首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Stochastic geostatistical techniques are essential tools for groundwater flow and transport modelling in highly heterogeneous media. Typically, these techniques require massive numbers of realizations to accurately simulate the high variability and account for the uncertainty. These massive numbers of realizations imposed several constraints on the stochastic techniques (e.g. increasing the computational effort, limiting the domain size, grid resolution, time step and convergence issues). Understanding the connectivity of the subsurface layers gives an opportunity to overcome these constraints. This research presents a sampling framework to reduce the number of the required Monte Carlo realizations utilizing the connectivity properties of the hydraulic conductivity distributions in a three-dimensional domain. Different geostatistical distributions were tested in this study including exponential distribution with the Turning Bands (TBM) algorithm and spherical distribution using Sequential Gaussian Simulation (SGSIM). It is found that the total connected fraction of the largest clusters and its tortuosity are highly correlated with the percentage of mass arrival and the first arrival quantiles at different control planes. Applying different sampling techniques together with several indicators suggested that a compact sample representing only 10% of the total number of realizations can be used to produce results that are close to the results of the full set of realizations. Also, the proposed sampling techniques specially utilizing the low conductivity clustering show very promising results in terms of matching the full range of realizations. Finally, the size of selected clusters relative to domain size significantly affects transport characteristics and the connectivity indicators.  相似文献   

2.
The Enfida aquifer system is of importance to the economic activity of the eastern center of Tunisia. The planning of a marina is likely to present a significant risk on groundwater. Classical physically based modeling is used to better understand salty water intrusion in the aquifers. The transport model (MT3DMS) is coupled with the groundwater model (Modflow). Model calibration was carried out over the period 1972–2005. Four scenarios were then simulated for a 50-year period, to assess the effects of both planned marina and future abstraction regime. We predict a rise in the groundwater salinity generated by the planned pumping infrastructure. The impact of the planned project will be observed only near the marina. However, limited measurements of transmissivity may affect the model’s results. Thus, the second part of the paper is aimed to assess the models output error due to the uncertainty in transmissivity, using a stochastic approach. Hundred realizations of a log-normal random transmissivity field had been performed. According to the most pessimistic realizations, the uncertainty may reach 49 % in the sector of an important pumping field. Accordingly, the calculated concentration may reach 6.5 g/l in 2055 instead of 3.2 g/l.  相似文献   

3.
The conditional probabilities (CP) method implements a new procedure for the generation of transmissivity fields conditional to piezometric head data capable to sample nonmulti-Gaussian random functions and to integrate soft and secondary information. The CP method combines the advantages of the self-calibrated (SC) method with probability fields to circumvent some of the drawbacks of the SC method—namely, its difficulty to integrate soft and secondary information or to generate non-Gaussian fields. The SC method is based on the perturbation of a seed transmissivity field already conditional to transmissivity and secondary data, with the perturbation being function of the transmissivity variogram. The CP method is also based on the perturbation of a seed field; however, the perturbation is made function of the full transmissivity bivariate distribution and of the correlation to the secondary data. The two methods are applied to a sample of an exhaustive non-Gaussian data set of natural origin to demonstrate the interest of using a simulation method that is capable to model the spatial patterns of transmissivity variability beyond the variogram. A comparison of the probabilistic predictions of convective transport derived from a Monte Carlo exercise using both methods demonstrates the superiority of the CP method when the underlying spatial variability is non-Gaussian.  相似文献   

4.
Integration of hydrogeological and geological data into a conceptual model is critical for site investigation programs, since this model is the basis for hydrogeological modeling and for engineering. In the Hungarian Radioactive Waste Disposal Investigation Program, several methods have been used to characterize the potential host rock (granite) at the Bátaapáti site for a repository for low and intermediate level radioactive waste. Hydrogeological data acquisition revealed some characteristic aspects of the site. One of the most important is the presence of extensive rock deformation zones (faults) with low hydraulic conductivity, which strongly reduce the direct hydraulic communication between adjacent blocks of rock (compartmentalization). This characteristic of the rock mass results in a mosaic-like distribution of rock compartments, each with an almost constant hydraulic head. Within the compartments, hydraulic tests have shown that transmissivity is strongly scale dependent: the larger the scale, the higher the measured transmissivity. The extensive highly transmissive zones cause very low hydraulic gradients within each block, thus the transport processes are strongly influenced by the low or average transmissivity zones and the rock matrix.  相似文献   

5.
The estimation and mapping of realistic hydraulic head fields, hence of flow paths, is a major goal of many hydrogeological studies. The most widely used method to obtain reliable head fields is the inverse approach. This approach relies on the numerical approximation of the flow equation and requires specifying boundary conditions and the transmissivity of each grid element. Boundary conditions are often unknown or poorly known, yet they impose a strong signature on the head fields obtained by inverse analysis. A simpler alternative to the inverse approach is the direct kriging of the head field using the measurements obtained at observation wells. The kriging must be modified to incorporate the available information. Use of the dual kriging formalism enables simultaneously estimating the head field, the aquifer mean transmissivity, and the regional hydraulic gradient from head data in steady or transient state conditions. In transient state conditions, an estimate of the storage coefficient can be obtained. We test the approach on simple analytical cases, on synthetic cases with solutions obtained numerically using a finite element flow simulator, and on a real aquifer. For homogeneous aquifers, infinite or bounded, the kriging estimate retrieves the exact solution of the head field, the exact hydrogeological parameters and the flow net. With heterogeneous aquifers, kriging accurately estimates the head field with prediction errors of the same magnitude as typical head measurement errors. The transmissivities are also accurately estimated by kriging. Moreover, if inversion is required, the kriged head along boundaries can be used as realistic boundary conditions for flow simulation.  相似文献   

6.
We present a second-order analytic solution [in terms of a heterogeneous log-transmissivity Y(r) = ln T(r)] for the hydraulic head field in a finite 2D confined heterogeneous aquifer under steady radial flow conditions assuming fixed head boundary conditions at the well and at a circular exterior boundary. The solution may be used to obtain the gradient used in calculation of solute transport to a well in a heterogeneous transmissivity field. The solution, obtained using perturbation methods coupled with Green's function techniques, leads us to postulate a more general form of the head for arbitrarily large-variance fields and may be used to obtain moment relations between the log-transmissivity and head under convergent flow conditions when Y(r) is expressed as a random space function. We present expressions for the mean head field when the log-transmissivity is Gaussian and conditioned on the transmissivity value at the well for an arbitrary ln T covariance. Finally, we look at the effect of parameter variations on the mean head behavior and present numerical simulations verifying the second-order mean head expressions.  相似文献   

7.
 A thorough understanding of the characteristics of transmissivity makes groundwater deterministic models more accurate. These transmissivity data characteristics occasionally possess a complicated spatial variation over an investigated site. This study presents both geostatistical estimation and conditional simulation methods to generate spatial transmissivity maps. The measured transmissivity data from the Dulliu area in Yun-Lin county, Taiwan, is used as the case study. The spatial transmissivity maps are simulated by using sequential Gaussian simulation (SGS), and estimated by using natural log ordinary kriging and ordinary kriging. Estimation and simulation results indicate that SGS can reproduce the spatial structure of the investigated data. Furthermore, displaying a low spatial variability does not allow the ordinary kriging and natural log kriging estimates to fit the spatial structure and small-scale variation for the investigated data. The maps of kriging estimates are smoother than those of other simulations. A SGS with multiple realizations has significant advantages over ordinary kriging and even natural log kriging techniques at a site with a high variation in investigated data. These results are displayed in geographic information systems (GIS) as basic information for further groundwater study. Received: 27 August 1999 · Accepted: 22 February 2000  相似文献   

8.
An adequate representation of the detailed spatial variation of subsurface parameters for underground flow and mass transport simulation entails heterogeneous models. Uncertainty characterization generally calls for a Monte Carlo analysis of many equally likely realizations that honor both direct information (e.g., conductivity data) and information about the state of the system (e.g., piezometric head or concentration data). Thus, the problems faced is how to generate multiple realizations conditioned to parameter data, and inverse-conditioned to dependent state data. We propose using Markov chain Monte Carlo approach (MCMC) with block updating and combined with upscaling to achieve this purpose. Our proposal presents an alternative block updating scheme that permits the application of MCMC to inverse stochastic simulation of heterogeneous fields and incorporates upscaling in a multi-grid approach to speed up the generation of the realizations. The main advantage of MCMC, compared to other methods capable of generating inverse-conditioned realizations (such as the self-calibrating or the pilot point methods), is that it does not require the solution of a complex optimization inverse problem, although it requires the solution of the direct problem many times.  相似文献   

9.
浅海海底起伏和速度变化对OBC资料成像质量产生较大影响。建立浅海海底表层速度模型不仅能够解决OBC资料的静校正问题,也可用于海底反射系数计算、双检资料合并、多次波压制等,但是,目前针对浅海海底表层速度建模的研究还不多。文中提出了针对浅海地区OBC资料的海底表层速度建模的三维初至走时反演技术,主要包括:(1)震源位置校正技术。根据地震波在海水中传播特征,把在海水中激发的震源位置校正至海底,使震源和接收点都位于海底,利于初至走时反演计算;(2)快速三维初至走时反演方法。利用回折波走时和射线方程,形成了高效率初至走时反演方法。将该技术应用于胜利油田莱州湾浅海区海底OBC资料的处理中,建立了三维海底表层速度模型,用此速度模型进行静校正,取得了良好的应用效果。  相似文献   

10.
地下水反应运移模型具有参数个数众多,观测数据类型多样的特点。为了探究不同类型观测数据在反应运移模拟数据同化中的数据价值,构建了三氯乙烯降解反应运移模型的理想算例,基于水头和浓度两种类型观测数据,采用集合卡尔曼滤波方法推估渗透系数和贮水系数的非均质空间分布,讨论了影响同化结果的因素。结果表明:与仅同化水头数据的结果相比,联合同化水头和浓度观测数据推估渗透系数场和贮水系数场时具有更高的精度,在观测数据拟合和模型预测方面也有更好的表现。与目前溶质运移模型、非饱和流模型等地下水模型中的研究结果相似,数据同化结果受样本数量,观测井的数量和位置的影响,合理优化布置监测井和选择样本数量可有效改善数据同化效果并提高计算效率。  相似文献   

11.
The representative anisotropic parameters for an aquifer located at the campus of the National Yunlin University of Science and Technology in Taiwan have been acquired. A constant-rate pumping test was carried out, and drawdown-time data were collected from ten observation wells. Applications of the conventional aquifer test analysis, which assumes aquifer homogeneity for each observed well hydrograph, yielded spatially varying transmissivity and storage coefficient estimates, contradicting the homogeneous assumption. A direct approach and a nonlinear-least squares minimization of distance-drawdown data were then employed to analyze anisotropy of the transmissivity of an equivalent homogeneous aquifer. Results show that the direction and values of anisotropic transmissivities vary with time and the estimates depend on the number of observation wells used. These field results are consistent with results from recent theoretical investigations which questioned the suitability of the conventional aquifer test analysis.  相似文献   

12.
山东淄博市大武水源地裂隙岩溶水中污染物运移的数值研究   总被引:11,自引:0,他引:11  
朱学愚  刘建立 《地学前缘》2001,8(1):171-178
在分析研究淄博市大武水源地裂隙岩溶含水层的水力性质和污染物运移特征的基础上 ,对裂隙岩溶水的水头和污染物运移进行数值研究。目前国内外对裂隙岩溶水进行数值计算时 ,通常用等价多孔介质模型 ,但裂隙岩溶介质和多孔介质有很大不同。裂隙岩溶介质的储水和导水空间为裂隙网络 ,导水系数大 ,地下水的实际平均流速比孔隙水大得多 ,但给水度和贮水系数小。当用等价多孔介质模型进行模拟时应考虑这些特点。对于污染物运移的模拟 ,要同时求解水头方程和对流弥散方程 ,可采用MODFLOW和MT3D软件进行模拟。研究区裂隙岩溶水水头的数值计算表明 ,等效多孔介质模型水头的拟合误差能满足国标GB/T144 97- 93的要求。各时段地下水水量均衡计算的精度也满足要求。对流弥散方程的数值计算 ,由于Peclet数高达 95 .6 7,对流占绝对优势 ,可能存在数值弥散和数值振荡 ,因而采用多种方法进行了比较。对于同一问题 ,同时采用上游有限差分法 (UFDM) ,混合的欧拉拉格朗日方法 (特征线法MOC、改进特征线法MMOC和混合特征线法HMOC) ,总变异消减法(TVD)进行计算 ,并比较其结果。结果表明 ,混合特征线法 (HMOC)和总变异消减法 (TVD)比较适合于对流占优势的运移问题计算。由于渗透系数K和有效孔隙度θ对溶质运移结果的影响很大 ,?  相似文献   

13.
Particle-tracking simulation offers a fast and robust alternative to conventional numerical discretization techniques for modeling solute transport in subsurface formations. A common challenge is that the modeling scale is typically much larger than the volume scale over which measurements of rock properties are made, and the scale-up of measurements have to be made accounting for the pattern of spatial heterogeneity exhibited at different scales. In this paper, a statistical scale-up procedure developed in our previous work is adopted to estimate coarse-scale (effective) transition time functions for transport modeling, while two significant improvements are proposed: considering the effects of non-stationarity (trend), as well as unresolved (residual) heterogeneity below the fine-scale model. Rock property is modeled as a multivariate random function, which is decomposed into the sum of a trend (which is defined at the same resolution of the transport modeling scale) and a residual (representing all heterogeneities below the transport modeling scale). To construct realizations of a given rock property at the transport modeling scale, multiple realizations of the residual components are sampled. Next, a flow-based technique is adopted to compute the effective transport parameters: firstly, it is assumed that additional unresolved heterogeneities occurring below the fine scale can be described by a probabilistic transit time distribution; secondly, multiple realizations of the rock property, with the same physical size as the transport modeling scale, are generated; thirdly, each realization is subjected to particle-tracking simulation; finally, probability distributions of effective transition time function are estimated by matching the corresponding effluent history for each realization with an equivalent medium consisting of averaged homogeneous rock properties and aggregating results from all realizations. The proposed method is flexible that it does not invoke any explicit assumption regarding the multivariate distribution of the heterogeneity.  相似文献   

14.
Uncertainty in future reservoir performance is usually evaluated from the simulated performance of a small number of reservoir realizations. Unfortunately, most of the practical methods for generating realizations conditional to production data are only approximately correct. It is not known whether or not the recently developed method of Gradual Deformation is an approximate method or if it actually generates realizations that are distributed correctly. In this paper, we evaluate the ability of the Gradual Deformation method to correctly assess the uncertainty in reservoir predictions by comparing the distribution of conditional realizations for a small test problem with the standard distribution from a Markov Chain Monte Carlo (MCMC) method, which is known to be correct, and with distributions from several approximate methods. Although the Gradual Deformation algorithm samples inefficiently for this test problem and is clearly not an exact method, it gives similar uncertainty estimates to those obtained by MCMC method based on a relatively small number of realizations.  相似文献   

15.
A method for estimating the stress–strain state of a rock massif in the vicinity of underground facilities is substantiated. This method is based on solution of the boundary inverse problem of defining the components of an external stress field from the acoustic sounding data. The acoustic sounding data used are the arrival times of diving head longitudinal waves, recorded in a long mine shaft. Numerical experiments have revealed the optimal arrangement of the recording network and the limited relative error in the input data, which, taken together, provide for solvability of the inverse problem.  相似文献   

16.
A hierarchical scale-up framework is formulated to study the scaling characteristics of reservoir attributes and input dispersivities at the transport modeling scale, where heterogeneity distribution exhibits both non-stationarity (trend) and sub-scale variability. The proposed method is flexible to handle heterogeneities occurring at multiple scales, without any explicit assumption regarding the multivariate distribution of the heterogeneity. This paper extends our previous work by incorporating the effects of non-stationarity into the modeling workflow. Rock property at a given location is modeled as a random variable, which is decomposed into the sum of a trend (available on the same resolution of the transport modeling scale) and a residual component (defined at a much smaller scale). First, to scale up the residual component to the transport modeling scale, the corresponding volume variance is computed; by sampling numerous sets of “conditioning data” via bootstrapping and constructing multiple realizations of the residual components at the transport modeling, uncertainty due to this scale-up process is captured. Next, to compute the input dispersivity at the transport modeling scale, a flow-based technique is adopted: multiple geostatistical realizations of the same physical size as the transport modeling scale are generated to describe the spatial heterogeneity below the modeling scale. Each realization is subjected to particle-tracking simulation. Effective longitudinal and transverse dispersivities are estimated by minimizing the difference in effluent history for each realization and that of an equivalent average medium. Probability distributions of effective dispersivities are established by aggregating results from all realizations. The results demonstrate that both large-scale non-stationarity and sub-scale variability are both contributing to anomalous non-Fickian behavior. In comparison with our previous work, which ignored large-scale non-stationarity, the non-Fickian characteristics observed in this study is dramatically more pronounced.  相似文献   

17.
Two Artifacts of Probability Field Simulation   总被引:1,自引:0,他引:1  
Probability field simulation is being used increasingly to simulate geostatistical realizations. The method can be faster than conventional simulation algorithms and it is well suited to integrate prior soft information in the form of local probability distributions. The theoretical basis of probability field simulation has been established when there are no conditioning data; however, no such basis has been established in presence of conditioning data. Realizations generated by probability field simulation show two severe artifacts near conditioning data. We document these artifacts and show theoretically why they exist. The two artifacts that have been investigated are (1) local conditioning data appear as local minima or maxima of the simulated values, and (2) the variogram model in range of conditioning data is not honored; the simulated values have significantly greater continuity than they are supposed to. These two artifacts are predicted by theory. An example flow simulation study is presented to illustrate that they affect more than the visual appearance of the simulated realizations. Notwithstanding the flexibility of the probability field simulation method, these two artifacts suggest that it be used with caution in presence of conditioning data. Future research may overcome these limitations.  相似文献   

18.
An artificial neural network (ANN) model is proposed for the simultaneous determination of transmissivity and storativity distributions of a heterogeneous aquifer system. ANNs may be useful tools for parameter identification problems due to their ability to solve complex nonlinear problems. As an extension of previous study—Karahan H, Ayvaz MT (2006) Forecasting aquifer parameters using artificial neural networks, J Porous Media 9(5):429–444—the performance of the proposed ANN model is tested on a two-dimensional hypothetical aquifer system for transient flow conditions. In the proposed ANN model, Cartesian coordinates of observation wells, associated piezometric heads and observation time are used as inputs while corresponding transmissivity and storativity values are used as outputs. The training, validation and testing processes of the ANN model are performed under two scenarios. In scenario 1, all the sampled data are used through the simulation time. However, in the scenario 2, there are data gaps due to irregular observations. By using the determined synaptic network weights, transmissivity and storativity distributions are predicted. In addition, the performance of the proposed ANN is tested for different noise data conditions. Results showed that the developed ANN model may be used in simultaneous aquifer parameter estimation problems.  相似文献   

19.
Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.  相似文献   

20.
Stochastic fractal (fGn and fBm) porosity and permeability fields are conditioned to given variogram, static (or hard), and multiwell pressure data within a Bayesian estimation framework. Because fGn distributions are normal/second-order stationary, it is shown that the Bayesian estimation methods based on the assumption of normal/second-order stationary distributions can be directly used to generate fGn porosity/permeability fields conditional to pressure data. However, because fBm is not second-order stationary, it is shown that such Bayesian estimation methods can be used with implementation of a pseudocovariance approach to generate fBm porosity/permeability fields conditional to multiwell pressure data. In addition, we provide methods to generate unconditional realizations of fBm/fGn fields honoring all variogram parameters. These unconditional realizations can then be conditioned to hard and pressure data observed at wells by using the randomized maximum likelihood method. Synthetic examples generated from one-, two-, and three-dimensional single-phase flow simulators are used to show the applicability of our methodology for generating realizations of fBm/fGn porosity and permeability fields conditioned to well-test pressure data and evaluating the uncertainty in reservoir performance predictions appropriately using these history-matched realizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号