首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are engaged in a programme of imaging with the STIS and NICMOS (NIC2) instruments aboard the Hubble Space Telescope ( HST ), to search for the galaxy counterparts of 18 high-redshift z >1.75 damped Ly α absorption lines and five Lyman-limit systems seen in the spectra of 16 target quasars. This paper presents the results of the imaging campaign with the NIC2 camera. We describe the steps followed in reducing the data and combining in mosaics, and the methods used for subtracting the image of the quasar in each field, and for constructing error frames that include the systematic errors associated with the PSF subtraction. To identify candidate counterparts, which are either compact or diffuse, we convolved the image and variance frames with circular top-hat filters of diameter 0.45 and 0.90 arcsec respectively, to create frames of summed S /N within the aperture. For each target quasar we provide catalogues listing positions and aperture magnitudes of all sources within a square of side 7.5 arcsec centred on the quasar, detected at S / N >6 . We find a total of 41 candidates, of which three have already been confirmed spectroscopically as the counterparts. We provide the aperture magnitude detection limits as a function of impact parameter, for both detection filters, for each field. The average detection limit for compact (diffuse) sources is H AB =25.0 (24.4) at an angular separation of 0.56 (0.79) arcsec from the quasar, improving to H AB =25.5 (24.8) at large angular separations. For the brighter sources we have measured the half-light radius and the n parameter of the best-fitting deconvolved Sersic-law surface brightness profile, and the ellipticity and orientation.  相似文献   

2.
We present near-infrared spectra of seven radio-loud quasars with a median redshift of 2.1, five of which were previously known to have Ly α nebulae. Extended [O  iii ] λ 5007 and H α emission are evident around six objects, at the level of a few times 10−16 erg cm−2 arcsec−2 s−1 within ≃2 arcsec of the nucleus (≡16 kpc in the adopted cosmology). Nuclear [O  ii ] λ 3727 is detected in three of the five quasars studied at this wavelength and clearly extended in one of them.
The extended [O  iii ] tends to be brighter on the side of the nucleus with the stronger, jet-like radio emission, indicating at least that the extranuclear gas is distributed anisotropically. It is also typically redshifted by several hundred km s−1 from the nuclear [O  iii ], perhaps because of the latter being blueshifted from the host galaxy's systemic velocity. Alternatively, the velocity shifts could be due to infall (which is suggested by linewidths ∼1000 km s−1 FWHM) in combination with a suitable dust geometry. Ly α /H α ratios well below the case B value suggest that some dust is present.
Photoionization modelling of the [O  iii ]/[O  ii ] ratios in the extended gas suggests that its pressure is around or less than a few times 107 cm−3 K; any confining intracluster medium is thus likely to host a strong cooling flow. A comparison with lower redshift work suggests that there has been little evolution in the nuclear emission-line properties of radio-loud quasars between redshifts 1 and 2.  相似文献   

3.
We present JHKL ' photometry of a complete sample of steep-spectrum radio-loud quasars from the revised 3CR catalogue in the redshift range 0.65 z <1.20. After correcting for contributions from emission lines and the host galaxies, we investigate their spectral energy distributions (SEDs) around 1 μm. About 75 per cent of the quasars are tightly grouped in the plane of optical spectral index, α opt, versus near-infrared spectral index, α IR, with the median value of α opt close to the canonical value, and the median α IR slightly flatter. We conclude that the fraction of moderately obscured, red quasars decreases with increasing radio power, in accordance with the 'receding torus' model which can also explain the relatively flat median near-infrared spectra of the 3CR quasars. Two of the red quasars have inverted infrared spectral indices, and we suggest that their unusual SEDs might result from a combination of dust-scattered and transmitted quasar light.  相似文献   

4.
At redshifts z ≳2, most of the baryons reside in the smooth intergalactic medium which is responsible for the low column density Ly α forest. This photoheated gas follows a tight temperature–density relation which introduces a cut-off in the distribution of widths of the Ly α absorption lines ( b -parameters) as a function of column density. We have measured this cut-off in a sample of nine high-resolution, high signal-to-noise ratio quasar spectra and determined the thermal evolution of the intergalactic medium in the redshift range 2.0–4.5. At a redshift z ∼3, the temperature at the mean density shows a peak and the gas becomes nearly isothermal. We interpret this as evidence for the reionization of He  ii .  相似文献   

5.
We have conducted observations of the environment around the z =2.15 radio-loud quasar 1550–269 in search of distant galaxies associated either with it or the z =2.09 C  iv absorber along its line of sight. Such objects will be distinguished by their red colours, R − K >4.5. We find five such objects in a 1.5 arcmin2 field around the quasar, with typical K ' magnitudes of ∼20.4 and no detected R -band emission. We also find a sixth object with K =19.6±0.3, and undetected at R , just two arcsec from the quasar. The nature of all these objects is currently unclear, and will remain so until we have determined their redshifts. We suggest that it is likely that they are associated with either the quasar or the C  iv absorber, in which case their properties might be similar to those of the z =2.38 red Ly α emitting galaxies discovered by Francis et al. The small separation between the quasar and the brightest of our objects suggests that it may be the galaxy responsible for the C  iv metal line absorption system. The closeness to the quasar and the red colour might have precluded similar objects from being uncovered in previous searches for emission from C  iv and damped absorbers.  相似文献   

6.
We use high-quality echelle spectra of 24 quasi-stellar objects to provide a calibrated measurement of the total amount of Lyα forest absorption (DA) over the redshift range  2.2 < z < 3.2  . Our measurement of DA excludes absorption from metal lines or the Lyα lines of Lyman-limit systems and damped Lyα systems. We use artificial spectra with realistic flux calibration errors to show that we are able to place continuum levels that are accurate to better than 1 per cent. When we combine our results with our previous results between  1.6 < z < 2.2  , we find that the redshift evolution of DA is well described over  1.6 < z < 3.2  as   A (1 + z )γ  , where   A = 0.0062  and  γ= 2.75  . We detect no significant deviations from a smooth power-law evolution over the redshift range studied. We find less H  i absorption than expected at   z = 3  , implying that the ultraviolet background is  ∼40  per cent higher than expected. Our data appears to be consistent with an H  i ionization rate of  Γ∼ 1.4 × 10−12 s−1  .  相似文献   

7.
We describe the selection of candidate radio-loud quasars obtained by cross-matching radio source positions from the low-frequency (151-MHz) 7C survey with optical positions from five pairs of EO POSS-I plates scanned with the Cambridge Automatic Plate-measuring Machine (APM). The sky region studied is centred at RA 10h 28m, Dec.+41° and covers ≈0.057 sr. We present VLA observations of the quasar candidates, and tabulate various properties derived from the radio maps. We discuss the selection criteria of the resulting '7CQ' sample of radio-loud quasars. The 70 confirmed quasars, and some fraction of the 36 unconfirmed candidates, constitute a filtered sample with the following selection criteria: 151-MHz flux density S 151>100 mJy; POSS-I E -plate magnitude E ≈ R <20; POSS-I colour ( O E )<1.8; the effective area of the survey drops significantly below S 151≈200 mJy. We argue that the colour criterion excludes few if any quasars, but note, on the basis of recent work by Willott et al., that the E magnitude limit probably excludes more than 50 per cent of the radio-loud quasars.  相似文献   

8.
Using data from the Sloan Digital Sky Survey data release 3 (SDSS DR3), we investigate how narrow (<700 km s−1) C  iv and Mg  ii quasar absorption-line systems are distributed around quasars. The C  iv absorbers lie in the redshift range 1.6 < z < 4 and the Mg  ii absorbers in the range 0.4 < z < 2.2. By correlating absorbers with quasars on different but neighbouring lines of sight, we measure the clustering of absorbers around quasars on comoving scales between 4 and 30 Mpc. The observed comoving correlation lengths are   r o∼ 5 h −1Mpc  , similar to those observed for bright galaxies at these redshifts. Comparing correlations between absorbers and the quasars, in whose spectra they are identified, then implies: (i) that quasars destroy absorbers to comoving distances of ∼300 kpc (C  iv ) and ∼800 kpc (Mg  ii ) along their lines of sight; (ii) that ≳40 per cent of C  iv absorbers within 3000 km s−1 of the quasi-stellar object are not a result of large-scale clustering but rather are directly associated with the quasar itself; (iii) that this intrinsic absorber population extends to outflow velocities of the order of 12 000 km s−1; (iv) that this outflow component is present in both radio-loud and radio-quiet quasars and (v) that a small high-velocity outflow component is also observed in the Mg  ii population. We also find an indication that absorption systems within 3000 km s−1 are more abundant for radio-loud quasars than for radio-quiet quasars. This suggests either that radio-loud objects live in more massive haloes, or that their radio activity generates an additional low-velocity outflow, or both.  相似文献   

9.
Using cosmological hydrodynamic simulations, we measure the mean transmitted flux in the Lyα forest for quasar sightlines that pass near a foreground quasar. We find that the trend of absorption with pixel quasar separation distance can be fitted using a simple power-law form including the usual correlation function parameters r 0 and γ, so that     . From the simulations, we find the relation between r 0 and quasar host mass, and formulate this as a way to estimate quasar host dark matter halo masses, quantifying uncertainties due to cosmological and IGM parameters, and redshift errors. With this method, we examine data for ∼9000 quasars from the Sloan Digital Sky Survey (SDSS) Data Release 5, assuming that the effect of ionizing radiation from quasars (the so-called transverse proximity effect) is unimportant (no evidence for it is seen in the data). We find that the best-fitting host halo mass for SDSS quasars with mean redshift z = 3 and absolute G -band magnitude −27.5 is  log  M /M= 12.68+0.81−0.67  . We also use the Lyman-Break Galaxy (LBG) and Lyα forest data of Adelberger et al. in a similar fashion to constrain the halo mass of LBGs to be  log10  M /M= 11.41+0.54−0.59  , a factor of ∼20 lower than the bright quasars. In addition, we study the redshift distortions of the Lyα forest around quasars, using the simulations. We use the quadrupole to monopole ratio of the quasar Lyα forest correlation function as a measure of the squashing effect. We find its dependence on halo mass difficult to measure, but find that it may be useful for constraining cosmic geometry.  相似文献   

10.
We report the first results of an observational programme designed to determine the luminosity density of high-redshift quasars     quasars) using deep multicolour CCD data. We report the discovery and spectra of three     high-redshift     quasars, including one with     . At     , this is the fourth highest redshift quasar currently published. Using these preliminary results we derive an estimate of the         quasar space density in the redshift range     of     . When completed, the survey will provide a firm constraint on the contribution to the ionizing UV background in the redshift range     from quasars by determining the faint-end slope of the quasar luminosity function. The survey uses imaging data taken with the 2.5-m Isaac Newton Telescope as part of the Public Isaac Newton Group Wide Field Survey (WFS). This initial sample of objects is taken from two fields of effective area ∼12.5 deg2 from the final ∼100 deg2.  相似文献   

11.
We investigate the practice of assigning high spin temperatures to damped Lyman α absorption systems (DLAs) not detected in H  i 21-cm absorption. In particular, Kanekar & Chengalur have attributed the mix of 21-cm detections and non-detections in low-redshift  ( z abs≤ 2.04) DLAs  to a mix of spin temperatures, while the non-detections at high redshift were attributed to high spin temperatures. Below   z abs= 0.9  , where some of the DLA host galaxy morphologies are known, we find that 21-cm absorption is normally detected towards large radio sources when the absorber is known to be associated with a large intermediate (spiral) galaxy. Furthermore, at these redshifts, only one of the six 21-cm non-detections has an optical identification and these DLAs tend to lie along the sight-lines to the largest background radio continuum sources. For these and many of the high-redshift DLAs occulting large radio continua, we therefore expect covering factors of less than the assumed/estimated value of unity. This would have the effect of introducing a range of spin temperatures considerably narrower than the current range of  Δ T s≳ 9000 K  , while still supporting the hypothesis that the high-redshift DLA sample comprises a larger proportion of compact galaxies than the low-redshift sample.  相似文献   

12.
We report the discovery of two radio-loud quasars with redshifts greater than 4: GB1428+4217, with z =4.72, and GB1713+2148 with z =4.01. This doubles the number of published radio-selected quasars with z >4, bringing the total to 4. GB1428+4217 is the third most distant quasar known and the highest redshift radio and X-ray source currently known. It has a radio flux density at 5 GHz of 259±31 mJy and an optical magnitude of R ∼20.9. The rest frame absolute UV magnitude, Mv (1450 Å), is −26.7, similar to that of the archetypal radio-selected quasar 3C273 [ z =0.158; Mv (1450 Å)=−26.4]. GB1428+4217 is tentatively detected in ROSAT PSPC observations, which has been confirmed by more recent ROSAT observations described in a companion paper by Fabian et al. Both quasars were discovered during the CCD imaging phase of an investigation into the evolution of the space density of radio-loud quasars at high redshift. Combined with our earlier survey results, these objects give a lower limit on the space density of quasars with radio power P 5 GHz>5.8×1026 W Hz−1 sr−1 between z =4 and z =5 of 1.4±0.9×10−10 Mpc−3. This can be compared to 2.9±0.2×10−10 Mpc−3 at z =2 from Dunlop & Peacock for flat-spectrum sources of the same luminosity.  相似文献   

13.
14.
Models for the formation of galaxies and clusters of galaxies require strong feedback in order to explain the observed properties of these systems. We investigate whether such feedback has observational consequences for the intergalactic medium, as probed in absorption towards background quasars. A typical quasar sight-line intersects one protocluster per unit redshift, and significant feedback from forming galaxies or active galactic nuclei, heating the protocluster gas, will result in a large clearing of reduced absorption in the Ly α forest. Such a gap could be detected at redshift ≳3 when the mean opacity is high. Feedback from Lyman-break galaxies in protoclusters can be probed by the absorption lines produced in their winds. Strong feedback from galaxies has a major impact on the number and properties of absorption lines with column densities N H  i ∼1016 cm−2. This feedback can be probed with multiple sight-lines and by studying the unsaturated higher order lines of the Lyman series. Galactic winds from dwarf galaxies should break up into clouds, in order not to overproduce the number of absorption lines. These clouds can then coast to large distances.  相似文献   

15.
We present a sample of 33 damped Lyman α systems (DLAs) discovered in the Sloan Digital Sky Survey (SDSS) whose absorption redshifts ( z abs) are within 6000 km s−1 of the quasi-stellar object's (QSO) systemic redshift ( z sys). Our sample is based on  731 2.5 < z sys < 4.5  non-broad absorption line (non-BAL) QSOs from Data Release 3 (DR3) of the SDSS. We estimate that our search is ≈100 per cent complete for absorbers with N (H  i )  ≥ 2 × 1020 cm−2  . The derived number density of DLAs per unit redshift, n ( z ), within  Δ v < 6000 km s−1  is higher (3.5σ significance) by almost a factor of 2 than that of intervening absorbers observed in the SDSS DR3, i.e. there is evidence for an overdensity of galaxies near the QSOs. This provides a physical motivation for excluding DLAs at small velocity separations in surveys of intervening 'field' DLAs. In addition, we find that the overdensity of proximate DLAs is independent of the radio-loudness of the QSO, consistent with the environments of radio-loud and radio-quiet QSOs being similar.  相似文献   

16.
We incorporate a simple scheme for the growth of supermassive black holes into semi-analytic models that follow the formation and evolution of galaxies in a cold dark matter-dominated Universe. We assume that supermassive black holes are formed and fuelled during major mergers. If two galaxies of comparable mass merge, their central black holes coalesce and a few per cent of the gas in the merger remnant is accreted by the new black hole over a time-scale of a few times 107 yr. With these simple assumptions, our model not only fits many aspects of the observed evolution of galaxies, but also reproduces quantitatively the observed relation between bulge luminosity and black hole mass in nearby galaxies, the strong evolution of the quasar population with redshift, and the relation between the luminosities of nearby quasars and those of their host galaxies. The strong decline in the number density of quasars from z ∼2 to z =0 is a result of the combination of three effects: (i) a decrease in the merging rate; (ii) a decrease in the amount of cold gas available to fuel black holes, and (iii) an increase in the time-scale for gas accretion. The predicted decline in the total content of cold gas in galaxies is consistent with that inferred from observations of damped Ly α systems. Our results strongly suggest that the evolution of supermassive black holes, quasars and starburst galaxies is inextricably linked to the hierarchical build-up of galaxies.  相似文献   

17.
Starting from the quasar sample of the Sloan Digital Sky Survey (SDSS) for which the C  iv line is observed, we use an analysis scheme to derive the z -dependence of the maximum mass of active black holes, which overcomes the problems related to the Malmquist bias. The same procedure is applied to the low-redshift sample of SDSS quasars for which Hβ measurements are available. Combining with the results from the previously studied Mg  ii sample, we find that the maximum mass of the quasar population increases as  (1 + z )1.64±0.04  in the redshift range  0.1 z 4  , which includes the epoch of maximum quasar activity.  相似文献   

18.
By using UV spectra for the O star HD 93521 taken with the ORFEUS II echelle spectrograph, we determine an 'astrophysical' f value for the S  ii   λ 94.7-nm line: f =0.00498−0.00138+0.00172 , error at 1 σ level. This is almost a factor of 30 smaller than the guessed value found in the Kurucz data base (  f =0.1472) , which was until now the only one available for this transition. We use our 'astrophysical' f to investigate the S abundance in two damped Ly α absorption systems (DLAs) observed with the UV–Visual Echelle Spectrograph (UVES) at the European Southern Observatory's 8.2-m Kueyen telescope. In the case of the absorber at z abs=3.02486 towards QSO 0347-3819, we find a sulphur column density which is consistent, within errors, with that determined by Centurión et al. by means of the λ 125.9-nm line, thus providing an external check on the accuracy of our f value. For the damped absorber at z abs=4.4680 towards BR J0307-4945, we determine a high value of the S abundance, which, however, is probably the result of blending with Ly α forest lines.  相似文献   

19.
We have conducted ultra-deep optical and deep near-infrared observations of a field around the z =1.226 radio-quiet quasar 104420.8+055739 from the Clowes–Campusano LQG of 18 quasars at z ∼1.3, in search of associated galaxy clustering. Galaxies at these redshifts are distinguished by their extremely red colours, with I − K >3.75, and we find a factor ∼11 overdensity of such galaxies in a 2.25×2.25 arcmin2 field centred on the quasar. In particular, we find 15–18 galaxies that have colours consistent with being a population of passively evolving massive ellipticals at the quasar redshift. They form 'fingers' in the V − K K , I − K K colour–magnitude plots at V − K ≃6.9, I − K ≃4.3 comparable to the red sequences observed in other z ≃1.2 clusters. We find suggestive evidence for substructure among the red sequence galaxies in the K image, in the form of two compact groups, 40 arcsec to the north, and 60 arcsec to the south-east of the quasar. An examination of the wider optical images indicates that this substructure is significant, and that the clustering extends to form a large-scale structure 2–3  h −1 Mpc across. We find evidence for a high (≳50 per cent) fraction of blue galaxies in this system, in the form of 15–20 'red outlier' galaxies with I − K >3.75 and V − I <2.00, which we suggest are dusty, star-forming galaxies at the quasar redshift. Within 30 arcsec of the quasar we find a concentration of blue ( V − I <1) galaxies in a band that bisects the two groups of red sequence galaxies. This band of blue galaxies is presumed to correspond to a region of enhanced star formation. We explain this distribution of galaxies as the early stages of a cluster merger which has triggered both the star formation and the quasar.  相似文献   

20.
Recent detections of high-redshift absorption by both atomic hydrogen and molecular gas in the radio spectra of quasars have provided a powerful tool for measuring possible temporal and spatial variations of physical 'constants' in the universe.
We compare the frequency of high-redshift hydrogen 21-cm absorption with that of associated molecular absorption in two quasars to place new (1σ) upper limits on any variation in y≡gpα2 (where α is the fine-structure constant, and gp is the proton g -factor of
   
at redshifts z = 0.25 and 0.68. These quasars are separated by a comoving distance of 3000 Mpc ( H 0= 75 km s−1 Mpc−1 and q 0). We also derive limits on the time rates of change
   
    between the present epoch and z = 0.68. These limits are more than an order of magnitude smaller than previous results derived from high-redshift measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号