of interpolated autocorrelations, are proposed for this purpose. Investigations are carried out based on the limit equilibrium method of slices. First-order-reliability-method (FORM) is coupled with deterministic slope stability analysis using the constrained optimization approach. Systematic search for the probabilistic critical slip surface has been carried out in this study. It is shown that both methods work well in modeling 2-D spatial variation. The results of slope reliability analysis are validated by Monte Carlo simulations. Failure probabilities obtained by FORM agree well with simulation results. It is found that 2-D spatial variation significantly influences the reliability analysis, and that the reliability index is more sensitive to vertical autocorrelation distance than to horizontal autocorrelation distance. Based on this study, failure probability is found significantly overestimated when spatial variation is ignored. Finally, the possible use of the method of interpolated autocorrelations in a probabilistic finite element analysis is suggested.  相似文献   

12.
张天龙  曾鹏  李天斌  孙小平 《岩土力学》2020,41(9):3098-3108
相较于极限平衡法,强度折减法在计算边坡稳定性系数上有许多优势,但更大的计算量在一定程度上限制了其在边坡可靠度分析中的应用。为了有效地减少可靠度分析中数值模型的计算次数,以减轻使用强度折减法所带来的计算压力,引入了基于主动学习径向基函数(ARBF)代理模型的高效分析方法:利用主动学习函数在极限状态面附近搜索训练样本更新代理模型,加快模型训练的收敛速度;采用线性核径向基插值函数简化模型参数优化过程,建立简洁、稳定的代理模型。此外,为了充分发挥主动学习代理模型的优势,提出针对土质边坡特性的初始采样策略。当得到稳定的代理模型后,结合蒙特卡罗模拟计算边坡的系统失稳概率。作为对比,基于两个典型边坡算例,测试了两种经典的可靠度方法:主动学习克里金模型(AK)和二次响应面法(QRSM),论证了引入的主动学习径向基函数代理模型在计算效率上的高效性和计算模型上的稳定性。  相似文献   

13.
苏国韶  赵伟  彭立锋  燕柳斌 《岩土力学》2014,35(12):3592-3601
针对传统响应面法在求解具有高度非线性隐式功能函数边坡可靠性问题上的局限性,采用适用于处理高维度、小样本、非线性回归问题的高斯过程回归模型构建隐式功能函数的响应面,将高斯过程响应面与蒙特卡罗模拟法相结合,通过构造合理的迭代方式,在利用高斯过程回归模型的不确定性评价功能获取最优采样点的基础上,实现了高斯过程响应面动态更新,由此提出了边坡失效概率快速估计的高斯过程动态响应面法。利用数值算例验证了该方法的有效性,在此基础上对3个边坡算例进行了可靠性分析。结果表明,与传统响应面法相比较,该方法计算精度与计算效率明显较高,易于与既有的边坡分析软件相结合,且实现容易,适用于边坡可靠性的快速分析。  相似文献   

14.
With the rapid increases in processing speed and memory of low-cost computers, it is not surprising that various advanced computational learning tools such as neural networks have been increasingly used for analyzing or modeling highly nonlinear multivariate engineering problems. These algorithms are useful for analyzing many geotechnical problems, particularly those that lack a precise analytical theory or understanding of the phenomena involved. In situations where measured or numerical data are available, neural networks have been shown to offer great promise for mapping the nonlinear interactions (dependency) between the system’s inputs and outputs. Unlike most computational tools, in neural networks no predefined mathematical relationship between the dependent and independent variables is required. However, neural networks have been criticized for its long training process since the optimal configuration is not known a priori. This paper explores the use of a fairly simple nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. The main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. First the MARS algorithm is described. A number of examples are then presented that explore the generalization capabilities and accuracy of this approach in comparison to the back-propagation neural network algorithm.  相似文献   

15.
This paper presents a practical procedure for assessing the system reliability of a rock tunnel. Three failure modes, namely, inadequate support capacity, excessive tunnel convergence, and insufficient rockbolt length, are considered and investigated using a deterministic model of ground-support interaction analysis based on the convergence–confinement method (CCM). The failure probability of each failure mode is evaluated from the first-order reliability method (FORM) and the response surface method (RSM) via an iterative procedure. The system failure probability bounds are estimated using the bimodal bounds approach suggested by Ditlevsen (1979), based on the reliability index and design point inferred from the FORM. The proposed approach is illustrated with an example of a circular rock tunnel. The computed system failure probability bounds compare favorably with those generated from Monte Carlo simulations. The results show that the relative importance of different failure modes to the system reliability of the tunnel mainly depends on the timing of support installation relative to the advancing tunnel face. It is also shown that reliability indices based on the second-order reliability method (SORM) can be used to achieve more accurate bounds on the system failure probability for nonlinear limit state surfaces. The system reliability-based design for shotcrete thickness is also demonstrated.  相似文献   

16.
在深入分析可靠度指标的几何意义和响应面法的基本思想的基础上,提出了基于ANSYS和响应面法的可靠度算法与步骤。分析了陕西省吴起县大路沟巨型黄土滑坡的工程地质条件,根据滑坡的工程地质勘察资料和滑坡治理工程的设计资料,建立了基于ANSYS的抗滑桩桩土体系有限元模型,经过自重作用下桩土结构有限元分析,验证了该有限元模型的有效性。在此基础上,选取滑体土重度、滑面土内聚力c和内摩擦角、滑面以下土的压缩模量Es;4个随机变量,基于响应面(中心复合设计CCD)法和通用有限元软件ANSYS平台,建立了抗滑桩的可靠度分析模型,并研制了对应算法。工程算例结果表明:当试验点数量N=25时,抗滑桩结构的失效概率Pf=0.35%,可靠度指标=2.70,从而验证了基于ANSYS和CCD响应面法建立抗滑桩可靠度计算模型及算法是可行的。  相似文献   

17.
块体是结构控制型岩体中常见的潜在危险源之一。利用极限平衡法及强度折减法两种方法计算了某在建特大型水电站地下厂房开挖揭露的部分块体的安全系数,并根据计算结果提出一种利用块体几何及力学参数判断其稳定性的简便图解方法,经现场监测数据验证计算结果可靠性可满足工程要求。研究表明,对同一块体而言,极限平衡法和强度折减法得到的安全系数以及对其稳定性的总体判别结果并不一致。强度折减法受软件算法及网格尺寸影响,结果偏于保守。简单块体的安全系数计算应以极限平衡法为主,而复杂形态块体的安全系数用强度折减法计算较为方便。利用垂向地应力、块体体积、最大角点深度及结构面等效强度等4个指标并结合块体稳定性判别分区图,可满足快速判断块体稳定性的需要。对于判别为不稳定的块体,应及时支护并考虑加强支护。研究成果可用于类似工程块体稳定性的快速分析。  相似文献   

18.
Rajabi  Ahmad  Shabanlou  Saeid  Yosefvand  Fariborz  Kiani  Afshin 《Natural Hazards》2021,109(1):871-901

Flood has always been a destructive natural hazard during the recent years. Hence, this research aimed to predict the potentiality and probability of flood phenomenon by using the two well-known models, i.e., the MARS algorithm (multivariate adaptive regression splines) and MaxEnt (maximum entropy) method in the Saliantapeh catchment, Golestan province, Iran, covering 4515.47 km2. First, documentary sources report and field surveys were used to provide a flood database map. Then, to prepare the flood spatial potentiality map (FSPM), we select sixteen influential variables as predictors. Furthermore, the relative contributions of predicting factors are estimated using the MaxEnt method. For the analysis of data sensitivity and the uncertainty of the proposed models, different scenarios including the sample size (50%/50%, 80%/20%, and 70%/30%, respectively, for training and validation), and the number of replications (5, 10, and 20) were used. Along with the area under the ROC curve (AUC), the highest accuracy for both models corresponds to the first scenario of sample size (80/20%). Contrarywise, it can be concluded that for this scenario, the MARS technique indicated higher predictive skill (AUC?=?98.51%). Regarding the second scenario, which is corresponding to the replicate, the MARS model with 20 replications still has the highest accuracy (94.70%) compared to the other scenarios and the MaxEnt model. The findings of robustness demonstrated that the scenarios with the greatest AUC value have the highest robustness. This work demonstrates that the utilization of the best accurate model with high certainty along with FSPM may be useful to identify and manage the areas that are most susceptible to flood.

  相似文献   

19.
Slope reliability analysis using a support vector machine   总被引:6,自引:0,他引:6  
The first-order second-moment method (FOSM) reliability analysis is commonly used for slope stability analysis. It requires the values and partial derivatives of the performance function with respect to the random variables for the design. Such calculations can be cumbersome when the performance functions are implicit. Implicit performance functions are normally encountered when the slope is geologically complicated and the limit equilibrium method (LEM) is used for the stability analysis.

To address this issue, this paper presents a support vector machine (SVM)-based reliability analysis method which combines the SVM with the FOSM. This method employs the SVM method to approximate the implicit performance functions, thus arriving at SVM-based explicit performance functions. The SVM method uses a small set of the actual values of the performance functions obtained via the LEM for complicated slope engineering. Using the SVM model, a large number of values and partial derivatives of the performance functions can be obtained for conventional reliability analysis using the FOSM. Examples are given to illustrate the proposed SVM-based slope reliability analysis. The results show that the proposed approach is applicable to slope reliability analysis which involves implicit performance functions.  相似文献   


20.
考虑锚杆拉杆拉断、拉杆从注浆体中拔出、锚固段注浆体从岩体中拔出、外锚头破坏以及垫墩底岩体的压坏等失效模式,利用系统可靠性原理和极限平衡分析方法,建立了双滑块边坡多锚杆锚固系统可靠性分析模型。基于蒙特卡罗随机抽样原理提出了该类边坡锚固系统破坏概率的直接求解方法。最后结合算例,分别基于中值安全系数和破坏概率指标分析了各计算参数对计算结果的影响,并讨论了锚杆锚固角和被动滑块可能滑裂面倾角对锚固系统稳定性的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号