首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Sun Watcher using Active Pixel system detector and Image Processing (SWAP) onboard the PRoject for OnBoard Autonomy-2 (PROBA2) spacecraft provides images of the solar corona in EUV channel centered at 174 Å. These data, together with the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard Solar Dynamics Observatory (SDO), are used to study the dynamics of coronal bright points. The evolution of the magnetic polarities and associated changes in morphology are studied using magnetograms and multi-wavelength imaging. The morphology of the bright points seen in low-resolution SWAP images and high-resolution AIA images show different structures, whereas the intensity variations with time show similar trends in both SWAP 174 Å and AIA 171 Å channels. We observe that bright points are seen in EUV channels corresponding to a magnetic flux of the order of 1018 Mx. We find that there exists a good correlation between total emission from the bright point in several UV–EUV channels and total unsigned photospheric magnetic flux above certain thresholds. The bright points also show periodic brightenings, and we have attempted to find the oscillation periods in bright points and their connection to magnetic-flux changes. The observed periods are generally long (10?–?25 minutes) and there is an indication that the intensity oscillations may be generated by repeated magnetic reconnection.  相似文献   

2.
Full-disc full-resolution (FDFR) solar images obtained with the Extreme Ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory (SOHO) were used to analyse the centre-to-limb function and latitudinal distribution of coronal bright points. The results obtained with the interactive and the automatic method, as well as for three subtypes of coronal bright points for the time period 4 June 1998 to 22 May 1999 are presented and compared. An indication of a two-component latitudinal distribution of coronal bright points was found. The central latitude of coronal bright points traced with the interactive method lies between 10 and 20. This is closer to the equator than the average latitude of sunspots in the same period. Possible implications for the interpretation of the solar differential rotation are discussed. In the appendix, possible differences between the two solar hemispheres are analysed. More coronal bright points were present in the southern solar hemisphere than in the northern one. This asymmetry is statistically significant for the interactive method and not for the automatic method. The visibility function is symmetrical around the central meridian.  相似文献   

3.
Using near-simultaneous full disk solar X-ray images and Hei 10830 spectroheliograms from three rocket flights, we compare dark points identified on the Hei maps with X-ray bright points identified on the X-ray images. We find that for the largest and most obvious features there is a strong correlation: most Hei dark points correspond to X-ray bright points. However, about two-thirds of the X-ray bright points were not identified on the basis of the helium data alone. Once an X-ray feature is identified it is almost always possible to find an underlying dark patch of enhanced Hei absorption which, however, would not a priori have been selected as a dark point. Therefore, the Hei dark points, using current selection criteria, cannot be used as a one-to-one proxy for the X-ray data. Hei dark points do, however, identify the locations of the stronger X-ray bright points.Visitor, National Solar Observatory. National Optical Astronomy Observatories operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation.  相似文献   

4.
We have used a high spatial and temporal resolution of long time sequence of spectra in CaII H-line obtained at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory on a quiet region at the center of the solar disk over a large number of bright points and network elements to search for atmospheric (chromospheric) g-mode oscillations. An important parameter of the H-line profile, intensity at H2v(Ih2V), has been derived from a large number of line profiles. We derived the light curves of all the bright points and network elements. The light curves represent the main pulse with large intensity amplitude and followed by several follower pulses with lower intensity amplitudes. The light curves of these bright points would give an impression that one can as well draw curves towards and away from the highest peak (main pulse) showing an exponential growth and decay of the amplitudes. An exponential decaying function has been fitted for all the light curves of the bright points to determine the damping time of the modes that are more or less the same, and one value of the coefficient of exponent can represent reasonably well the decay for all the cases. The FFT analysis of temporal variation of both the bright points and the network elements indicates around 10-min periodicity. We speculate that this longer period of oscillation may be related to chromospheric g-mode oscillations.  相似文献   

5.
This paper reports results of an analysis of Skylab observations of coronal bright points made in EUV spectral lines formed in the chromosphere, chromospheric-coronal transition region and corona. The most important result is that the observed bright points exhibited large variations in EUV emission over time scales as short as 5.5 min, the temporal resolution of the data. In most cases strong enhancements in the coronal line were accompanied by strong enhancements in the chromospheric and transition region lines. The intensity variations appear to take place within substructures of the bright points, which most likely consist of miniature loops evolving on time scales of a few minutes. Coronal cooling times derived from the data are consistent with an intermittent, impulsive coronal heating mechanism for bright points.  相似文献   

6.
From a 35-min time series of photographic spectra in the Caii H-line obtained at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory under high spatial, spectral, and temporal resolution, we have derived a large number of H-line profiles at the sites of the bright points in the interior of the supergranulation cells, and at the network elements, on a quiet region at the centre of the solar disc. It is shown that the bright points are associated with 3-min periodicity in their intensity oscillations whereas the network elements exhibit 7-min periodicity. It is surmised that the large difference in periods of the intensity oscillations, the strength of the magnetic fields, and the intensity enhancements at the sites of the bright points and the network elements themselves may probably be taken as evidence to argue that the mechanisms of heating in the two cases are dissimilar, irrespective of the sizes of these structures.  相似文献   

7.
Krishnakumar  V.  Venkatakrishnan  P. 《Solar physics》1999,186(1-2):43-59
Periodic shaking or buffeting of magnetic flux tubes could generate magnetohydrodynamic waves which propagate along the flux tubes and dissipate energy in the chromosphere and/or corona. If we make an assumption that the G-band bright points represent flux tubes, then there should exist a relationship between the transverse motions and the brightening of these bright points. We tracked a total of 56 bright points, obtained their velocity and intensity power spectrum. We also estimated the r.m.s. velocity, average velocity, r.m.s. intensity and average intensity of these bright points. We do not see any clear evidence for a relationship between these estimated quantities.  相似文献   

8.
On the basis of original observations, five white-light flares (WLF) are investigated. Evidence is given that their emission is located in two points brightening on either side of the lineH = 0 and lying at the foot points of chromospheric loops. The area of WLF is ≈ 5 × 10?6 hemisphere, i.e. ≈ 0.007 of Hα flare area; the intensity of WLF is sometimes twice that of the background at the center of the disk. WLF are resolved into more bright and fine knots of ≈ 2′ in diameter. The position of WLF coincides with the brightest knots of Hα flares which are characterized by wide wings with rapid increase and decrease. According to our estimates, the full output of the energy of a flare in the continuum and Hα are comparable; but, the energy emitted in integral light in time-unit through area-unit is by 2 orders of magnitude larger than the energy in monochromatic light.  相似文献   

9.

Recent dedicated Hinode polar region campaigns revealed the presence of concentrated kilogauss patches of the magnetic field in the polar regions of the Sun, which are also shown to be correlated with facular bright points at the photospheric level. In this work, we demonstrate that this spatial intermittency of the magnetic field persists even up to the chromospheric heights. The small-scale bright elements visible in the bright network lanes of the solar network structure as seen in the Ca ii H images are termed network bright points. We use special Hinode campaigns devoted to the observation of polar regions of the Sun to study the polar network bright points during the phase of the last extended solar minimum. We use Ca ii H images of chromosphere observed by the Solar Optical Telescope. For magnetic field information, level-2 data of the spectro-polarimeter is used. We observe a considerable association between the polar network bright points and magnetic field concentrations. The intensity of such bright points is found to be correlated well with the photospheric magnetic field strength underneath with a linear relation existing between them.

  相似文献   

10.
R. Kariyappa 《Solar physics》1996,165(2):211-222
We have analysed a 35-min-long time sequence of spectra in the Caii H line, Nai D1 and D2 lines, and in a large number of strong and weak Fei lines taken over a quiet region at the center of the solar disk. The time series of these spectra have been observed simultaneously in these lines under high spatial, spectral, and temporal resolution at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory. We have derived the line profiles and their central intensity values at the sites of the chromospheric bright points, which are visible in the H line for easy identification. We have done a power spectrum analysis for all the lines, using their central intensity values to determine the period of oscillations. It is shown that the 3 Fei lines, present 23 Å away from the core of the H line representing the pure photospheric lines, Nai D1 and D2 lines, 6 Fei lines at the wings of H line, and Can H line exhibit 5-min, 4.05-min, 3.96-min, and 3.2-min periodicity in their intensity oscillations, respectively. Since all these lines form at different heights in the solar atmosphere from low photosphere to middle chromosphere and show different periodicities in their intensity oscillations, these studies may give an idea about the spatial and temporal relation between the photospheric and chromospheric intensities. Therefore these studies will help to better understand the physical mechanisms of solar oscillations. It is clearly seen that the period of intensity oscillations decreases outward from the low photosphere to the middle chromosphere. Since we have studied a single feature at a time on the Sun (i.e., bright points seen in the H line) in all these spectral lines simultaneously, this may explain about the footpoints of the bright points, the origin of 3-min oscillations, and the relation to other oscillations pertaining to these locations on the Sun. We have concluded that 80% of the bright points are associated with dark elements in the true continuum, and they may seem to have a relationship with the dark intergranular lanes of the photosphere, after carefully examining the brightness (bright threads) extending from the core to the far wings of the H line at the locations of a large number of bright points, using their time sequence of spectra.NRC Resident Research Associate, on leave from Indian Institute of Astrophysics, Bangalore 560034, India.  相似文献   

11.
Multicolor imaging of Mercury has been performed with the 0.5 m Swedish Vacuum Solar Telescope (SVST) on La Palma at five elongations from 1995 to 1999, resulting in a global Minnaert normalized map of the surface at 200 km resolution. Short exposure CCD imaging has been performed in the optical and near-infrared with broad- and intermediate band filters at wavelengths from 550 to 940 nm. Positions for 86 and morphological parameters for 63 bright albedo features on the Hermean surface have been determined. The distribution of bright albedo features is shown to be spatially uniform on the well known (i.e., observed by Mariner 10) and poorly known hemispheres, as well as for the global surface. The number densities of bright albedo features on the two hemispheres are very similar. This indicates that the late evolutionary history of the Hermean regolith has not varied on regional to global scales in terms of impacts generating bright ray craters, constituting approximately 70% of the detected bright albedo features. The locations of bright albedo features correspond well to those determined from nominal resolution and smeared (to the approximate resolution of the SVST data) Mariner 10 maps. Feature parameters (radius, center intensity and intensity gradient) have been determined and correlated with the geologic nature of a subset of observed features imaged by the Mariner 10 Vidicon camera. No difference in feature properties is apparent between the poorly known and well known hemispheres. Based on a comparitive study of Mariner 10 image data, ray craters tend to have higher center intensities and smaller intensity gradients than bright albedo features which are not ray craters. It is however concluded that it is not possible to uniquely determine the geologic nature of features with a high statistical significance, based on their morphological parameters at 200 km resolution. We do not find any general correlation between the locations of radar-bright and optically bright or dark albedo features. The surface contrast decreases from 35% to 25% over the wavelength range 550–940 nm. The range of feature contrasts is similar for all surface regions, except for the ray crater Kuiper, whose contrast to the mean surrounding surface is 50% at a wavelength of 750 nm. Kuiper is an extreme albedo feature also in terms of its center intensity and slope. The mean value of the Minnaert slope parameter for the global surface is determined to 0.76±0.10. A measured constant value of the Minnaert slope with wavelength indicates that the spectral slope for typical Hermean regolith should be linear over the wavelength range 550–940 nm.  相似文献   

12.
We have applied several nonlinear techniques to the intensity oscillations of the chromospheric bright points observed at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory. A 35-min time sequence obtained in the Caii H line over a quiet region at the center of the solar disk under high spatial, spectral, and temporal resolution has been used. A relatively new approach is used to detect the hidden periodicity and to extract the associated periodic component(s) from an apparently irregular time series. The unique feature of this approach is that the constituent component(s) can be non-sinusoidal in nature. The periodicity analysis shows that time series of intensity oscillations of most of the bright points can be composed of two non-sinusoidal periodic components with periodicity varying between 2.4 min and 5.8 min. With the help of a multivariate embedding technique, globally significant spatial nonlinear correlation is found. The identification of the nonlinear interaction between bright points is performed by using the methods of dynamical phase synchronization and the similarity index. The analysis indicates that bright points are interconnected in the sense that some bright points are more active and can influence the other relatively passive bright points.  相似文献   

13.
We observed a cluster of extremely bright penumbral grains located at the inner limb‐side penumbra of the leading sunspot in active region NOAA 10892. The penumbral grains in the cluster showed a typical peak intensity of 1.58 times the intensity I0 of the granulation surrounding the sunspot. The brightest specimen even reached values of 1.8–2.0 I0, thus, exceeding the temperatures of the brightest granules in the immediate surroundings of the sunspot. We find that the observed sample of extremely bright penumbral grains is an intermittent phenomenon, that disappears on time scales of hours. Horizontal flow maps indicating proper motions reveal that the cluster leaves a distinct imprint on the penumbral flow field. We find that the divergence line co‐located with the cluster is displaced from the middle penumbra closer towards the umbra and that the radial outflow velocities are significantly increased to speeds in excess of 2 km s–1. The extremely bright penumbral grains, which are located at the inner limb‐side penumbra, are also discernible in offband Hα images down to Hα ± 0.045 nm. We interpret the observations in the context of the moving flux tube model arguing that hotter than normal material is rapidly ascending along the inner footpoint of the embedded flux tube, i.e., the ascending hot material is the cause of the extremely bright penumbral grains. This study is based on speckle‐reconstructed broad‐band images taken at 600 nm and chromospheric Hα observations obtained with two‐dimensional spectroscopy. All data were taken with adaptive optics under very good seeing conditions at the Dunn Solar Telescope, National Solar Observatory/Sacramento Peak, New Mexico on 2006 June 10. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We have analyzed a large number of Caii H line profiles at the sites of the bright points in the interior of the network using a 35-min-long time sequence of spectra obtained at the Vacuum Tower Telescope (VTT) of the Sacramento Peak Observatory on a quiet regon of the solar disc and studied the dynamical processes associated with these structures. Our analysis shows that the profiles can be grouped into three classes in terms of their evolutionary behaviour. It is surmized that the differences in their behaviour are directly linked with the inner network photospheric magnetic points to which they have been observed to bear a spatial correspondence. The light curves of these bright points give the impression that the main pulse, which is the upward propagating disturbance carrying energy, throws the medium within the bright point into a resonant mode of oscillation that is seen as the follower pulses. The main pulse as well as the follower pulses have identical periods of intensity oscillations, with a mean value around 190 ± 20 s. We show that the energy transported by these main pulses at the sites of the bright points over the entire visible solar surface can account for a substantial fraction of the radiative loss from the quiet chromosphere, according to current models.  相似文献   

15.
We observed 4B/X17.2 flare in Hα from super-active region NOAA 10486 at ARIES, Nainital. This is one of the largest flares of current solar cycle 23, which occurred near the Sun’s center and produced extremely energetic emission almost at all wavelengths from γ-ray to radio-waves. The flare is associated with a bright/fast full-halo earth directed CME, strong type II, type III and type IV radio bursts, an intense proton event and GLE. This flare is well observed by SOHO, RHESSI and TRACE. Our Hα observations show the stretching/de-twisting and eruption of helically twisted S shaped (sigmoid) filament in the south-west direction of the active region with bright shock front followed by rapid increase in intensity and area of the gigantic flare. The flare shows almost similar evolution in Hα, EUV and UV. We measure the speed of Hα ribbon separation and the mean value is ∼ 70 km s-1. This is used together with photospheric magnetic field to infer a magnetic reconnection rate at three HXR sources at the flare maximum. In this paper, we also discuss the energetics of active region filament, flare and associated CME.  相似文献   

16.
We present new observations of the molecular gas distribution in the merging system Arp 299. The first observation set was obtained with the Canada–France–Hawaii Telescope near-IR camera Redeye and the second set comes from the IRAM Plateau de Bure interferometer (combined with short spacings observed at the IRAM 30 m Telescope). In the near IR, H2 ν=1→0 S(1) and Brγ line maps are globally identical: there is bright emission not only at the two galaxy nuclei but also in numerous extranuclear star forming regions. Moreover, there is weaker emission localized in filaments between and around the two nuclei. These filaments correspond to a dust lane observed in optical images from HST. 12CO(1→0), 13CO(1→0) and HCN(1→0) maps are also presented. The structure of the12CO(1→0) map is very close to the NIR observations: the same bright galaxy nuclei and star-forming regions, the same filaments, but half of the total flux is found in weak extended emission. Strong HCN emission is observed in the nucleus A indicating the presence of a large amount of dense gas. Nucleus B1 is weak in 12CO(1→0) emission while nucleus A and star-forming regions C-C′ show more normal 13CO/12CO ratios. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Since their discovery 20 year ago, transition region bright points have never been observed spectroscopically. Bright point properties have not been compared with similar transition region and coronal structures. In this work we have investigated three transient quiet Sun brightenings including a transition region bright point (TR BP), a coronal bright point (CBP) and a blinker. We use time-series observations of the extreme-ultraviolet emission lines of a wide range of temperature T (logT=5.3?–?6.4) from the EUV Imaging Spectrometer (EIS) onboard the Hinode satellite. We present the EIS temperature maps and Doppler maps, which are compared with magnetograms from the Michelson Doppler Imager (MDI) onboard the SOHO satellite. Doppler velocities of the TR BP and blinker are ≤?25 km?s?1, which is typical of transient TR phenomena. The Doppler velocities of the CBP were found to be ≤?20 km?s?1 with exception of those measured at logT=6.2 where a distinct bi-directional jet is observed. From an EM loci analysis we find evidence of single and double isothermal components in the TR BP and CBP, respectively. TR BP and CBP loci curves are characterized by broad distributions suggesting the existence of unresolved structure. By comparing and contrasting the physical characteristics of the events we find that the BP phenomena are an indication of multi-scaled self-similarity, given the similarities in both their underlying magnetic field configuration and evolution in relation to EUV flux changes. In contrast, the blinker phenomena and the TR BP are sufficiently dissimilar in their observed properties as to constitute different event classes. Our work is an indication that the measurement of similar characteristics across multiple event types holds class-predictive power, and is a significant step towards automated solar atmospheric multi-class classification of unresolved transient EUV sources. Finally, the analysis performed here establishes a connection between solar quiet region CBPs and jets.  相似文献   

18.
Skylab S-054 data have been used to examine the flux from X-ray bright points with 90 s time resolution. There is evidence of a steady heating input, similar to one reported for active region loops. Also observed are impulsive brightenings of bright points and rapid decays which are consistent with a sudden turn-off of the steady heating.  相似文献   

19.
The paper reports the results of the analysis of the data on polar faculae for three solar cycles (1960–1986) at the Kislovodsk Station of the Pulkovo Observatory and on polar bright points in Ca ii K line for two solar cycles (1940–1957) at the Kodaikanal Station of the Indian Institute of Astrophysics. We have noticed that the monthly numbers of polar faculae and polar bright points in Ca ii K line and monthly sunspot areas in each hemisphere of the following solar cycle have a correlation with each other. A new cycle of polar faculae and polar bright points in the Ca ii K line begins after the polar magnetic field reversal. We find that the smaller the period between the ending of the polar field reversal and the beginning of a new sunspot cycle is, the more intense is the cycle itself. The intensity of the forthcoming solar cycle (cycle 22) and the periods of strong fluctuations in activity expected in this cycle are also discussed.  相似文献   

20.
A time-lapse sequence of spectroheliograms in the bandhead of CN at λ3883 reveals the following behavior of the photospheric network with time:
  1. There is a steady flow of bright ‘points’ (? 1000 km in diameter) laterally outward from sunspots at speeds on the order of 1 km·sec?1. After traveling about 10 000 km from a sunspot they either conglomerate to form fragments of the photospheric network or disappear.
  2. Spatial changes in the network pattern seem to take place by means of the shifting of network fragments laterally on the solar surface. Although most small-scale details are recognizable after 5–10 minutes, within 30 minutes nearly all the details have changed completely. In contrast to this, the large-scale network pattern seems relatively unchanged after 2 1/2 hours.
  3. Occasionally ‘new’ network, not resulting from the lateral motion of bright features from either previously existing network or sunspots, appears on the solar surface. This process consists of the formation in approximately 10 minutes of bright points and a darker-than-average feature between them. The dark feature disappears in another 5–10 minutes and the bright points separate at a relative speed of a few km·sec?1. If the event is of a sufficiently large magnitude, a sunspot will appear.
These observed changes of the photospheric network with time are interpreted as formation and motions of photospheric magnetic fields. It is suggested that these motions reflect the presence of both short-lived small-scale and long-lived large-scale photospheric currents such as one might expect from the granulation and the supergranulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号