首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Mathematical modeling is used to study the conditions of natural biotransformation of biogenic element compounds (containing C, N, P, Si) in five areas within Aniva Bay. The input data for the model are evaluated with the use of GIS “Sakhalin Shelf” and the available reference literature on the bay oceanography. Water masses that transferred through the boundaries between the areas were evaluated based on the values of water level, river runoff, atmospheric precipitation, evaporation, and the volume of water in the bay, all of which vary as a result of water heating. The model was used to evaluate annual variations in the concentrations of organic and mineral fractions of these elements and the biomasses of planktonic organisms for the five areas in the bay. Modeling results also allowed the assessment of biogenic substance input with river runoff into Lososei Bay. Based on the internal fluxes of substances, the monthly and annual aquatic animal production was evaluated.  相似文献   

2.
An atlas of oceanographic data on the shelf zone of Sakhalin Island and a mathematical model describing the transformations of nutrient compounds (N, P, Si, C) are used to study the biotransformation and transport of organic and mineral components of these elements in the La Perouse Strait. To make the analysis more convenient, the area under examination was divided into four zones, which differ in the conditions of transport of matter in water flows. Transport calculations are made using a complex graphic method with geostrophic approximation, which takes into account the results of instrumental observations of flow velocities, sea level variations, and annual variations in the water volumes. The obtained patterns of dynamics of nutrient compounds are compared with the results of modeling of internal and external fluxes of those components. Calculated fluxes of the elements were used to assess the rate of chemicals and biomass transport through the boundaries of water areas (in particular, between the Seas of Japan and Okhotsk).  相似文献   

3.
A hydroecological model is used for simultaneous studying water pollution processes by petroleum hydrocarbons and their decay under the oceanographic conditions of Tatar Strait. The model calculations were based on long-term averaged observational data on interannual variations of water temperature, light intensity, and transparency. Some oceanographic characteristics of the strait were reconstructed with the help of GIS “Sakhalin Shelf.” The strait’s water area was divided into three regions, and water exchange between them and the neighboring regions of the Sea of Japan was estimated by a hydrodynamic model. The results of the study made it possible to assess interannual variations in the concentrations and inner fluxes of petroleum hydrocarbons, oil-oxidizing bacteria biomasses, and the characteristics of their oxidation activity.  相似文献   

4.
The conditions of transformations of biogenic substances and the redistribution of their concentrations in the shelf water of Sakhalin Island are studied. Preliminary works have given the results for the water area of La Perouse Strait and Aniva Bay (the Sea of Okhotsk), while this paper gives such results for Tatar Strait (the Sea of Japan). Three electronic instruments of oceanographic studies are applied: an adapted version of Bergen Oceanic Model (for the reconstruction of the space and time distribution of seawater temperature, salinity, and density; the circulation intensity of water masses; and water exchange parameters with nearby water areas and within the strait); GIS “Sakhalin Shelf” (for the reconstruction of annual variations in thermohaline characteristics on a standard grid and horizons of oceanographic stations, and the parameters of the aquatic environment); hydroecological CNPSi-model (for studying the annual dynamics of biogenic element compounds, the biomasses, biohydrochemical activity and bioproduction of microorganisms—bacteria, phytoplankton, and zooplankton, taking part in transformation of biogenic substances and petroleum hydrocarbons, as well as the internal fluxes of biogenic substances governed by the activity of microorganisms and the external load on the marine ecosystem). The results of modeling the spatial transport of biogenic substances through the outer boundaries of Tatar Strait water area and the boundaries of the three areas identified within it are presented and discussed.  相似文献   

5.
Methods of statistical analysis and GIS Sakhalin Shelf have been used to reconstruct the annual variations of water temperature, salinity, and density from the surface to the bed at 60 standard oceanographic stations on northeastern Sakhalin shelf (with the total duration of observations of ~40 years). Numerical simulation using Bergen University oceanic model has been applied to calculate the spatial fields of water temperature and salinity at standard horizons in nodes of a regular grid. The analysis of calculation results revealed new features of the hydrological regime and gave previously unknown thermohaline fields with maximal detail for full annual cycle. The obtained data were used to evaluate the mean monthly three-dimensional water circulation.  相似文献   

6.
Here we present observations of the hydrography of the Patagonian Shelf, shelf break and offshore waters, with reference to the environmental conditions present during the period of peak coccolithophore abundance. Analysis of a hydrographic dataset collected in December 2008 (austral spring/summer), as part of the Coccolithophores of the Patagonian Shelf (COPAS) research cruise, identified 5 distinct surface water masses in the region between 37°S and 55°S. These water masses, identified through salinity gradients, displayed varying mixed layer depths, macronutrient inventories and chlorophyll-a fluorescence. Subantarctic Shelf Water (SSW), located to the north of the Falkland Islands and extending north along the shelf break, was also host to a large coccolithophore bloom. The similarities between the distribution of calcite, as seen in remote sensing data, and SSW indicate that the coccolithophore bloom encountered conditions conducive to bloom development within this water mass. Analysis of chemical and environmental data also collected during the COPAS cruise revealed that many of the commonly cited conditions for coccolithophore bloom development were present within SSW (e.g. low N:P ratio, high N:Si ratio, shallow mixed layer depth). In the other water masses present on the Patagonian Shelf greater variability in these same parameters may explain the more diffuse concentration of calcite, and the smaller size of possible coccolithophore blooms. The distribution of SSW is strongly influenced by the latitudinal variation in shelf break frontal width, which varies from 20 to 200 km, and consequently strong hydrographic controls underlie the position of the coccolithophore bloom during austral summer.  相似文献   

7.
The available observational data on the pollution of tributaries and areas of the Caspian Sea by petroleum hydrocarbons and products are examined. The possible petroleum input from sources in the sea is assessed using up-to-date data of satellite observations of sea surface pollution by oil films. The hydroecological CNPSi-model is applied to studying water pollution processes by petroleum hydrocarbons in ten areas chosen in the Caspian Sea and the subsequent biodegradation of those pollutants. The model calculations of the within-year dynamics of petroleum hydrocarbon concentrations use mean annual observational data on within-year variations in water mediium characteristics (water temperature, light intensity, and transparency), as well as the morphometric parameters of sea areas (the area, mean depth, and water volumes). The characteristics of water exchange between the areas were evaluated using a hydrodynamic model. The model calculations were used to characterize the within-year variations in petroleum hydrocarbon concentrations, the biomasses of petroleum-oxidizing bacteria, the characteristics of their oxidation activity and bioproduction, and the internal fluxes of petroleum hydrocarbons (their input from various sources, horizontal and vertical transport, and biotransformation) in different sea areas. Calculation results were used to compile annual balances for the processes of input and consumption of petroleum hydrocarbons in the chosen and aggregated sea areas.  相似文献   

8.
Long-term observational data on hydrology, hydrochemistry, and hydrobiology are generalized and used for systems analysis of the biohydrochemical transformation processes of organic and biogenic substances in a marine environment. An ecological model with the systematized data is used to assess the annual dynamics of concentrations of organic and mineral N, P, and Si compounds and dissolved organic C and O2 in eight water areas within the White Sea at specified conditions of water mass transport, river runoff, and water exchange with the Barents Sea. Variations in the biomasses of the major transformers of organic and biogenic substances (heterotrophic bacteria, phyto- and zooplankton, and microphytes) and their biological production were also evaluated. These characteristics serve as indicators of the state of the water environment, the presence of nutrients in it, and their import from outside.  相似文献   

9.
The White Sea is a natural analogue of arctic seas. The pollution of the sea by petroleum hydrocarbons is not high now. However, the load on sea ecosystem can increase in the nearest future because of the anticipated industrial development in its watershed, including an increase in oil, coal, and diamond production. The specific features of the nature of arctic marine systems (hydrological, ice, hydrobiological, hydrochemical, and radiation regimes), and the poor knowledge of the conditions of dispersion, transformation, and utilization of petroleum hydrocarbons in such seas make their ecological studies especially important. Petroleum hydrocarbon concentrations in the waters of tributaries and water areas of the White Sea (for 1980–2006 and 1989–2006, respectively) were evaluated using literary and authors’ data. Analysis of the collected materials shows that the majority of petroleum hydrocarbons enter the sea’s water areas with river runoff. Petroleum hydrocarbon concentrations were evaluated in major tributaries of the sea, including the rivers of Northern Dvina, Onega, Mezen, Niva, Kem, and Keret, delivering petroleum hydrocarbons into the bays of Dvina, Onega, Mezen, and Kandalaksha, water area near the Solovetskie Islands, and Chupa Bay, respectively (Bay — Gulf). Model calculations should yield within-year variations in petroleum hydrocarbon concentrations in different part of the sea (under a correctly specified load) and the conditions of their biotransformation and horizontal transport through the boundaries between areas within the sea.  相似文献   

10.
The transformation conditions of oil hydrocarbons in water are considered for the case of Karkinitskii Bay, the Black Sea, where gas deposits have been developed actively in recent years and oil product pollution of marine environment has been recorded repeatedly. Data on measured oil hydrocarbon concentrations, their input into the northwestern part of the Black Sea, and experimental estimates of oil decomposition in the marine environment are presented. The biotransformation conditions of oil hydrocarbons are simulated by reproducing the biochemical activity of microflora and effecting substrate consumption processes, metabolic product excretions, and biomass decay. These processes maintain the biogenic substance turnover in water environment. The calculations are based on the morphometric characteristics of Karkinitskii Bay, and mean long-term data on the monthly dynamics of marine environmental characteristics (temperature, light intensity, transparency, atmospheric precipitation, and the characteristics of water regime and Danube runoff). A check calculation was performed to reproduce the concentration dynamics of biogenic substances and oil products with allowance made for the effect of river runoff and background pollution of the marine environment. The numerical scenarios take into account the marine environmental pollution conditions (an immediate discharge of 1000, 500, or 200 t of oil products per week) in winter, spring, summer, and autumn. The obtained model estimates of the rates of oil product decomposition and oxygen consumption are shown to agree well with experimental data. The time required for the concentration of oil products to reach the MAC after pollution of the marine environment is estimated.  相似文献   

11.
The Australian Institute of Marine Science (AIMS) conducted a pilot study around the Harriet A oil production platform on the Northwest Shelf of Australia. We evaluated hepatic ethoxyresorufin-O-deethylase (EROD) activity, fluorescent aromatic compounds (FACs) in bile and immunodetection of CYP1A-like proteins in two Australian tropical fish species, Gold-Spotted Trevally (Carangoides fulvoguttatus) and Bar-Cheeked Coral Trout (Plectropomus maculatus) to assess exposure to petroleum hydrocarbons associated with produced formation water (PFW). Additionally, the incidence of hydrocarbon-degrading bacteria isolated from the liver and bile of all fish captured was examined. Low EROD activity was found in both species, with EROD activity in C. fulvoguttatus showing significant site differences. FACs and CYP1A protein levels in C. fulvoguttatus showed a clear trend in hydrocarbon exposure consistent with hydrocarbon chemistry data: Harriet A>Harriet C>reference site. P. maculatus showed elevated levels of FACs at Harriet A as compared to the reference site and demonstrated detectable levels of CYP1A-like proteins at these two sites. Hydrocarbon-degrading bacteria were found in the liver and bile of both species, yet there was no correlation by sites. Our results demonstrate that C. fulvoguttatus and P. maculatus have potential as indicator species for assessing the effects from exposure to petroleum hydrocarbons. Both FACs and CYP1A are providing warning signs that there is potential for biological effects on fish populations exposed to PFW around the Harriet A production platform.  相似文献   

12.
The available observational data on variations of oil hydrocarbon concentrations in White Sea tributaries and in individual parts of the sea are analyzed, and the contributions of different external sources to marine environment pollution are evaluated. The results of calculations are used to determine the possible total input of hydrocarbons from additional potential sources—internal natural (production by microorganisms) and external anthropogenic (navigation and sea shipping), which are most active in the summer and autumn. The hydroecological CNPSi-model is used to reproduce the processes of pollution of nine areas in the White Sea by oil hydrocarbons and their subsequent biodegradation in the marine environment. The annual dynamics of hydrocarbon concentrations was calculated using the long-term annual observations of monthly variations of the temperature, light intensity, and transparency of water, data on the morphometry of sea areas (the squares, mean depths, and water volumes) and water exchange between the chosen areas, calculated by a hydrodynamic model. For large bays (Dvina, Kandalaksha), the calculated concentrations of oil hydrocarbons are shown to be in agreement with the available estimates (the mean and maximal concentrations). The annual variations of oil hydrocarbon concentrations; the biomasses, oxidation activity and bioproduction characteristics of oil hydrocarbon-oxidizing bacteria are characterized. The calculated internal fluxes of oil hydrocarbons (the inputs from different sources, horizontal transport, and biotransformation) were used to calculate their annual balances for individual areas and the sea as a whole, showing the balanced character of their fluxes with the total balance discrepancies for individual areas varying within 0.3–4.1%.  相似文献   

13.
This study has no analogues in terms of methodology, as it uses three electronic instruments for studying the oceanographic regime of Tatar Strait. GIS “Sakhalin Shelf” was used to reconstruct annual variations in hydrological and hydrochemical characteristics of the marine environment at standard horizons of oceanographic stations in fixed geographic coordinates. An adapted version of the Oceanic Model created in Bergen University was used to reconstruct the spatial and temporal distribution of seawater temperature and salinity, to calculate the density and the circulation rate of water masses and water exchange parameters between the strait and nearby water areas and between regions within the strait. The hydroecological CNPSi-model was next used to assess the annual dynamics of concentrations of biogenic element compounds; the biomasses, biohydrochemical activity, and bioproductivity of microorganisms (heterotrophic bacteria, three phytoplankton and two zooplankton groups), involved in transformation of biogenic substances, as well as the internal fluxes of biogenic substances, governed by microorganism activity and the external load onto the marine ecosystem. Analysis of calculation results made it possible to reveal new features in water circulation in the strait (including those for winter) and, for the first time, to analyze the transport regime of biogenic substances through the external boundaries of Tatar Strait and through the boundaries of three regions identified within the strait.  相似文献   

14.
Leonov  A. V.  Chicherina  O. V. 《Water Resources》2004,31(4):398-412
A hydroecological model is used to study the transformations of biogenic-element (N, P, C, and Si) compounds in different parts of the Caspian Sea. The existing notions of the biotransformation processes of these compounds in the marine environment are formalized. The state of the marine environment is characterized based on calculated annual dynamics of biogenic element concentrations, their relationships, and internal fluxes. Relationships between the concentrations of N and P mineral components are used to establish distinctions between different parts of the sea in the conditions of primary production limited by biogenic elements, as well as the development conditions of aquatic lifeforms (nutrient consumption, release of metabolic products, and detritus formation).  相似文献   

15.
The state of the marine environment (the temperature, light intensity, transparency, biogenic load) in Tatar Strait was assessed based on mean annual data from literary sources and with the use of GIS “Sakhalin Shelf.” The entire strait was divided into three regions (northern, southwestern, and southeastern), and water exchange between them for each month was estimated by using Bergen Oceanic Model. The information about the state of the marine environment and water exchange characteristics was used as input data for a hydroecological model, which enabled the assessment of annual variations of biogenic substance concentrations and biomasses of microorganisms (heterotrophic bacteria, three groups of phytoplankton, and two groups of zooplankton) in the strait regions chosen. The development conditions of microorganism biomasses within the year can be characterized by their activity indices (specific growth rates), the values of internal fluxes of biogenic substances, and calculated bioproductivity values. The calculated biogenic substance concentrations and phytoplankton bioproductivity values showed good agreement with the estimates for the Sea of Japan and Tatar Strait available from the literature.  相似文献   

16.
Leonov  A. V.  Dubinin  A. V. 《Water Resources》2001,28(3):231-248
Normal annual data are used to evaluate the within-year variations in the concentrations of biogenic substances (organic and mineral components of N and P, dissolved organic carbon, inorganic Si) in the major tributaries of the Caspian Sea. Variations in the concentrations of biogenic substances are analyzed, the relationships between their mass concentrations in individual months are evaluated, and correlation between the organic and mineral components of N and P and their aggregated fractions are established. The obtained high-significance correlation between the concentrations of N and P components suggests that the rates of biochemical processes of biogenic substance transformation taking place in the water of tributaries are commensurable.  相似文献   

17.
《Continental Shelf Research》2006,26(12-13):1375-1394
Lagrangian characterization of continental shelf circulation provides estimates of the retention and transport of particulate and dissolved substances. In this paper, we quantify the retentive characteristics of the Southeast US Continental Shelf by comparing observed and numerical (modeled) drifters released throughout 2000 and 2001. Agreement between the observed and computed drifter trajectories shows that retention on this shelf can be up to 2 months at any point during the year. These results have important implications for ecological and fisheries applications and indicate that the populations of marine organisms in this region might be relatively closed (i.e., with weak exchange) during some periods of the year.  相似文献   

18.
The data collected for model calculations is systematized for natural and design conditions. The natural conditions did not take into account the effect of the complex of water-protection structures on the hydrological regime of Neva Bay and on the biogenic load onto this water area, while the design conditions, conversely, reflected the possible impact of those structures on the hydrology and ecology of the area. Numerical experiments were used to study the processes of transformation of N and P compounds and the dynamics of dissolved O2 in Neva Bay water area. In the comparison of the calculated and observed concentrations of biogenic substances, Theil criterion was evaluated to assess the adequacy of the model in reproducing the concentration fields of the distribution of biogenic substances over Neva Bay water area. The major qualitative and quantitative features of the formation of the spatial heterogeneity and the time variations in the concentrations of biogenic element compounds over Neva Bay water area are identified. Possible improvements of the model in the reproduction of the complex of processes that are of particular importance for the development of substance transformations in shallow ecosystems are considered.  相似文献   

19.
The distribution of oil hydrocarbons in bottom sediments of Onega Lake was examined. Their qualitative and quantitative composition was examined by methods of IR-spectroscopy and chromatography-mass spectrometry. The background concentrations of oil hydrocarbons in bottom sediments are evaluated and the polluted area is determined. The major regularities in oil hydrocarbon transformations under natural conditions and anthropogenic impact are identified. The quantitative development of the bacterial groups that take part in the transformation of complex organic substances and oil product derivatives in the case of emergency pollution of Petrozavodsk Bay water area by oil products is demonstrated.  相似文献   

20.
Data on the concentration and composition of aliphatic and polyaromatic hydrocarbons in the surface layer and the body of bottom sediments in Volga delta and on the northern Caspian shelf are given. Volga delta sediments are shown to contain large concentrations of organic compounds. It is established that the concentrations of organic compounds is largely dependent on the dispersiveness of sediments. Anthropogenic hydrocarbons, both oil and pyrogenic, fail to pass the marginal filter of the Volga River and do not reach the open part of the sea. Therefore, the hydrocarbons contained in the bottom sediments on the Caspian Sea shelf are mostly of natural genesis. The distribution of organic compounds in the bottom sediment strata has a complex character. In some cases, their concentration increases because of the higher flux of hydrocarbons (especially, polyarenes in the 1950s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号