首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At this paper, we studied about the rock quality of Shirinrud dam site by engineering seismology. Shirinrud dam site is located 80 km far from Kerman and 18 km far from Hojadk village. The dam and its constructions are established in the Bidu Formation which consists of seven rock units, and the refraction profiles were surveyed on Jb3/2, Jb4, and Jb5 rock units. To evaluate the rock mass quality and basement topography at this site, nine refraction seismic profiles by primary waves and two refraction seismic profiles by secondary waves were surveyed. We used some methods such as Palmer method, the reciprocal method, plus–minus method, etc. to process and interpret data. Based on investigations, primary wave velocity in unit Jb3/2 varies between 2,100 and 2,200 m/s, in unit Jb4 is between 2,100 and 4,200 m/s, and in unit Jb5 is between 2,500 and 3,000 m/s. The Q values on these three units are 0.05, 1.2, and 1.9, and the rock mass rating (RMR) values are 27.1, 40.5, and 33.5, respectively. With respect to wave velocity, Q, and RMR values, the units Jb3/2, Jb4, and Jb5 are evaluated as very weak, intermediate, and weak, respectively.  相似文献   

2.
Thin and relatively thin anelastic layers (compared to the signal wavelength) generally represent hydrocarbon reservoirs, where the rock is a sandstone or a source rock saturated with brine, oil and gas. The study of the seismic response of these layers is important to detect the hydrocarbons on the basis of the reflection and transmission coefficients and the wave velocity and attenuation properties. Different seismic experiments (source-receiver configurations) can provide useful information to characterise its properties. In this work, we consider varying thicknesses and Q values of the layer and analyse the reflection and transmission coefficients. Moreover, we obtain spectrograms of surface seismic profiles and vertical and horizontal well profiles (VSP and HSP, respectively) to analyse their frequency content with offset due to variations of the attenuation properties of the layer. In addition, we compare the effects due to NMO stretching and intrinsic attenuation related to the low-frequency shadows (LFS) observed in real data after stacking, since LFS can have several causes. Ambiguity is present in this case, indicating that non-stretch NMO is required, otherwise an offset mute of the data may remove useful information regarding the intrinsic (physical) loss.  相似文献   

3.
D.H. Chung 《Tectonophysics》1977,42(1):T35-T42
The seismologically observed Pn velocity anomalies in the conterminous United States are restricted to the lithosphere, but the observed teleseismic delay-time variations are due principally to the regional variations in the physical state (i.e., thickness of lowvelocity zone and/or percent melt, etc.) of the asthenosphere. The observed low Pn velocity has been attributed to partial melting in the upper mantle, but it is shown that the partial-melting model alone cannot explain the seismologically observed Pn velocities in such an anomalous region as the Basin and Range Province. The present structure of the Basin and Range Province is possibly a result of rifting in the western conterminous United States; under it there may lie a mixed structure of old crust and mantle materials. The low-velocity zone under the Basin and Range Province would then be caused by downward chemical transition from the sub-Moho pyrolitic mantle material into a plagioclase-rich ophiolitic (old oceanic crust and upper mantle) composition and associated meltingand then into a peridotitic composition at the bottom of the lowvelocity zone. This mixed material model, with partial melting, would explain the low Pn velocity and low seismic Q in the region, as well as other geophysical observations.  相似文献   

4.
We applied a seismic tomography technique to arrival time data generated by local crustal earthquakes in central Anatolia in order to study the three-dimensional velocity and Vp/Vs structures and their relation with the complex tectonic processes and seismic activity occurring in the study region. The relatively equal and large number of both P- and S-wave arrival times comprising a total of 51,650 arrivals and the relatively uniform distribution of the recording stations imply that the obtained velocity anomalies are reliable features down to a depth of 40 km. This is also evident from the results of the checkerboard resolution test, hit count, and the ray-path coverage. The inversion results indicate the existence of strong lateral heterogeneities in the crust and uppermost mantle beneath central Anatolia. Prominent low-velocity anomalies are clearly imaged at all layers especially beneath existing volcanoes and the active fault segments. Higher-than-average Vp/Vs ratios are widely distributed, indicating the possible existence of over-pressurized fluids that may be responsible for the triggering of the large crustal earthquakes along the north and east Anatolian fault zones. We noticed that the seismic activity occurs mainly at the low-velocity areas and to a lesser extent in some high-velocity zones, perhaps because of the complex tectonics and geological structures. These observations imply that all the zones with velocity anomalies—either low or high—are potential sites for strain energy accumulation and subsequent release. The obtained velocity and Vp/Vs models are consistent with previous geophysical measurements conducted beneath central Anatolia and give much deeper understanding of the current seismotectonic processes occurring in the region.  相似文献   

5.
Shear wave velocity (V S) estimation is of paramount importance in earthquake hazard assessment and other geotechnical/geo engineering studies. In our study, the shear wave velocity was estimated from ground roll using multichannel analysis of surface wave (MASW) technique making use of dispersive characteristics of Rayleigh type surface waves followed by imaging the shallow subsurface basaltic layers in an earthquake-prone region near Jabalpur, India. The reliability of MASW depends on the accurate determination of phase velocities for horizontally traveling fundamental mode Rayleigh waves. Inversion of data from surface waves resulted in a shear wave velocity (V S) in the range of 200–1,200 m/s covering the top soil to weathering and up to bedrock corresponding to a depth of 10–30 m. The P-wave velocity (V P) obtained from refraction seismic studies at these locations found to be comparable with V S at an assumed specific Poisson’s ratio. A pair of selected set of V S profiles over basalt which did not result in a hazardous situation in an earthquake of moderate magnitude are presented here as a case study; in other words, the shear wave velocity range of more than 200 m/s indicate that the area is highly unlikely prone to liquefaction during a moderate or strong earthquake. The estimated depth to basalt is found to be 10–12 m in both the cases which is also supported by refraction studies.  相似文献   

6.
Eastern Anatolia is a region in the early stages of continent–continent collision and so provides a unique opportunity to study the early development of continental plateau. Located within the Alpine–Himalayan fold-thrust fault belt, the Anatolian plateau is geologically very complex, with over half of the surface area covered with late Cenozoic volcanics of diverse composition. The plateau is also seismically active and is dissected by numerous seismogenic faults predominantly of strike-slip motion. In this study, we determine 3-D tomographic images of the crust beneath eastern Anatolia by inverting a large number of arrival time data of P- and S-waves. From the obtained P- and S-wave velocity models, we estimated the Poisson’s ratio structures for a more reliable interpretation of the obtained velocity anomalies. Our tomographic results are generally consistent with the major tectonic features of the region. High P- and S-wave velocity anomalies are recognized near the surface, while at deeper crustal layers, low seismic wave velocities are widely distributed. Poisson’s ratio exhibits significant structural heterogeneities compared to the imaged velocity structure. The seismic activity is intense along highly heterogeneous zones and is closely associated with pre-existing faults in the central and western parts of the study area. Results of the checkerboard resolution test indicate that the imaged anomalies are reliable features down to a depth of about 40 km. The low-velocity/high Poisson’s ratio zones in the middle to lower crust are consistent with many geophysical observations such as strong Sn attenuation, low Pn and Sn velocity, and the absence of mantle lid, implying the presence of partial melt in the uppermost mantle.  相似文献   

7.
国瑞  侯贺晟  符伟  杨瑨  冯晅  卢占武  周怀来 《中国地质》2019,46(5):1137-1145
地震波在地下介质中传播时,地震波能量会出现一定程度的衰减,品质因子Q作为衡量地下岩石吸收衰减属性的重要参数,对描述岩性特征以及预测油气分布具有重要意义。本文针对深地震反射数据,利用基于S变换谱比法的Q值分析技术,获得了更加准确的Q值。以松辽盆地沙河子组为主要目标层,对穿过松科二井的叠后深地震反射剖面进行Q值计算,生成Q值剖面,总结出沙河子组Q值分布特征,同时结合松科二井测井、分层和气测异常资料进行分析,推断沙河子组为含气储层,为下一步深部储层预测提供思路,为东北地区深地勘查工程提供服务。  相似文献   

8.
Seismic body-wave and surface-wave data indicate the existence of a substantial lowvelocity, low-Q zone in the upper mantle beneath western North America. Conditions in this zone are distinctively different from those that are typical of the upper mantle in shield regions. The present study, using Walsh's model for partially melted rock, suggests a common mechanism for low-velocity and low-Q zones. This parametric study also indicates that the pronounced low-velocity, low-Q zone and anomalous travel-time delays of both P and S waves in the Basin and Range Province are consistent with the combined effects of high temperature, chemical composition, phase changes, and partial melting. The observed low Pn velocity in this region is consistent with high temperature, chemical composition, and the presence of a partially molten layer within the upper mantle, but the observed teleseismic delay times result principally from the thickness of the lowvelocity zone. The teleseismic delay-time variations are therefore related to the seismic Q distribution in the asthenosphere. Conditions a few kilometers beneath the Moho boundary influence the Pn velocity; however, the observed correlation among the teleseismic signal amplitudes, travel-time delays, and the upper mantle Q indicates that the Pn velocity is a better indicator of upper mantle Q than suggested by the Pn path alone. This knowledge of the upper mantle seems to account for the anomalous effects of the Basin and Range Province and other regions of similar tectonic nature on observations of teleseismic events. This will provide a practical technique for comparing seismic observations made in unstable tectonic regions with observations made in shield areas.  相似文献   

9.
The spatio-temporal variations of soil gas in the seismic fault zone produced by the 12 May 2008 Wenchuan Ms 8.0 earthquake were investigated based on the field measurements of soil gas concentrations after the main shock. Concentrations of He, H2, CO2, CH4, O2, N2, Rn, and Hg in soil gas were measured in the field at eight short profiles across the seismic rupture zone in June and December 2008 and July 2009. Soil-gas concentrations of more than 800 sampling sites were obtained. The data showed that the magnitudes of the He and H2 anomalies of three surveys declined significantly with decreasing strength of the aftershocks with time. The maximum concentrations of He and H2 (40 and 279.4 ppm, respectively) were found in three replicates at the south part of the rupture zone close to the epicenter. The spatio-temporal variations of CO2, Rn, and Hg concentrations differed obviously between the north and south parts of the fault zone. The maximum He and H2 concentrations in Jun 2008 occurred near the parts of the rupture zone where vertical displacements were larger. The anomalies of He, H2, CO2, Rn, and Hg concentrations could be related to the variation in the regional stress field and the aftershock activity.  相似文献   

10.
Explosion seismic experiments, gravity measurements and aeromagnetic surveys were made in the northern Mizuho Plateau including the Ongul Islands, East Antarctica, from 1979 to 1982 by the Japanese Antarctic Research Expeditions. The objective of these field operations was to determine the crustal structure along the 300 km-long oversnow traverse route between Syowa and Mizuho Stations. Three big shots were fired; at sea near Syowa Station, in an ice hole near Mizuho Station and in an ice hole between both stations. Twenty-seven temporal seismic stations were set up along the route. Gravity measurements were carried out at 30 points along this route. Aeromagnetic surveys over the area were made four times.In the seismic experiments, clear refracted waves from the Conrad (estimated depth 30 km) and the Moho (estimated depth 40 km) discontinuities were recorded. No layer with a velocity of less than 6 km/s was found in the Ongul Islands nor beneath the ice sheet in the surveyed area. The P-wave velocity in the upper layer varies with depth from 6.0 km/s on the surface to 6.4 km/s at a depth of 13 km. Comparing the observed record section with synthetic seismograms, it was derived that the Conrad was not associated with a sharp velocity discontinuity, but a linear velocity increase of 0.55 km/s in a transition zone of 2.4 km thick. Velocities of P* and Pn were determined as 6.95 km/s and 7.93 km/s assuming a flat layered structure.Bouguer gravity anomalies could not be calculated along the whole profile because of a lack of data on bedrock topography, so reduced gravity anomalies were calculated. These anomalies indicate no abrupt changes of the bedrock topography.  相似文献   

11.
The presence of fractures in reservoir rocks causes scattering of seismic wave energy. In this paper, we utilize the finite-difference modelling technique to study these scattering effects to gain more insights into the effects and assess the validity of using anisotropic wave scattering energy as a diagnostic tool to characterize fractured hydrocarbon reservoirs. We use a simplified fractured reservoir model with four horizontal layers with a fractured-layer as the third layer. The fractures are represented by grid cells containing equivalent anisotropic medium by the use of the linear slip equivalent model. Our results show that the scattered energy, quantified through estimates of the seismic quality factor (Q) is anisotropic, exhibiting a characteristic elliptical (\(\cos 2\theta \)) variations relative to the survey azimuth angle \(\theta \). The fracture normal is inferred from the minor axis of the Q ellipse. This direction correlates with the direction of maximum wave scattering. Minimum wave scattering occurs in the fracture strike direction inferred from the major axis of the Q ellipse. These results provide more complete insights into anisotropic wave scattering characteristics in fractured media and thus, validate the practical utility of using anisotropic attenuation attribute as an additional diagnostic tool for delineation of fracture properties from seismic data.  相似文献   

12.
The present study deals with the seismic site classification of Bahrah area, Wadi Fatima, to characterize the local site conditions. The dynamic behavior of sediments was studied by the application of surface wave inversion. The multichannel analysis of surface waves (MASW) shallow geophysical technique was utilized for site classification. MASW survey was carried out at 66 sites along with 13 seismic refraction profiles at suitable localities. MASW and seismic refraction profiles were processed and compared with the available borehole data. The integration of MASW techniques with seismic refraction and borehole data progressively enhanced the subsurface visualization and reliability of the shear wave velocity estimation in the subsurface in the study area. The subsurface shear-wave velocity model was achieved by the solution of an inverse problem-based dispersion of surface waves and propagation in a vertically heterogeneous medium. The 2D genetic algorithm was employed for the inversion of dispersion curves to obtain velocity and thickness of subsurface layers. The depth to engineering bedrock and velocity of shear waves in the first 30 m was deciphered and mapped. The depth of bedrock in study area varies from 4 to 30 m, and V S 30 ranges from 320 to 800 m/s. The most of study area falls in B and C class categories in addition to few sites of D class according to the NEHRP guidelines.  相似文献   

13.
We analyzed the short period Rayleigh waves from the first crustal-scale seismic refraction experiment in the Korean peninsula, KCRUST2002, to determine the shear wave velocity and attenuation structure of the uppermost 1 km of the crust in different tectonic zones of the Korean peninsula and to examine if this can be related to the surface geology of the study area. The experiment was conducted with two large explosive sources along a 300-km long profile in 2002. The seismic traces, recorded on 170 vertical-component, 2-Hz portable seismometers, show distinct Rayleigh waves in the period range between 0.2 s and 1.2 s, which are easily recognizable up to 30–60 km from the sources. The seismic profiles, which traverse three tectonic regions (Gyeonggi massif, Okcheon fold belt and Yeongnam massif), were divided into five subsections based on tectonic boundaries as well as lithology. Group and phase velocities for the five subsections obtained by a continuous wavelet transform method and a slant stack method, respectively, were inverted for the shear wave models. We obtained shear wave velocity models up to a depth of 1.0 km. Overall, the shear wave velocity of the Okcheon fold belt is lower than that of the Gyeonggi and Yeongnam massifs by  0.4 km/s in the shallowmost 0.2 km and by 0.2 km/s at depths below 0.2 km. Attenuation coefficients, determined from the decay of the fundamental mode Rayleigh waves, were used to obtain the shear wave attenuation structures for three subsections (one for each of the three different tectonic regions). We obtained an average value of Qβ− 1 in the upper 0.5 km for each subsection. Qβ− 1 for the Okcheon fold belt ( 0.026) is approximately three times larger than Qβ− 1 for the massif areas ( 0.008). The low shear wave velocity in the Okcheon fold belt is consistent with the high attenuation in this region.  相似文献   

14.
Three-dimensional P and S wave velocity models of the crust under the Granada Basin in Southern Spain are obtained with a spatial resolution of 5 km in the horizontal direction and 2 to 4 km in depth. We used a total of 15407 P and 13704 S wave high-quality arrival times from 2889 local earthquakes recorded by both permanent seismic networks and portable stations deployed in the area. The computed P and S wave velocities were used to obtain three-dimensional distributions of Poisson's ratio (σ) and the porosity parameter (Vp×Vs). The 3-D velocity images show strong lateral heterogeneities in the region. Significant velocity variations up to ±7% in P and S velocities are revealed in the crust below the Granada Basin. At shallow depth, high-velocity anomalies are generally associated with Mesozoic basement, while the low-velocity anomalies are related to the neogene sedimentary rocks. The south–southeastern part of the Granada Basin exhibits high σ values in the shallowest layers, which may be associated with saturated and unconsolidated sediments. In the same area, Vp×Vs is high outside the basin, indicating low porosity of the mesozoic basement. A low-velocity zone at 18-km depth is found and interpreted as a weak–ductile crust transition that is related to the cut-off depth of the seismic activity. In the lower crust, at 34-km depth, a clear slow Vp and Vs anomalous zone may indicate variations in lithology and/or with the rigidity of the lower crust rocks.  相似文献   

15.
Seismic refraction data collected on Spitsbergen in 1978 are used to obtain a crustal model assuming plane horizontal layering. The observed travel-times and wave forms are compared with those of synthetic seismograms computed for various published crustal models. The more detailed models adequately explain some, but not all, of the features of the synthetics. These models are adjusted, utilizing travel times and wave-form amplitudes until a satisfactory fit is achieved. The best-fitting model consists of a 4-layer crust having thicknesses of 4.1, 10.0 7.4 and 5.8 km and compressional velocities of 4.65, 6.21, 6.30 and 6.65 km/sec with increasing depth. The uppermost mantle has a velocity of 7.90 km/sec. A comparison of observed and synthetic Pn waveforms supports the existence of a thin low-velocity zone beginning at a depth of about 5 km beneath the Moho boundary. An inversion of seismic surface wave group velocity data yields a shear-wave model which is compatible with the compressional wave model.  相似文献   

16.
This study contains the finding of geophysical investigations conducted at the proposed science complex site at Lagos State University, Ojo, Lagos, Nigeria. Surface wave and seismic refraction tests are non-invasive seismic techniques and have been used to determine the shear wave velocity profile of soil deposits. The methods provide a simplified characterization of subsurface in two-dimensional (2D) (distance and depth) profiles. Seismic records obtained were processed/analyzed by Seis-Imager software to obtain one-dimensional shear wave velocity (Vs) distribution. Multiple Vs obtained were integrated and used to construct two-dimensional Vs map. The measured P- and S-wave velocities were also used to estimate Poisson’s ratio, rigidity modulus, and N-values. The study had shown that the area investigated composed mainly of loose sediments (clay formation) to the depth of 12 m with P-wave velocity ranging between 125 and 205 m/s and corresponding S-wave velocity between 60 and 100 m/s. The results presented in this study will be vital information for the engineers in construction of the proposed science complex.  相似文献   

17.
We calculated the quality factor, Qc, at frequencies from 6 to 24 Hz using coda waves of 97 aftershocks of the Petatlan, Mexico, earthquake (March 14, 1979; MS=7.6). The data were recorded parallel (between Acapulco and Playa Azul) and perpendicular (between Petatlan and Mexico City) to the coast. The results are the following: at 12 and 24 Hz there is no significant difference in the attenuation (Qc−1) along the two paths; at 6 Hz, Qc−1 has a large scatter in both directions. This observation indicates strong site effects at this frequency; average Qc−1 is slightly higher between Petatlan–Acapulco (toward SE) than between Petatlan–Playa Azul (toward NW); and at high frequencies, Qc−1 remains essentially constant perpendicular to the coast. These results show that the large seismic wave amplifications in Mexico City are caused by shallow site effects.  相似文献   

18.
This study uses the seismic refraction and noise measurements to investigate the velocity structure of the subsurface and emphasize the advantage of ambient vibration over the conventional seismic refraction technique. Field measurements were carried out at nine sites in and around Zagazig city. Shallow seismic refraction data were interpreted using the delay time method to obtain the two-dimension ground model at each site. Ambient vibration arrays are used to infer the one-dimensional compressional and shear wave velocity profiles through two main steps. The first step is to derive the dispersion curve from the recorded signals using the frequency-wavenumber method. The second is to invert the dispersion curve to obtain the site velocity profiles. The results of the compressional wave velocities obtained from seismic refraction technique showed that the subsurface consists of a number of layers ranging from two to four layers and give a good agreement with the results of the seismic wave velocities obtained from the ambient vibration arrays. The ambient vibration arrays gave a deeper depth of penetration than the other method, providing more information on the subsurface structure without any disturbance to the environment. This work provides reliable estimates of the seismic velocity structures of both shallow and deep sedimentary layers within the area of interest.  相似文献   

19.
Delhi, the capital of India, has experienced mild seismic shaking during several earthquakes in the past. The large variations of depth to bedrock and ground water table coupled with different soil types at different locations of Delhi necessitate a seismic microzonation study. Dynamic soil properties such as shear wave velocity, modulus reduction and damping characteristics of local soils are the basic and essential input parameters for conducting even a preliminary ground response analysis which is an essential input in microzonation studies. Shear wave velocity is not measured routinely due to its high cost and lack of the required expertise. Several researchers in the past developed correlations between shear wave velocity (V s ) and routinely measured N values. In the present study, shear wave velocity profiles measured in the field at more than 80 borehole locations to a depth of about 20 to 32m using Spectral Analysis of Surface Waves (SASW) are presented and correlations between shear wave velocity and N values are also presented for use by engineers and designers. Results of strain and stress controlled cyclic triaxial tests on remoulded samples of sand-silt mixtures in the high strain range are used for generating the modulus reduction and damping curves and are compared with the well-known curves in the literature. The results presented in this article can be used for microzonation studies as well as site specific ground response analyses at Delhi.  相似文献   

20.
Seismic tomography studies reveal distinct velocity and VP/VS anomalies in the mantle transition zone (MTZ) beneath the Yangtze Craton and Cathaysia Block in southeastern China. The anomalies under the Yangtze Craton are characterized by high velocity (both VP and VS) and low VP/VS ratio, while those beneath the Cathaysia Block are characterized by low velocity (especially VS) and high VP/VS ratio. Here, we conduct analyses of phase relations and thermoelasticity to model the effects of thermal and chemical homogeneities in the MTZ, by taking advantage of recent simultaneous VP and VS seismic tomography results under southeastern China. We attempt to quantify the seismic tomography results and examine the effects of temperature, chemical composition, and water (or protonization) on velocity anomalies in the deep mantle. We find VP/VS to be a powerful parameter in distinguishing the various effects of temperature, chemical composition, and protonization. We conclude that an ancient stagnated oceanic slab is most likely the main cause of the observed fast velocity and low VP/VS anomalies in the MTZ under the Yangtze Craton. This ancient slab material is most likely a product of paleo Pacific subduction around 100–125 Ma ago, when the oceanic plate abruptly changed its direction of motion. Such an event has been shown to be closely related to the magmatic activities around eastern China, the ultrahigh-pressure metamorphism zone between the Yangtze Craton and the North China Craton, and the destruction of the lower crust of the North China Craton. The anomalies under the Cathaysia Block, on the other hand, are likely due to dehydration-induced partial melting of subducted Pacific slab materials. Here the large low VS anomaly in MTZ coincides with the extensive Mesozoic to Cenozoic igneous features on the surface, suggesting a state with lower viscosities in the upper mantle. Dehydration-induced partial melting in MTZ may have also promoted deformation of the South China fold belt. Our results suggest that these lithospheric processes are directly related to the tectonic interaction between the oceanic and continental plates in southeastern China and that a better understanding of past deep mantle dynamic processes may place important constraints on the evolution of the cratons in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号