首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Two varve counts made nearly 20 yrs apart and by different authors in the small and well sheltered meromictic lake of Valkiajärvi were compared with a view to establishing how similar, or otherwise, these two independent varve chronologies might be. The results were significant, the difference between the two varve counts being less than 2% for most of the sediment length, even though the average varve thickness was only 0.3 mm. The continuous and essentially uniform varve record - so far the longest in Finland - covers 8400 yrs and could be applied for accurate dating of palaeoenvironmental indicators in the sediment. As an example, we present a varve-dated pollen diagram for Lake Valkiajärvi.In addition, some magnetic parameters (susceptibility, ARM, SIRM) were measured on the sediment sequence to support the stratigraphic division and correlation of the cores, and to outline the development of the basin since the last deglaciation. Magnetic variables reflected mainly the variation in minerogenic material in the sediment, and were therefore related to changes in the catchment. The magnetic parameters also showed a drastic change some 6000 yrs ago, the reason for which, unfortunately, is still not fully understood.  相似文献   

2.
A study of sedimentary processes and sediment yields in a high arctic meromictic lake (Lake C2, Taconite Inlet, Northern Ellesemere Island, Canada) was undertaken from May 1990 through August 1992 to understand the links between climatic controls, hydrology, and the laminated sediment record preserved in the lake. Understanding the relationships between processes and the sediment record is critical for interpreting the climatic significance of the laminated sediments in a region where high resolution climate proxy records are quite limited.Sediment transport to Lake C2 is dominated by fluvial processes. During the early part of the melt season slushflows transport sediment to the lake surface. Subsequently, suspended sediment is delivered to the lake by the main inlet stream and distributed lakeward by a plume emanating the main inlet channel. Due to the strong density stratification of the water column the plume distributes sediment downlake by overflows and interflows in the epilimnion. In general, overflows are generated by lower discharge events whereas interflows penetrate to the halocline during high discharge with increased suspended sediment concentration.Sediment trap analysis demonstrates that suspended sediment transport and deposition responds to diurnal through annual changes in stream discharge. Seasonal and annual sediment trap yields agree with average accumulation rates determined from varve thickness measurements and cumulative suspended sediment discharge from the main inlet stream indicating a close link between climatological, hydrological, and sedimentological controls and varve deposition.This is the fourth in a series of papers published in this issue on the Taconite Inlet Lakes Project. These papers were collected by Dr R. S. Bradley.  相似文献   

3.
Sediments in Lower Murray Lake, northern Ellesmere Island, Nunavut Canada (81°21′ N, 69°32′ W) contain annual laminations (varves) that provide a record of sediment accumulation through the past 5000+ years. Annual mass accumulation was estimated based on measurements of varve thickness and sediment bulk density. Comparison of Lower Murray Lake mass accumulation with instrumental climate data, long-term records of climatic forcing mechanisms and other regional paleoclimate records suggests that lake sedimentation is positively correlated with regional melt season temperatures driven by radiative forcing. The temperature reconstruction suggests that recent temperatures are ~2.6°C higher than minimum temperatures observed during the Little Ice Age, maximum temperatures during the past 5200 years exceeded modern values by ~0.6°C, and that minimum temperatures observed approximately 2900 varve years BC were ~3.5°C colder than recent conditions. Recent temperatures were the warmest since the fourteenth century, but similar conditions existed intermittently during the period spanning ~4000–1000 varve years ago. A highly stable pattern of sedimentation throughout the period of record supports the use of annual mass accumulation in Lower Murray Lake as a reliable proxy indicator of local climatic conditions in the past.
Pierre FrancusEmail:
  相似文献   

4.
A composite record of varve sedimentation is presented from high arctic meromictic Lake C2. The combination of a short runoff and sediment transport season with the strong density stratification of the lake lead to the formation of annual sediment couplets. This conclusion was confirmed by 210Pb determinations. High intra-lake correlation of the varves allowed the construction of a composite record of varve sedimentation from overlapping segments of multiple sediment cores. Cross-dating between core segments isolated counting errors in individual cores, that could be attributed to minor sediment disturbances and vague structures. Resolving counting errors by cross-dating reduced the chronological error of the composite series to an estimated ±57 years.The Lake C2 series is the first non-ice cap, high resolution late-Holocene environmental record from the Canadian high arctic. The composite varve series compares favorably with other high resolution proxies from the arctic, in particular with the ice core records from Devon Island and Camp Century, Greenland. A general correspondence between the varve record and other North American proxies for the little Ice Age period (1400–1900 AD) suggests that the Lake C2 record is sensitive to large-scale synoptic changes.This is the tenth in a series of papers published in this issue on the Taconite Inlet Lakes Project. These papers were collected by Dr R. S. Bradley.  相似文献   

5.
Annually-laminated clastic sediments preserve a high resolution proxy record of paleoclimate, provided that allochthonous sedimentation represents a response to meteorological forcing of watershed sediment transfer. Here, we demonstrate this linkage, and illustrate a calibration process using the most recent 40 years of a varve record from Lake C2 (82°50 N; 78°00 W), three years of field measurements, and meteorological data for 1951–92 from nearby AES weather station Alert. Field measurements were used to correlate proxies of the energy available for snowmelt (e.g. air temperature) and daily suspended sediment discharge (SSQ). Our calibration was extended through use of weather data from Alert. Both mean daily air temperature at Echo, and daily SSQ, were well correlated with air temperature at 600 m above Alert, as obtained from the 1200 Z (0800 LST) rawinsonde sounding. Accordingly, we used pooled 1990 and 1992 Alert 600 m data to predict the lagged daily sediment discharge into Lake C2 (adj. r 2=0.43). Daily values were summed each year in order to produce an annual series of predicted sediment transfer to the lake. The original varve chronology was based on eight sediment cores recovered from the deep basin of the lake (>80 m). Although low-frequency fluctuations of the varve and predicted SSQ series agree, slight tuning of the varve record optimizes the correlation between them. Adjustments were based on examination of weather data for specific years, reexamination of sediment core thin sections, and by aligning fluctuations in the two series which closely matched. Although the original chronology is reasonably well correlated with 600 m temperatures at Alert (for JJA mean, r=0.41, significant at 0.01), the adjusted chronology is both better correlated and contains a more precise climate signal (r=0.54 for July mean, significant at 0.01). This is the first calibrated varve record produced from Arctic lake sediments, and demonstrates that varves from Lake C2 contain a paleoclimatic record. We believe the post-facto manipulations required to produce the adjusted varve chronology are reasonable given the uncertainties inherent in varve counting, and the lack of any independent corroborating chronostratigraphic markers.This is the ninth in a series of papers published in this issue on the Taconite Inlet Lakes Project. These papers were collected by Dr R. S. Bradley.  相似文献   

6.
In this paper, the relationships between paleo-precipitation and the regional influence of El Nino Southern Oscillation (ENSO) in South America are assessed from a high-resolution calendar varve-thickness record. Two short laminated sediment cores (53 and 61 cm length) from Lago Puyehue (40° S) are analysed by continuous varve measurements through the last 600 years. The calendar varve years are determined by the occurrence of graded planktonic-rich layers. The annual sediment accumulation rates are reconstructed by using the standard varve-counting methods on thin sections. The 1980–2000 varve-thickness record is interpreted in terms of climate through correlation with limnological and local monthly instrumental climate databases. The comparison between the standardized varve thickness with the instrumental records reveals a strong correlation (r = 0.75, р = 0.07) between the total varve thickness and the austral autumn/winter precipitation. We argue that strong austral winter winds and precipitation are the forcing factors for the seasonal turn-over and phytoplankton increase in the lake sediments. During strong El Nino events the precipitation and the winds decrease abnormally, hence reducing the thickness of the biogenic sediments deposited after the winter turn-over. Our results show one significant regional maximum peak of winter precipitation (>900 mm) in the mid 20th century and a significant period with lower winter precipitation (<400 mm) before the 15th century, i.e., the late Medieval Warm Period. The first peak in the mid 20th century is confirmed by the regional precipitation database. The influence of ENSO cycles over the last 600 years is assessed by spectral analysis in Fagel et al. (2007). The possible influence of the regional volcanism and/or the seismic activity on the local climate record is also discussed. This is the sixth in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M. -F. Loutre and E. Chapron.  相似文献   

7.
While palaeohydrological changes in non-outlet lakes provide a key proxy indicator of past climatic fluctuations, for lake systems which have been chemically insensitive, it is necessary to use indicators of water depth rather than salinity to reconstruct their hydro- climatic histories. A study of diatoms in the modern sediments of Sidi Ali, a non-outlet lake in the Middle Atlas of Morocco, has shown a statistically significant correlation between water depth and the ratio of planktonic to littoral diatoms. This relationship is used to calibrate fossil diatom assemblages from a lake sediment core from the same lake to provide a quantitative index of water levels over the pastc. 6500 years. Palaeoecological evidence suggests that climatically induced hydrological variations have dominated the bulk of the mid-late Holocene lake sediment record, with significant human-induced catchment disturbance only occurring during the twentieth century. The pattern of water depth fluctuations suggests that the response time of the regional groundwater system to climatic forcing is <100 years.This is the third in a series of papers published in this issue on the paleolimnology of arid regions. These papers were presented at the Sixth International Palaeolimnology Symposium held 19–21 April, 1993 at the Australian National University, Canberra, Australia. Dr A. R. Chivas served as guest editor for these papers.  相似文献   

8.
The 14 papers in this Special Issue of the Journal of Paleolimnology report new records of Holocene climate and environmental change from Arctic lakes, with emphasis on the last 2000 years. The study sites span the high latitudes of North America and extend into northwestern Europe. The studies rely on multiple proxy indicators to reconstruct past climate, including: varve thicknesses, chironomid, diatom, and pollen assemblages, biogenic-silica and organic-matter content, oxygen-isotope ratios in diatoms, and the frequency of lake-ice-rafted aggregates. These proxies primarily document changes in past summer temperatures, the main control on physical and biological processes in lakes at high latitudes. The records will be integrated into a larger network of paleoclimate sites to investigate the spatial and temporal variability of climate change and to compare the paleoclimate inferences with the output of general circulation models. This is the Introduction to a series of fourteen papers published as a special issue dedicated to reconstructing late Holocene climate change from Arctic lake sediments. The special issue is a contribution to the International Polar Year and was edited by Darrell Kaufman.  相似文献   

9.
Climate records during the last millennium are essential in placing recent anthropogenic-induced climate change into the context of natural climatic variability. However, detailed records are still sparse in Alaska, and these records would help elucidate climate patterns and possible forcing mechanisms. Here we present a multiple-proxy sedimentary record from Kepler Lake in south-central Alaska to reconstruct climatic and environmental changes over the last 800?years. Two short cores (85 and 101?cm long) from this groundwater-fed marl lake provide a detailed stable isotope and sediment lithological record with chronology based on four AMS 14C dates on terrestrial macrofossils and 210Pb analysis. The ??18O values of inorganic calcite (CaCO3) range from ?17.0 to ?15.7???, with the highest values during the period of 1450?C1850 AD, coeval with the well-documented Little Ice Age (LIA) cold interval in Alaska. The high ??18O values during the cold LIA are interpreted as reflecting shifts in atmospheric circulation. A weakening of the wintertime Aleutian low pressure system residing over the Gulf of Alaska during the LIA would have resulted in 18O-enriched winter precipitation as well as a colder and possibly drier winter climate in south-central Alaska. Also, elevated calcite contents of >80?% during the LIA reflect a lowering of lake level and/or enhanced seasonality (warmer summer and colder winter), as calcite precipitation in freshwater lakes is primarily a function of peak summer temperature and water depth. This interpretation is also supported by high ??13C values, likely reflecting high aquatic productivity or increased residence times of the lake water during lower lake levels. The lower lake levels and warmer summers would have increased evaporative enrichment in 18O, also contributing to the high ??18O values during the LIA. Our results indicate that changes in atmospheric circulation were an important component of climate change during the last millennium, exerting strong influence on regional climate in Alaska and the Arctic.  相似文献   

10.
Holocene paleolimnological records (diatoms, organic content, spectrally inferred sediment chlorophyll-a) from three West Greenland lakes (~67°N) situated along a transect from the outer coast to a nunatak at the periphery of the Greenland Ice Sheet are used to explore the nature of regional postglacial lake development and its relationship to Holocene climate evolution. The lakes were deglaciated asynchronously by approximately 4?ka (earliest on the coast) and thus their sediment records document different starting points of Holocene ontogeny, both temporally and paleoclimatically. Despite similar time-transgressive characteristics of the diatom stratigraphies, overarching climatic factors, principally effective moisture, and eolian inputs, govern individual lake development. The transition to Neoglaciation between 5.6 and 4?ka BP marks a shift toward a cooler, moister, windier climate from the aridity and higher temperatures of the mid-Holocene (8?C6?ka BP). A shift toward increased aridity, windiness, and eolian activity is documented in the interior lakes over the last 500?years. These lake records demonstrate the sensitivity of freshwater lakes in arid regions to changes in effective moisture and highlight the role of wind and eolian activity in Arctic lake environments.  相似文献   

11.
A comprehensive study of meteorological, hydrological, limnological and sedimentological conditions in the watersheds of density-stratified (meromictic) lakes around Taconite Inlet, Northern Ellesmere Island, N.W.T., Canada was carried out from 1990–1992. Lakes C1 and C2 contain seawater trapped by isostatic uplift as the former embayments became isolated from the sea. These lakes, and Lake C3, contain varved sediments which provide an annually resolvable paleoclimatic record. By studing the major systems influencing sedimentation in one of these lakes (Lake C2) a better understanding of the climatic controls on varve formation, and hence on the paleoclimatic signal in the varved sediment record, was obtained. The varves of Lake C2 provide a proxy record of summer temperature for the region.This is the first in a series of papers published in this issue on the Taconite Inlet Lakes Project. These papers were collected by Dr R. S. Bradley.  相似文献   

12.
Koltjärnen and Nylandssjön are two closely situated lakes (<2 km apart) in northern Sweden. During the past century, distinct varved sediments have formed in these lakes. Nylandssjön has two varved, deep basins. Since lake and catchment characteristics superficially appear very similar for the two lakes and they are exposed to the same climate, one would expect the sediment varves to be similar. This investigation compares the varves in the two deep basins of Nylandssjön, and in the two lakes. The comparison of basins of Nylandssjön shows that varve thickness, water content and annual accumulation rates of organic matter and nitrogen are correlated for the period (1970–2003). The grey-scale curves are only clearly similar in about 50% of the varves. In the between-lake comparison varve thickness, water content and annual accumulation rates of organic matter and nitrogen are correlated for the period (1950–1996). However, the annual accumulation rates of dry mass, minerogenic matter and biogenic silica differ between the lakes, as well as within-varve successions in grey-scale. A general explanation to the differences is that the prerequisites for varve formation are not totally similar because of differences in catchment size, catchment- to-lake material fluxes, lake productivity and land-use influence. This study illustrates the complex relationships that exist between a lake, its catchment, in-lake productivity and formation of sediment varves. As a consequence, we must not apply a too simplistic view of the potential of varves as past climatic indicators, especially if the lakes are affected by land-use.  相似文献   

13.
A multiple core study was conducted on laminated minerogenic sediments from Lake C2, Northern Ellesmere Island, Canadian High Arctic. Lateral persistence, distal thinning, variation in grain size of these laminations as well as present-day processes of highly seasonal sediment transfer into the lake basin suggest that clastic varves have been formed. Sedimentation rates based on 210Pb dating agree well with sedimentation rates based on lamination counts giving further evidence that laminations are annual. Errors in varve counting were reduced from 12% to < 2% using the multi-core approach of cross-correlating all records. Varved sediments are occasionally interrupted by thick coarse-grained layers, which are interpreted as deposits of turbidity currents and may be related to extremely high discharge events and slope failures of the delta front. Micro-laminated sediments spanning the last two centuries were studied in detail. Suspension settling is the dominant process of deposition depending upon stream discharge which is controlled by nival melt and summer temperatures. Application of varve chronology thus allows to use lamination thickness measurements as source of high resolution proxy data for palaeoclimatic reconstruction.This is the fifth in a series of papers published in this issue on the Taconite Inlet Lakes Project. These papers were collected by Dr R. S. Bradley.  相似文献   

14.
The sediments of Lake Kilpisjärvi were described and analysed for element chemistry and pollen to study the effects of treeline fluctuations in the catchment. Lake Kilpisjärvi is one of the largest lakes in Finnish Lapland, with its catchment partly above the treeline and partly covered with mountain birch woodland. Although the presence of subfossil pine shows that the catchment was previously covered with mountain birch woodland during the Holocene, the present pine treeline has receded 70 km from the lake. Pollen analysis results show that pine immigrated to the area during the Atlantic chrone and that 7000 BP pine forests occupied much of the catchment. Pine started to decline around 3500 BP and vegetation in the catchment became more open. Alkaline and alkaline earth metals and some transition metals document the change from glaciolacustrine clay to more organic sediment. However, these geochemical trends give no indication of changes in erosion rate resulting from changes in catchment vegetation. These changes were detected by plotting suitable element ratios. In addition to the conventional Si/Al and Na/K ratios, the Ca labile /Si ratio and especially the ratio of labile Ca to K were found to be useful. Of all the elements analysed, potassium showed the strongest reaction to changes in the balance between weathering and erosion. During the phase of denser forests, chemical weathering was dominant, whereas during phases of open catchment, physical erosion prevailed. The effects of changing climate and catchment vegetation were distinguished from other signals. For instance, iron and manganese were enriched at the top of the core due to diffusion and, at the same time, old precipitate layers persisted after burial to deeper levels in the sediment. These iron and manganese rich layers had an effect on the distributions of cobalt, zinc, and vanadium, showing increased concentrations of these elements. Other effects that made the interpretation of chemical records difficult were the effect of ongoing mineralization of organic matter in the top layers of sediment and the effect of biogenic silicon. Owing to the stable conditions of the lake, the desired chemical signals were detected, despite the masking trends.  相似文献   

15.
This study uses the Holocene lake sediment of Lake ?ū?i (Latvia, Vidzeme Heights) for environmental reconstruction with multi-proxy records including lithology, computerised axial tomography scan, grain-size analysis, geochemistry, diatoms and macrofossils, supported by AMS radiocarbon dating. Numerical analyses (PCA; CONISS) reveal three main phases in the development of the lake. Response to the Lateglacial–Holocene transition in Lake ?ū?i took place around 11,300 cal. BP. Organogenic sedimentation started with distinctive 5-cm-thick peat layer and was followed by lacustrine sedimentation of carbonaceous gyttja. Several findings of the peat layer with similar dated age and position at different absolute altitudes indicate that lake basin was formed by glaciokarstic processes. In the Early Holocene (until around 8,500 cal. BP), the lake was shallow and holomictic, surrounded by unstable catchment with erosion and inflow events. Predominance of diatom species of Cyclotella and Tabellaria, large numbers of respiratory horns of phantom midge pupae (Chaoboridae), high Fe/Mn ratio, as well as the presence of laminated sediments indicates the transition to a dimictic and oligo-mesotrophic lake conditions with high water level, anoxia in the near-bottom and stable catchment in the Middle Holocene (8,500–2,000 cal. BP). This contrasts with many hydrologically sensitive lakes in Northern and Eastern Europe in which the water level fell several meters during this period. During the Late Holocene (from 2,000 cal. BP to the present), the lithological and biotic variables reveal major changes, such as the increase in erosion (coarser grain-size fraction) and eutrophication [diatoms Aulacoseira ambigua (Grun.) Sim., Stephanodiscus spp., Cyclostephanos dubius (Fricke) Round]. Characteristics of lake-catchment system during the Late Holocene reflect anthropogenic signal superimposed on the natural forcing factors. To date, the Late Quaternary palaeolimnological reconstructions using lake sediment has been limited in the Baltic region. Therefore, findings from Lake ?ū?i provide important information about environmental and climatic changes that took place in this part of Eastern Europe. This study shows that the relative importance of climate and local factors has varied over the time and it is essential to consider the lake basin topography, catchment size and land cover as potential dominant forcing factors for changes in sedimentary signal.  相似文献   

16.
Reader Lake and Elbow Lake, two high-altitude lakes in the Uinta Mountains of Utah, are located approximately 2 km apart, at similar elevations, and within identical vegetation communities. Loss on ignition, carbon to nitrogen ratios, biogenic silica, and sediment grain size were analyzed throughout percussion cores retrieved from both lakes to construct continuous time series spanning 14 to ca. 2 ka BP. Given the proximity of the lakes, it is assumed that both were subjected to the same climatic forcing over this time. Accordingly, the first goal of this study was to consider these two multiproxy datasets in concert to yield an integrated paleoclimate record for this region. Close inspection of the records identified discrepancies indicating that the lakes responded to climate changes in different ways despite their proximity and similar setting. Clarifying these differences and understanding why the two lakes behaved differently at certain times was the second goal of this study. Overall, the paleoclimatic records document lake formation in the latest Pleistocene following glacier retreat. Buried glacier ice at the location of Reader Lake may have persisted through the Younger Dryas. Both lakes became biologically productive ca. 11.5 ka BP, and the first appearance of conifer needles indicates that trees had replaced alpine tundra in these watersheds by 10.5 ka BP. The interval from 10 to 6 ka BP was marked by a dramatic increase in precipitation, perhaps related to enhanced monsoonal circulation driven by the insolation maximum. The two lakes recorded this event in notably contrasting ways given their differing hydrogeomorphic settings. Precipitation decreased from 6 to 4 ka BP, and low water levels and drought conditions marked the interval from 4.0 to 2.7 ka BP. The integrated paleoclimate record developed from these cores provides a useful point of comparison with other records from the region. The differences between the records from these closely spaced lakes underscore the need to consider hydrogeomorphic setting when evaluating the suitability of a lake for a paleolimnological study.  相似文献   

17.
An 8000-year record of palaeoproductivity, based on the chemical and chironomid stratigraphies from Lake Päijänne, S. Finland, was assessed with respect to known morphometric, climatic and anthropogenic events. A gradual trend of dystrophication and an associated decrease in aquatic production was detected during the Holocene, with the following exceptions: (1) high diatom and chironomid production around 8000-6000 cal yr BP, (2) eutrophication around 2000 cal yr BP, and (3) an anthropogenic signal during the last few decades.The changes in chironomid assemblages, before the past few decades, have mainly been shifts in concentration, but not in species composition. Variation in chironomid production was mainly explained by the accumulations of biogenic silicon, carbon and organic matter. Nutrient availability seems to be important in controlling biogenic silicon, which we use to infer past diatom production. The high production ca. 8000-6000 cal yr BP and the fluctuation in chironomid influx after ca. 2000 cal yr BP, however, were probably caused by the proposed warm/dry and cold/wet conditions during these times, respectively. These results highlight the sensitivity of boreal shield lake ecosystems to climatic forcing. In contrast, the pronounced change in the morphometry of the basin around 7000 cal yr BP had little effect on the trophic state of the lake. The human-induced trophic change during the past few decades has affected the Lake Päijänne ecosystem to an extent never experienced before during the last 8000-years.  相似文献   

18.
The varved sediment record from glacially-fed Lake Tuborg, Ellesmere Island, Nunavut, shows that only three large jökulhlaups have occurred there in the last millennium: 2003, 1993, and 1960. Detailed analyses of sediment microstructure and particle size, combined with in-situ hydrometeorological and limnological process studies, allowed jökulhlaup facies identification and discrimination from deposits from other processes. Deposits from large jökulhlaups are anomalously thick, typically lack internal structure, have sharp bases, and fine upwards. The ice-dammed lake above Lake Tuborg (the source of the jökulhlaups) likely changed its drainage style in 1960, from ice-dam overtopping to ice-dam flotation and glacial tunnel enlargement by melt widening, which allowed the lake to drain completely and catastrophically. Complete drainage of ice-dammed lakes by ice-dam flotation is rare in the region is due to the pervasiveness of cold-based ice. Twentieth century warming is likely responsible for some combination of dam thinning, lake expansion and deepening, and changing the thermal regime at the base of the dam. Anomalously thick individual varves were periodically deposited beginning in the nineteenth century, and their thickness increased with time. This likely reflects a combination of increased ice dam overtopping, subaqueous slope failures, sediment availability and rising air temperature. The varve record presented here significantly correlates with a previous, shorter record from Lake Tuborg. However, generally weak correlations are found between the new varve time series, regional records of air temperature, and glacial melt from ice cores on the Agassiz Ice Cap. It is hypothesized that on short timescales, sedimentation at the coring location reflects a complex and varying integration of multiple hydroclimatic, geomorphic and limnologic influences.  相似文献   

19.
We examine sediment dynamics in an upland, temperate lake system, Lake Bassenthwaite (NW England), in the context of changing climate and land use, using magnetic and physical core properties. Dating and analysis of the sedimentary records of nine recovered cores identify spatially variable sedimentation rates across the deep lake basin. Mineral magnetic techniques, supported by independent geochemical analyses, identify significant variations both in sediment source and flux over the last ∼2100 years. Between ∼100 years BC and ∼1700 AD, sediment fluxes to the lake were low and dominated by material sourced from within the River Derwent sub-catchment (providing 80% of the hydraulic load at the present day). Post-1700 AD, the lake sediments became dominantly sourced from Newlands Beck (presently providing ∼10% of the lake’s hydraulic load). Three successive, major pulses of erosion and increased sediment flux appear linked to specific activities within the catchment, specifically: mining activities and associated deforestation in the mid-late nineteenth century; agricultural intensification in the mid-twentieth century and, within the last decade, the additional possible impact of climate change. These results are important for all upland areas as modifications in climate become progressively superimposed upon the effects of previous and/or ongoing anthropogenic catchment disturbance.  相似文献   

20.
Sediment cores from two neighbouring lakes (Viitna Linajärv and Viitna Pikkjärv) in northern Estonia were studied to determine lake-level fluctuations during the Holocene and their impact on biogeochemical cycling. Organic matter and pollen records dated by radiocarbon and radiolead indicated a water level rise in both lakes during the early Holocene (c. 10 000–8000 BP). A regression followed around 7500 BP and several transgressions occurred during the latter half of the Holocene, c. 6500 and 3000 BP. Human impact during the last centuries has caused short-term lake-level fluctuations and accelerated sediment accumulation in the lakes. The differences in water depth led to variations in sediment formation. During 10 000–8000 BP (Preboreal and Boreal chronozones) mineral-rich sediments with coloured interlayers deposited in L. Linajärv. These sediments indicate intensive erosion from the catchment and oxygen-rich lake, which favoured precipitation of iron oxides and carbonates. Fluctuations in water depth, leaching of nutrients from catchment soils and climatic changes increased the trophy of L. Linajärv around 6000 BP. The subsequent accumulation of gyttja, the absence of CaCO3 and the decrease in both the C/N ratio and phosphorus content in the sediments also indicate anoxic conditions in the hypolimnion. The similarity in the development of L. Linajärv and L. Pikkjärv and their proximity made it possible to discern the impact of water depths changes on biogeochemical cycling in lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号