首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ia型超新星起源于碳氧白矮星在质量接近钱德拉塞卡极限时的热核爆炸,并被广泛地用作宇宙学距离的标准烛光.然而, Ia型超新星的前身星系统和爆炸机制还存在很多不明确的地方.近几十年来, Ia型超新星的星周环境得到了越来越多的关注.星周介质的空间分布性质为探究Ia型超新星的物理起源提供了重要线索.同时星周尘埃的散射会在Ia型超新星晚期的光变曲线、光谱和偏振等方面产生可观测效应.光谱上正常的Ia型超新星可以分成两类:喷射物速度正常和高速Ia型超新星.对比两者的光变曲线可以发现高速Ia型超新星在光极大后几个月内有明显颜色偏蓝的超出.该蓝色超出可以通过星周介质中的尘埃散射拟合得到.同时, Ia型超新星晚期光谱的拟合可以限制星周尘埃的颗粒大小等性质,晚期的偏振信号可以有效地限制星周尘埃的空间分布.拟合结果表明针对Ia型超新星晚期的多次图像偏振观测是揭示其星周尘埃环境特征的重要手段.  相似文献   

2.
The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is a key to solving the mystery of dark energy. Improving the calibration of SNe Ia increases their power as cosmological standard candles. We find tentative evidence for a correlation between the late-time light-curve slope and the peak luminosity of SNe Ia in the B band; brighter SNe Ia seem to have shallower light-curve slopes between 100 and 150 d from maximum light. Using a Markov Chain Monte Carlo (MCMC) analysis in calibrating SNe Ia, we are able to simultaneously take into consideration the effect of dust extinction, the luminosity and light-curve width correlation (parametrized by  Δ m 15  ), and the luminosity and late-time light-curve slope correlation. For the available sample of 11 SNe Ia with well-measured late-time light curves, we find that correcting for the correlation between luminosity and late-time light-curve slope of the SNe Ia leads to an intrinsic dispersion of 0.12 mag in the Hubble diagram. Our results have significant implications for future supernova surveys aimed to illuminate the nature of dark energy.  相似文献   

3.
A self-similar, hydrodynamic model is derived and used to generate SNe light-curves. It is found that the temporal development of the SN light-curve is governed by a ‘dynamic time’ parameter, and that the observed near-identical, normalized light-curves of Type Ia SNe suggest that they have evolved from progenitor stars of the same central density. Fitting the model parameters to observed Type Ia SNe light-curves suggests that the SNe have originated from the same mass progenitors. The model also provides a theoretical basis for the Phillips observation relating the absolute magnitude of the Type Ia SN to its half-width. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
GAIA is the 'super- Hipparcos ' satellite scheduled for launch in 2010 by the European Space Agency. It is a scanning satellite that carries out multi-colour, multi-epoch photometry on all objects brighter than 20th mag. We conduct detailed simulations of supernovae (SNe) detection by GAIA . Supernovae of each type are chosen according to the observed distributions of absolute magnitudes, and located in nearby galaxies according to the local large-scale structure. Using an extinction model of the Galaxy and the scanning law of the GAIA satellite, we calculate how many SNe are detectable as a function of the phase of the light curve. Our study shows that GAIA will report data on ∼21 400 SNe during the five-year mission lifetime, of which ∼14 300 are SNe Ia, ∼1400 are SNe Ib/c and ∼5700 are SNe II. Using the simulations, we estimate that the numbers caught before maximum are ∼6300 SNe Ia, ∼500 SNe Ib/c and ∼1700 SNe II. During the mission lifetime, GAIA will issue about 5 SNe alerts a day.
The most distant SNe accessible to GAIA are at a redshift   z ∼ 0.14  and so GAIA will provide a huge sample of local SNe. There will be many examples of the rarer subluminous events, over-luminous events, SNe Ib/c and SNe II-L. SNe rates will be found as a function of galaxy type, as well as extinction and position in the host galaxy. Amongst other applications, there may be about 26 SNe each year for which detection of gravitational waves is possible and about 180 SNe each year for which detection of gamma-rays is possible. GAIA 's astrometry will provide the SN position to better than milliarcseconds, offering opportunities for the identification of progenitors in nearby galaxies and for studying the spatial distribution of SNe of different types in galaxies.  相似文献   

5.
Ia超新星作为测量遥远星距离(从而测定宇宙膨胀速率)的“标准烛光”,已经成为具有重要意义的天体,主要介绍当前Ia超新星研究的理论和观测进展,光谱分光及测光证据表明,Ia超新星是由吸积碳氧白短星热核爆炸产生,但有关Ia超新星前身星双星系统及流体动力学模型仍是有争议的,蓝Ia超新星具有相对均匀的峰值光度,它是天文学家已的校准得最好的示距天体,近年来,人们在利用Ia超新星测量时空方面已取得了巨大进展。  相似文献   

6.
超新星在宇宙学中的应用   总被引:2,自引:0,他引:2  
对Ia超新星在宇宙学中的应用作了述评。蓝Ia超新星具有相对均匀的光谱、光变曲线及峰值光度,是较好的相对距离指示器。利用峰值光度同光变曲线形状或其它与距离无关的可观测量的关系可进一步将Ia超新星校准成精确的距离指示器。一旦它们的绝对光度得到标定,就可以定出哈勃常数H0。基于对邻近星系Ia超新星的理解,高红移Ia超新星的数据可对宇宙密度参数ΩM、ΩV及减速因子q0作出限制,并对膨胀宇宙的最终命运作出判  相似文献   

7.
Using Hurley's rapid binary stellar evolution code, we have studied the model-synthesized rate of Type la Supernovae (SNe Ia) and its influence on the chemical enrichment of the interstellar medium ejected by stellar populations. We adopt two popular scenarios, i.e.,single degenerate scenario (SD) and double degenerate scenario (DD), for the progenitors of SNe Ia to calculate the rates of SNe Ia. Rates calculated in this work agree with that of Hachisu et al. and Han & Podsiadlowski, but are different from that usually adopted in chem-ical evolution models of galaxies. We apply the rates of SNe Ia to the chemical enrichment (especially Fe enrichment), then compare the results with previous studies. As known SNe Ia slightly affect the enrichment of C, N, O and Mg elements, while significantly affect the en-richment of Fe. We find that the occurrence and the value of the Fe enrichment in our models are earlier and smaller than that commonly adopted in chemical evolution models. We also study the evolution of [Mg/Fe] ratios, which are almost reciprocals of the Fe enrichment.The study may provide constraints on the free parameters of chemical evolution models of galaxies and evolutionary population synthesis.  相似文献   

8.
Recent applications of type Ia supernovae(SNe Ia)in cosmology have successfully revealed the accelerating expansion of the universe.However,as distance indicators used in measuring the expansion history of the universe and probing the nature of dark energy,these objects must pass more strict tests.We propose a K-S test to investigate if there exists any systematic bias when deriving the luminosity distances under the standard candle assumption. Two samples,one comprising 71 high-redshift SNe Ia and the other,44 nearby ones,are used in our investigation.We find that it is likely there exists a bias in the adopted samples,which is probably caused by a systematic error,e.g.in the color parameter used in the luminosity calibration and a bias may be caused by the SN evolution or by varying properties of the dust surrounding the SNe Ia.  相似文献   

9.
Type Ia supernovae(SNe Ia) are thermonuclear explosions of carbon-oxygen white dwarfs(CO WDs), and are believed to be excellent cosmological distance indicators due to their high luminosity and remarkable uniformity. However, there exists a diversity among SNe Ia, and a poor understanding of the diversity hampers the improvement of the accuracy of cosmological distance measurements. The variations of the ratios of carbon to oxygen(C/O) of WDs at explosion are suggested to contribute to the diversity. In the canonical model of SNe Ia, a CO WD accretes matter from its companion and increases its mass till the Chandrasekhar mass limit when the WD explodes. In this work, we studied the C/O ratio for accreting CO WDs. Employing the stellar evolution code MESA, we simulated the accretion of He-rich material onto CO WDs with different initial WD masses and different mass accretion rates. We found that the C/O ratio varies for different cases. The C/O ratio of He-accreting CO WDs at explosion increases with a decreasing initial WD mass or a decreasing accretion rate. The various C/O ratios may, therefore, contribute to the diversity of SNe Ia.  相似文献   

10.
The observational cosmology with distant Type Ia supernovae (SNe) as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this paper we investigate the SN Ia environment, studying the impact of the nature of their host galaxies on the Hubble diagram fitting. The supernovae (192 SNe) used in the analysis were extracted from Joint-Light-curves-Analysis (JLA) compilation of high-redshift and nearby supernovae which is the best one to date. The analysis is based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. We confirm that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch are hosted mainly in elliptical and lenticular galaxies. No significant correlation between SN Ia colour and host morphology was found. We also examine how the luminosities of SNe Ia change depending on host galaxy morphology after stretch and colour corrections. Our results show that in old stellar populations and low dust environments, the supernovae are slightly fainter. SNe Ia in elliptical and lenticular galaxies have a higher α (slope in luminosity-stretch) and β (slope in luminosity-colour) parameter than in spirals. However, the observed shift is at the 1-σ uncertainty level and, therefore, can not be considered as significant. We confirm that the supernova properties depend on their environment and that the incorporation of a host galaxy term into the Hubble diagram fit is expected to be crucial for future cosmological analyses.  相似文献   

11.
The universe with adiabatic matter creation is considered. It is thought that the negative pressure caused by matter creation can play the role of a dark energy component, and drive the accelerating expansion of the universe. Using the Type Ia supernovae (SNe Ia) data, the observational Hubble parameter data, the Cosmic Microwave Background (CMB) data and the Baryonic Acoustic Oscillation (BAO) data, we make constraints on the cosmological parameters, assuming a spatially flat universe. Our results show that the model with matter creation is consistent with the SNe Ia data, while the joint constraints of all these observational data disfavor this model. If the cosmological constant is taken into account, a traditional model without matter creation is favored by the joint observations.  相似文献   

12.
The Nearby Supernova Factory is an international project dedicated to the study of the nearby thermonuclear (type Ia) supernovæ. Based upon the NEAT search for the target discovery and the dedicated integral field spectrograph SNIFS for the follow‐up, the goal is to study, over a continuous period of 4 years, the spectro‐photometric evolution of ∼300 SNe Ia at z < 0.08 from −15 to +50 days in the extended optical range (320–1000 nm). This will allow to probe in detail the local Hubble diagram, SNe Ia physics and the SNe‐host galaxy correlations, serving as an unprecedented nearby benchmark for the high‐z cosmological studies to come. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Supernovae of type Ia (SNe Ia) are very important for cosmography. To exclude systematic effects in linking the observed light of distant SNe Ia to the parameters of cosmological models, one has to understand the nature of supernova outbursts and to build accurate algorithms for predicting their emission. We review the recent progress of modeling the propagation of nuclear flame subject to numerous hydrodynamic instabilities inherent to the flame front. The Rayleigh-Taylor (RT) instability is the main process governing the corrugation of the front on the largest scales, while on the smallest scales the front propagation is controlled by the Landau-Darrieus in stability. Based on several hydrodynamic explosion models, we predict the broad-band UBVI and bolometric light curves of SNe Ia, using our 1D-hydro code which models multi-group time-dependent non-equilibrium radiative transfer inside SN ejecta. We employ our new corrected treatment for line opacity in the expanding medium, which is important especially in UV and IR bands. The results are compared with the observed light curves. Especially interesting is a recent 3D-deflagration model computed at MPA, Garching, by M. Reinecke et al.  相似文献   

14.
The use of standard candles for distance measurements is wide spread. Yet, we currently do not know a pure standard candle in astronomy. The concept of standard candles involves not only the secure establishment of a unique luminosity but also a clear observational distinction of the objects as a class. Even Type Ia supernovae, whose maximum luminosity shows amongst the smallest scatter known, need to be normalised to provide accurate distances. Without this normalisation the cosmological claims based on supernovae would not be possible. With a careful normalisation Type Ia supernovae are the best known distance indicators for cosmology to date. This is most easily shown by the small dispersion around the expansion line in the Hubble diagram. Problems with the empirical normalisation remain and a theoretical understanding of this normalisation is missing. This has direct ramifications on systematic uncertainties when deriving cosmological implications from Type Ia supernovae. Improving the understanding of supernova physics is now the prime task to sharpen this tool of observational cosmology. Once the explosion mechanism is revealed a serious discussion of possible evolutionary effects in Type Ia supernovae can start.  相似文献   

15.
The Advanced Liquid-mirror Probe of Asteroids, Cosmology and Astrophysics (ALPACA) is a proposed 8-m liquid-mirror telescope surveying  ∼1000 deg2  of the Southern hemisphere sky. It will be a remarkably simple and inexpensive telescope that none the less will deliver a powerful sample of optical data for studying dark energy. The bulk of the cosmological data consist of nightly, high signal-to-noise ratio, multiband light curves of Type Ia supernovae (SNe Ia). At the end of the 3-yr run, ALPACA is expected to collect  ≳100 000  SNe Ia up to   z ∼ 1  . This will allow us to reduce present systematic uncertainties affecting the standard-candle relation. The survey will also provide several other data sets such as the detection of baryon acoustic oscillations in the matter power spectrum and shear weak-lensing measurements. In this preliminary analysis, we forecast constraints on dark energy parameters from SNe Ia and baryon acoustic oscillations. The combination of these two data sets will provide competitive constraints on the dark energy parameters under minimal prior assumptions. Further studies are needed to address the accuracy of weak-lensing measurements.  相似文献   

16.
本文研究了在1993年3月28日之前发现的899颗超新星(SNe)的样本.其中277颗SNe被用来研究超新星在其母星系中的径向分布.我们研究了四个星系样本中超新星在产生单个超新星(称为一般超新星)的星系及在产生多个超新星(称为多重超新星)的星系中的径向分布.这四个星系样本为:总旋涡星系样本,Sb~SbC星系样本,SC星系样本,Sc~Sd星系样本.研究的结果表明:一多重超新星比一般超新星在其母星系中具有更集中于星系核心(大多数恒星形成发生的地方)的倾向,说明星系中心的恒星形成活动会影响多重超新星事件的发生从而影响超新星的频率分布  相似文献   

17.
In the coming years, a number of projects will start intensive supernovæsearches resulting in an increase of the current statistics by a factor of 10. At low redshift, the Nearby Supernova Factory will detect and follow spectrophotometricly ~ 400 of SNe Ia with a redshift at z ~ 0.05, and improve our understanding of the intrinsic properties of SNe Ia. At high redshift, the large imager Megacam at the Canada-France-Hawaii Telescope running in a survey mode, will make it possible to detect and follow a large amount of high redshift supernovae. Using Megacam during 5 years ~ 1000 Type Ia SNe will be detected, at z ranging from 0.3 to 1.2, and ~ 700 will be used for measuring the cosmological parameters via the Hubble diagram. They will provide a measurement of the cosmic equation of state parameter w. A first test run search was done last spring at the CFHT, using the current imager: the `CFH 12k'. Detection procedure and preliminary results are presented in this article.  相似文献   

18.
首先利用Asiago 超新星星表对Ia 超新星作了统计分析。其次用具有精确测光的Ia 超新星对其均匀性及多样性进行了研究。旋涡星系中Ia 超新星的产生率比椭圆星系的要高。最亮的Ia 超新星只出现于晚型旋涡星系中;而旋涡星系及早型的椭圆星系都是暗Ia 超新星的寄主星系。离星系中心越近Ia 超新星的光度弥散有增加的趋势,但这一趋势对蓝Ia 超新星不明显。利用色指数可将Ia 超新星划分为蓝超新星及红超新星。蓝Ia 超新星构成了相对均匀的Ia 超新星样本,是较好的距离指示器;而红Ia 超新星的存在则表明了Ia 超新星整体多样性的特点。最后,我们还探讨了Ia 超新星中碳点火的非线性问题。  相似文献   

19.
We present dark energy models in an anisotropic Bianchi type-VI0 (B-VI0) space-time with a variable equation of state (EoS). The EoS for dark energy ω is found to be time dependent and its existing range for derived models is in good agreement with the recent observations of SNe Ia data (Knop et al. in Astrophys. J. 598:102 2003), SNe Ia data with CMBR anisotropy and galaxy clustering statistics (Tegmark et al. in Astrophys. J. 606:702, 2004b) and latest a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al. in Astrophys. J. Suppl. 180:225, 2009; Komatsu et al. in Astrophys. J. Suppl. 180:330, 2009). The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent supernovae Ia observations. The physical and geometric aspects of the models are also discussed in detail.  相似文献   

20.
The time delay between the formation of the progenitor systems of Type Ia supernovae (SNe Ia) and their detonation is a vital discriminant between the various progenitor scenarios that have been proposed for them. We use Sloan Digital Sky Survey optical and Galaxy Evolution Explorer ( GALEX ) ultraviolet observations of the early-type host galaxies of 21 nearby SNe Ia and quantify the presence or absence of any young stellar population to constrain the minimum time delay for each supernova. We find that early-type host galaxies lack 'prompt' SNe Ia with time delays of ≲100 Myr and that ∼70 per cent SNe Ia have minimum time delays of 275 Myr–1.25 Gyr, with a median of 650 Myr, while at least 20 per cent SNe Ia have minimum time delays of at least 1 Gyr at 95 per cent confidence and two of these four SNe Ia are likely older than 2 Gyr. The distribution of minimum time delays observed matches most closely the expectation for the single-degenerate channel with a main sequence donor. Furthermore, we do not find any evidence that subluminous SNe Ia are associated with long time delays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号