首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Motor vehicles historically have been dangerous locations to shelter in during tornado events. Throughout the twentieth century, motor vehicle design has become safer while tornado forecasting has become better understood. Despite such advances, tornado fatalities in motor vehicles still occur today, and some events periodically result in high numbers of deaths (e.g., ten motor vehicle occupants were killed by a single tornado in Garland, Texas, in 2015). We seek to examine all US tornado-induced motor vehicle fatalities documented between 1991 and 2015. Our findings indicate that motor vehicle fatalities have not significantly changed during this study period. We attribute annual fatality totals to persons lacking awareness of impending dangers coupled with numbers of significant tornado events for a given year. We find most fatalities result when vehicles are lofted or passengers are ejected, and this most typically occurs at the EF3–EF5 intensity thresholds. Fatalities that occur at weaker tornado winds (EF0–EF2) are most often attributed to collapsing debris (mostly trees) on vehicles. Spatially, motor vehicle fatalities are greatest in the Deep South and southern Great Plains regions where overall tornado and nighttime tornado frequencies are greatest. Some of the largest motor vehicle fatality events have resulted from tornadoes not being distinctly visible to motorists; such events have been characterized by tornadoes occurring at night or by tornadoes not appearing as “classic funnels.”  相似文献   

2.
Storm Surges from Extra-Tropical Cyclones   总被引:1,自引:0,他引:1  
Danard  M. B.  Dube  S. K.  Gönnert  G.  Munroe  Adam  Murty  T. S.  Chittibabu  P.  Rao  A. D.  Sinha  P. C. 《Natural Hazards》2004,32(2):177-190
The possible influence of climate change on the tracks of the extra-tropical cyclones as well as storm surges is studied. Two differentdata bases have been used: one for the Great Lakes of North America and the otherfor the German Bight in the North Sea of Europe. For the Great Lakes region,significant east-west and north-south shifts in the tracks of ETC'S with decadal periodicities have been observed. However, there was no trend in the amplitudes of storm surges. The most important result for the Great Lakes is that, depending upon its position relative to the constantly shifting storm tracks, a given location could eitherexperience a major storm surge or could miss out completely.The storm surges in the German Bight in general, and at Cuxhaven in particular, appear to show a slightly increasing trend in the latterpart of the 20th century. However, the most significant result for the German Bightis that the number of storm tides (i.e., multiple peaks in a given storm surge event)definitely has shown an increase in the second half of the 20th century. This increase isinterpreted as due to the influence of meso-scale weather systems embedded in the synoptic scale ETCs.  相似文献   

3.
A methodology is presented for assessing the average changes in groundwater recharge under a future climate. The method is applied to the 1,060,000 km2 Murray-Darling Basin (MDB) in Australia. Climate sequences were developed based upon three scenarios for a 2030 climate relative to a 1990 climate from the outputs of 15 global climate models. Dryland diffuse groundwater recharge was modelled in WAVES using these 45 climate scenarios and fitted to a Pearson Type III probability distribution to condense the 45 scenarios down to three: a wet future, a median future and a dry future. The use of a probability distribution allowed the significance of any change in recharge to be assessed. This study found that for the median future, climate recharge is projected to increase on average by 5% across the MDB but this is not spatially uniform. In the wet and dry future scenarios the recharge is projected to increase by 32% and decrease by 12% on average across the MDB, respectively. The differences between the climate sequences generated by the 15 different global climate models makes it difficult to project the direction of the change in recharge for a 2030 climate, let alone the magnitude.  相似文献   

4.
全球气候变化对中国未来地表径流的影响   总被引:21,自引:0,他引:21       下载免费PDF全文
本文应用改进的水分平衡模型研究了不同气候变化情景下中国未来地表径流的变化。结果表明:基于不同的气候变化情景模拟所得的地表径流变化在空间上有差异,总体上,中国未来的地表径流将增加;长江上游地区的地表径流春季下降但在夏季增加,而下游地区的则相反,夏季径流下降而春季径流剧增;气溶胶对地表径流变化方面有影响,但在各个气候变化情景下缺乏一致性。  相似文献   

5.
Heavy snowfalls can pose natural hazards in the North American Great Lakes region. Maximum annual snowfalls are presented from an extensive data base at 82 long-period-of-record stations. In the absence of site-specific information, these data should be useful to designers, planners, and resource managers in the region. A relationship exists between maximum snowfalls and latitude because the northern Great Lakes climate is cooler and drier than the climate of the southern Great Lakes. A relationship between longitude and maximum snowfalls appears to be based on the longitudinal variation of precipitable water vapor aloft. No apparent relationship exists between maximum snowfall and elevation when station data are analyzed without regard to data from lake-effect zones. However, when one lake-effect region was analyzed in detail, an orographic effect was clearly evident in both maximum and average annual snowfalls.  相似文献   

6.
The predictability of dangerous atmospheric phenomena such as tornado outbreaks has generally been limited to a week or less. However, recent work has demonstrated the importance of the Rossby wavetrain phasing over the United States in establishing outbreak-favorable environments. The predictability of Rossby wavetrain phasing is strongly related to numerous climate-scale interannual variability indices, which are predictable many months in advance. To formalize the relationship between interannual variability indices and seasonal tornado outbreak frequency, indices derived from monthly mean Northern Hemisphere 500-hPa and 1000-hPa geopotential height fields and Ni?o 3.4 indices for ENSO phase were compared to annual tornado outbreak seasonal frequencies. Statistical models predicting seasonal outbreak frequency were established using linear(stepwise multivariate linear regressione SMLR) and nonlinear(support vector regressione SVR) statistical modeling techniques.The stepwise methodology revealed predictors that are important in establishing outbreak-favorable environments at long lead times. Additionally, the results of the statistical modeling revealed that the nonlinear SVR technique reduced root mean square errors produced by the control SMLR technique by 28% and provided more consistent forecasts. A preliminary physical analysis revealed that years with high outbreak frequencies were associated with the presence of 500-mb troughs over the central and western US during the peak of outbreak season, while lower frequencies were consistent with ridging over the US or northwest flow over the Plains. These patterns support the results of the statistical modeling, which demonstrate the utility of geopotential height variability as a predictability measure of outbreak frequency.  相似文献   

7.
The authors illustrate a statistical point process model that uses the spatial occurrence of nonviolent tornadoes to predict the distribution of the rare, violent tornadoes that occur during springtime across the US central Great Plains. The average rate of nonviolent tornadoes is 55 per 104 km2 per 62 years which compares with an average rate of only 1.5 violent tornadoes per 104 km2 over the same period (less than 3 %). Violent tornado report density peaks at 2.6 per 104 km2 (62 yr) in the city but is only 0.7 per 104 km2 in the countryside. The risk of a violent tornado is higher by a factor of 1.5, on average, in the vicinity of less violent tornadoes after accounting for the population bias. The model for the occurrence rate of violent tornadoes indicates that rates are lower by 10.3 (3.6, 16.5) % (95 % CI) for every 1 km increase in distance from the nearest nonviolent tornado, controlling for distance from the nearest city. Model significance and the distance-from-nearest nonviolent tornado parameter are not sensitive to population threshold or the definition of a violent tornado. The authors show that the model is useful for generating a catalogue of touchdown points that can be used as a component to a tornado catastrophe model.  相似文献   

8.
Environmental controls on stone decay processes are rapidly changing as a result of changing climate. UKCP09 projections for the 2020s (2010–2039) indicate that over much of the UK seasonality of precipitation will increase. Summer dryness and winter wetness are both set to increase, the latter linked to projected precipitation increases in autumn and spring months. If so, this could increase the time that stone structures remain wet and possibly the depth of moisture penetration, and it appears that building stone in Northern Ireland has already responded through an increased incidence of algal ‘greening’. This paper highlights the need for understanding the effects of climate change through a series of studies of largely sandstone structures. Current and projected climatic trends are therefore considered to have aesthetic, physical and chemical implications that are not currently built into our models of sandstone decay, especially with respect to the role played by deep-seated wetness on sandstone deterioration and decay progression and the feedbacks associated with, for example surface algal growth. In particular, it is proposed that algal biofilms will aid moisture retention and further facilitate moisture and dissolved salt penetration to depth. Thus, whilst the outer surface of stone may continue to experience frequent wetting and drying associated with individual precipitation events, the latter is less likely to be complete, and the interiors of building blocks may only experience wetting/drying in response to seasonal cycling. A possible consequence of deeper salt penetration could be a delay in the onset of surface deterioration, but more rapid and effective retreat once it commences as decay mechanisms ‘tap into a reservoir of deep salt’.  相似文献   

9.
Observed and projected changes in climate have serious socio-economic implications for the Caribbean islands. This article attempts to present basic climate change information—based on previous studies, available observations and climate model simulations—at spatial scales relevant for islands in the Caribbean. We use the General Circulation Model (GCM) data included in the Coupled Model Intercomparison Project phase 3 (CMIP3) and the UK Hadley Centre regional climate model (RCM) data to provide both present-day and scenario-based future information on precipitation and temperature for individual island states. Gridded station observations and satellite data are used to study 20th century climate and to assess the performance of climate models. With main focus on precipitation, we also discuss factors such as sea surface temperature, sea level pressure and winds that affect seasonal variations in precipitation. The CMIP3 ensemble mean and the RCM successfully capture the large-scale atmospheric circulation features in the region, but show difficulty in capturing the characteristic bimodal seasonal cycle of precipitation. Future drying during the wet season in this region under climate change scenarios has been noted in previous studies, but the magnitude of change is highly uncertain in both GCM and RCM simulations. The projected decrease is more prominent in the early wet season erasing the mid-summer drought feature in the western Caribbean. The RCM simulations show improvements over the GCM mainly due to better representation of landmass, but its performance is critically dependent on the driving GCM. This study highlights the need for high-resolution observations and ensemble of climate model simulations to fully understand climate change and its impacts on small islands in the Caribbean.  相似文献   

10.
Storm Surge Hazard in Canada   总被引:3,自引:2,他引:3  
Storm surges occur frequently in Canada mainlydue to extra-tropical cyclones (ETC'S) also referred to as winter storms. The hurricanes from the Gulf of Mexico can affect eastern Canada including Lakes Ontario and Erie regions, after they get modified and acquire some extra-tropical characteristics. Storm surges have occurred both on the Atlantic and Pacific coasts, in the Gulf of St.Lawrence, St.Lawrence Estuary, Bay of Fundy, Hudson Bay, James Bay, Northwest Passage, Beaufort Sea, the Great Lakes and other large lakes such as Lake Winnipeg.Squall lines which are embedded in the largerscale synoptic systems like the ETC'S could also generate storm surges (referred to as edge waves) in Lakes Huron, Erie and Ontario (edge waves are most prominent in Lake Michigan, but Canada has no territory touching this lake). The effect of climate change on storm surges in the Canadian water bodies could be two-fold. First, there may be some possible intensification of the weather systems and the associated wind fields resulting in bigger surges. Second, and probably even more relevant, is an east-west and north-south shift in the tracks of the weather systems, which could expose certain new areas to storm surge activity.A high priority for proper assessment of storm surge hazard is the production of maps showing inundation zones for storm surges that might occur in populated coastal areas. Such maps can be used to improve public awareness of tsunamis and for planning purposes (i.e., to reduce or avoid the risk).  相似文献   

11.
Shane, Linda C. K. 1987 03 01: Late-glacial vegetational and climatic history of the Allegheny Plateau and the Till Plains of Ohio and Indiana, U.S.A. Boreas , Vol. 16, pp. 1–20. Oslo. ISSN 0300–9483.
Pollen evidence from the Allegheny Plateau and the Till Plains south of the Great Lakes shows marked post-glacial vegetation gradients. C. 15,500–11,000 B.P .: On the Plateau, spruce forest was rapidly established, persisted for 2,000 years, then began a gradual change to deciduous-conifer forest. On the Till Plains, open spruce forest tundra closed slowly over 1,000 years, declined rapidly c . 13,500 B.P., and a deciduous open woodland developed. C. 11,000–10,300 B.P .: On the Till Plains, a brief cooling is recorded by increases in the abundance of spruce and fir, contemporaneous with the European Younger Dryas. No clear change is seen on the Plateau. 10,300–4,000 B.P .: Warming and/or drying occurred in both areas, as hemlock and jack/red pine trees immigrated, followed by white pine. Conifers disappeared from the Till Plains by 9,800 B.P., but pine and hemlock trees may have persisted on the Plateau. After 10,000 B.P. mixed deciduous forest was established across the entire region. Between 8,000 and 4,000 B.P., further warming/drying is indicated on the Till Plains with development of open oak forest and lake shallowing, and on the Plateau by a minor increase in herbs, lake shallowing, and reduction in pine.  相似文献   

12.
SRA1B情景下中国主要作物需水预测   总被引:6,自引:1,他引:5       下载免费PDF全文
分析气候变化下中国主要作物需水规律,有助于从粮食安全与水资源可持续利用角度应对气候变化。根据IPCC提供的SRA1B情景下大气环流模式MIROC3.2的输出,利用FAOPenman-Monteith公式计算参考作物腾发量;根据FAO作物系数、SAGE作物分布与柯本气候分类,得到计算单元的作物系数,根据参考作物腾发量与作物系数估算作物需水量;考虑需水与有效降水旬尺度的随机匹配,预测SRA1B情景下未来50年中国各地区主要作物的灌溉需水量。结果表明,参考作物腾发量总体上呈上升趋势,全国平均增加约8%;作物需水量总体上呈增加趋势,东北地区平均增加约10%;灌溉需水量总体上呈增加趋势,东北与华南增加显著。分析表明,SRA1B情景下气温升高是作物需水量增加的主要原因,降水的增加使华北地区灌溉需水量的增加不显著,降水的减少使东北与华南灌溉需水量显著增加。  相似文献   

13.
The climate of the Great Plains during the middle Holocene varied considerably, but overall it was marked by a north–south gradient of increasingly warmer and drier conditions, with a reduction in effective moisture, surface water, and resource abundance, and an increase in resource patchiness, sediment weathering, erosion, and aeolian activity. Pronounced drought conditions were most evident on the Southern High Plains. Understanding the human responses to middle Holocene climates is complicated by a lack of archaeological data, which is partly a result of geomorphic processes that removed or deeply buried sites of this age, and by the varying adaptive responses of hunter-gatherers during this period. On the Southern High Plains, where drought was most severe, surface and groundwater sources dried and bison populations were diminished, prompting substantial adaptive changes, including local abandonment, well-digging to tap underground water, and a widening of the diet breadth to incorporate higher-cost, lower-return seed and plant resources. Sites of this age on the Central and Northern Plains also show a possible increase in diet breadth (with the incorporation of plant foods in the diet), and perhaps changes in settlement mobility (including possible shift into higher elevation areas, or mapping-on to extant rivers and springs). But linking those changes to middle Holocene drought is less straightforward.  相似文献   

14.
《Earth》2008,90(3-4):79-96
Observations on glacier extent from Ecuador, Peru and Bolivia give a detailed and unequivocal account of rapid shrinkage of tropical Andean glaciers since the Little Ice Age (LIA). This retreat however, was not continuous but interrupted by several periods of stagnant or even advancing glaciers, most recently around the end of the 20th century. New data from mass balance networks established on over a dozen glaciers allows comparison of the glacier behavior in the inner and outer tropics. It appears that glacier variations are quite coherent throughout the region, despite different sensitivities to climatic forcing such as temperature, precipitation, humidity, etc. In parallel with the glacier retreat, climate in the tropical Andes has changed significantly over the past 50–60 years. Temperature in the Andes has increased by approximately 0.1 °C/decade, with only two of the last 20 years being below the 1961–90 average. Precipitation has slightly increased in the second half of the 20th century in the inner tropics and decreased in the outer tropics. The general pattern of moistening in the inner tropics and drying in the subtropical Andes is dynamically consistent with observed changes in the large-scale circulation, suggesting a strengthening of the tropical atmospheric circulation. Model projections of future climate change in the tropical Andes indicate a continued warming of the tropical troposphere throughout the 21st century, with a temperature increase that is enhanced at higher elevations. By the end of the 21st century, following the SRES A2 emission scenario, the tropical Andes may experience a massive warming on the order of 4.5–5 °C. Predicted changes in precipitation include an increase in precipitation during the wet season and a decrease during the dry season, which would effectively enhance the seasonal hydrological cycle in the tropical Andes.These observed and predicted changes in climate affect the tropical glacier energy balance through its sensitivity to changes in atmospheric humidity (which governs sublimation), precipitation (whose variability induces a positive feedback on albedo) and cloudiness (which controls the incoming long-wave radiation). In the inner tropics air temperature also significantly influences the energy balance, albeit not through the sensible heat flux, but indirectly through fluctuations in the rain–snow line and hence changes in albedo and net radiation receipts.Given the projected changes in climate, based on different IPCC scenarios for 2050 and 2080, simulations with a tropical glacier–climate model indicate that glaciers will continue to retreat. Many smaller, low-lying glaciers are already completely out of equilibrium with current climate and will disappear within a few decades. But even in catchments where glaciers do not completely disappear, the change in streamflow seasonality, due to the reduction of the glacial buffer during the dry season, will significantly affect the water availability downstream. In the short-term, as glaciers retreat and lose mass, they add to a temporary increase in runoff to which downstream users will quickly adapt, thereby raising serious sustainability concerns.  相似文献   

15.
Oxygen and hydrogen isotopes were measured in wood cellulose and cellulose-nitrate from trees that grew in different hydrologic settings in southwestern Ontario, Canada. An isotope model that accounts for isotopic fractionations associated with photosynthesis in plants was applied to the stable isotope data to infer past meteoric water isotopic composition and seasonal air moisture variations. The model-inferred climate data was rationalized in terms of the trees' hydrologic environment and weather characteristics of the Great Lakes region. The result is an account of summer and winter conditions in southwestern Ontario for 275 years (1610 to 1885) prior to instrumental climate records. Conditions between 1610 and 1750 are inferred to have been cooler and drier than present. This was followed by a warm-moist climate interval between 1750 and 1885 during which there was an increase in winter precipitation. Cool-dry conditions were recorded instrumentally in this region at the end of the nineteenth century.  相似文献   

16.
Current trends in Great Lakes shipping   总被引:2,自引:0,他引:2  
Shipping on the Great Lakes has changed rapidly in recent years. Internal Great Lakes traffic consists almost entirely of bulk movements, primarily of iron ore, coal, limestone, and grain. Ore shipments are mainly of taconite concentrate. Low-sulfur coal from the western areas of the United States is now moving downbound through the lakes, a movement in the opposite direction from the predominantly upbound movement of Appalachian coal. Opening of a larger lock in 1970 between lakes Superior and Huron has initiated a new generation of lake vessels, which are three times the size of the previous lake ships, and are too large to transit the Welland Canal and the St. Lawrence Seaway; for the first time since 1959 the largest “lakers” are land-locked. General cargo traffic between the Great Lakes and overseas has been declining rapidly since 1970, largely as the result of the rapid development of container ships, and the Interstate highway system, which increases the competitive advantages of salt-water ports.  相似文献   

17.
The impacts of climate change and human pressure in groundwater have been greatest threats facing small islands. This paper represents a case study of groundwater responses towards the climate change and human pressures in Manukan Island Malaysia. SEAWAT-2000 was used for the simulations of groundwater response in study area. Simulations of six scenarios representing climate change and human pressures showed changes in hydraulic heads and chloride concentrations. Reduction in pumping rate and an increase in recharge rate can alter the bad effects of overdrafts in Manukan Island. In general, reduction in pumping rate and an increase in recharge rate are capable to restore and protect the groundwater resources in Manukan Island. Thus, for groundwater management options in Manukan Island, scenario 2 is capable to lessen the seawater intrusion into the aquifer and sustain water resources on a long-term basis. The selection of scenario 6 is the preeminent option during wet season. The output of this study provides a foundation which can be used in other small islands of similar hydrogeological condition for the purpose of groundwater resources protection.  相似文献   

18.
Regional climate models project significant changes in temperature and rainfall over the Greater Mekong Subregion over the twenty-first century. The potential impacts of climate change on areas affected by waterlogging and shallow saline groundwater in Northeast Thailand was investigated using the variable density groundwater model SEAWAT supported with recharge estimates derived from the hydrologic model HELP3. The focal area is the 154 km2 Huai Kamrian subwatershed. Changes in groundwater salinity and waterlogging areas at the middle and end of this century were predicted using the calibrated model. These predictions used the dynamically downscaled PRECIS regional climate change scenarios generated by ECHAM4 GCM A2 and B2 scenarios. Recharge rates are predicted to increase as a result of the higher intensity of rainfall. Shallow watertable areas are projected to increase by approximately 23 % from existing conditions during the middle of the century and up to 25 % by the end of this century. Although the precise rate and timing of climate change impacts are uncertain, all of the scenarios clearly point towards an extension in the area of waterlogging and area affected by shallow saline groundwater areas. Given that areas affected by shallow saline watertables are predicted to expand for both climate change scenarios as well as for the base case, it is concluded that climate change will have a significant impact on the area affected by salinity and waterlogging areas for both climate change scenarios. Evaluation of management options that explore the adaptation to saline environments and to means to reduce salt affected areas are required.  相似文献   

19.
Various lines of evidence support conflicting interpretations of the timing, abruptness, and nature of climate change in the Great Plains during the Pleistocene–Holocene transition. Loess deposits and paleosols on both the central and northern Great Plains provide a valuable record that can help address these issues. A synthesis of new and previously reported optical and radiocarbon ages indicates that the Brady Soil, which marks the boundary between late Pleistocene Peoria Loess and Holocene Bignell Loess, began forming after a reduction in the rate of Peoria Loess accumulation that most likely occurred between 13.5 and 15 cal ka. Brady Soil formation spanned all or part of the Bølling-Allerød episode (approximately 14.7–12.9 cal ka) and all of the Younger Dryas episode (12.9–11.5 cal ka) and extended at least 1000 years beyond the end of the Younger Dryas. The Brady Soil was buried by Bignell Loess sedimentation beginning around 10.5–9 cal ka, and continuing episodically through the Holocene. Evidence for a brief increase in loess influx during the Younger Dryas is noteworthy but very limited. Most late Quaternary loess accumulation in the central Great Plains was nonglacigenic and was under relatively direct climatic control. Thus, Brady Soil formation records climatic conditions that minimized eolian activity and allowed effective pedogenesis, probably through relatively high effective moisture.Optical dating of loess in North Dakota supports correlation of the Leonard Paleosol on the northern Great Plains with the Brady Soil. Thick loess in North Dakota was primarily derived from the Missouri River floodplain; thus, its stratigraphy may in part reflect glacial influence on the Missouri River. Nonetheless, the persistence of minimal loess accumulation and soil formation until 10 cal ka at our North Dakota study site is best explained by a prolonged interval of high effective moisture correlative with the conditions that favored Brady Soil formation. Burial of both the Brady Soil and the Leonard Paleosol by renewed loess influx probably represents eolian system response that occurred when gradual change toward a drier climate eventually crossed the threshold for eolian activity. Overall, the loess–paleosol sequences of the central and northern Great Plains record a broad peak of high effective moisture across the late Pleistocene to Holocene boundary, rather than well-defined climatic episodes corresponding to the Bølling-Allerød and Younger Dryas episodes in the North Atlantic region.  相似文献   

20.
The possible impact of El Niño-Southern Oscillation (ENSO) and macrocirculation patterns (CPs) on local precipitation are examined and analyzed here under climate change conditions. First the relationship between the input and output variables under present conditions is established using two models, a fuzzy rule-based model (FRBM) and a multivariate linear regression model (MLRM), then this historical relationship is extended under climate change conditions. The input variables for these models consist of lagged ENSO-data (represented by the Southern Oscillation Index, SOI) and 500 hPa height data clustered into macrocirculation patterns over the western United States, while the output is an estimate of monthly local precipitation at selected Arizona stations. To overcome the lack of SOI data under climate change, several scenarios are constructed by perturbing the historical SOI data in a design of experiments framework. The results of the experimental design show that, in general, the precipitation amount seems to decrease under climate change. While the stations and months have differences, as expected, the perturbed scenarios do not show significant differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号