首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
We explore the binary fraction of subdwarf B (sdB) stars by using the Two Micron All Sky Survey to search for main sequence companions. We have convolved Kurucz models with appropriate filter bandpasses to examine how various combinations separate single sdB stars from sdB+MS binaries. We notice that the 2MASS magnitude limits greatly increase the fraction of inferred sdB+MS binaries and examine a magnitude-limited sample appropriate for single sdB stars.  相似文献   

2.
One of the ways by which subdwarf B stars are thought to form is through binary star interactions. The metallicity of the sdB progenitor stars in such binary systems should not seem to be a major factor in the formation of sdB stars. However, given the different environments in which sdB stars are found, binary population synthesis simulations have been conducted in order to examine how metallicity might be a subtle factor in the formation of sdB stars in such environments. This is then applied to clusters of stars and to the UV Upturn phenomenon.  相似文献   

3.
Preliminary results are presented from two ongoing complementary surveys intended to investigate the nature and characteristics of the optically invisible secondaries in post-common envelope subdwarf B (sdB) binary stars. We obtain precise radial velocities to derive periods and minimum companion masses for bright field sdB stars. These data are combined with light curves to search for eclipses, reflection effects, or ellipsoidal variations. We emphasize the importance of using complete unbiased samples, without which it will not be possible to understand the details of the multiple processes that produce these stars. It remains true that all known secondary companions in short-period sdB binaries are nearly invisible, thus they must be either low mass main sequence (MS) stars or compact objects, e.g., white dwarfs. In our small, nearly-complete sample, white dwarf secondaries outnumber MS secondaries by about a factor of five. Known MS masses in short-period sdB binaries are all surprisingly low, indicating a possible bimodal mass distribution for all MS secondaries in sdB binaries.  相似文献   

4.
High-speed spectroscopy of two pulsating subdwarf B stars, KPD 2109+4401 and PB 8783, is presented. Radial motions are detected with the same frequencies as reported from photometric observations and with amplitudes of ∼2 km s−1 in two or more independent modes. These represent the first direct observations of surface motion arising from multimode non-radial oscillations in subdwarf B stars. In the case of the sdB+F binary PB 8783, the velocities of both components are resolved; high-frequency oscillations are found only in the sdB star and not the F star. There also appears to be evidence for mutual motion of the binary components. If confirmed, it implies that the F-type companion is ≳1.2 times more massive than the sdB star, while the amplitude of the F-star acceleration over 4 h would constrain the orbital period to lie between 0.5 and 3.2 d.  相似文献   

5.
We report on the analysis of high-resolution optical spectra for 77 subdwarf B (sdB) stars from the ESO Supernova Ia Progenitor Survey. Effective temperature, surface gravity, and photospheric helium abundance are determined simultaneously by spectral line profile fitting of hydrogen and helium lines, and are found to be in agreement with previous studies of sdB stars. Twenty four objects show spectral signs of a cool companion, being either companion absorption lines or a flux contribution at Hα. Five stars with relatively high luminosity show peculiar Hα profiles, possibly indicating stellar winds. Our results are compared to recent theoretical simulations by Han et al. [MNRAS, 341, 669] for the distribution in effective temperature and surface gravity, and are found to agree very well with these calculations. Finally, we present a binary system consisting of two helium-rich hot subdwarfs.  相似文献   

6.
We present light curves of four binary subdwarf B stars (sdB), Ton 245, Feige 11, PG 1432+159 and PG 1017−086. We also present new spectroscopic data for PG 1017−086 from which we derive its orbital period,   P =0.073 d  , and the mass function,   f m=0.0010±0.0002 M.  This is the shortest period for an sdB binary measured to date. The values of P and f m for the other sdB binaries have been published elsewhere. We are able to exclude the possibility that the unseen companion stars to Ton 245, Feige 11 and PG 1432+159 are main-sequence stars or subgiant stars from the absence of a sinusoidal signal, which would be caused by the irradiation of such a companion star, i.e. they show no reflection effect. The unseen companion stars in these binaries are likely to be white dwarf stars. In contrast, the reflection effect in PG 1017−086 is clearly seen. The lack of eclipses in this binary combined with other data suggests that the companion is a low-mass M-dwarf or, perhaps, a brown dwarf.  相似文献   

7.
I briefly review the method of population synthesis of binary stars and discuss the preliminary results of a study of the Galactic population of subdwarf B stars. In particular I focus on the formation of (apparently) single sdB stars and their relation to (apparently) single helium-core white dwarfs. I discuss the merits of mergers of two helium white dwarfs and interactions with sub-stellar companions for explaining these single objects. A preliminary conclusion is that the current observations suggest both mechanisms may contribute, but that the helium white dwarfs are likely formed in majority from interactions with sub-stellar companions.  相似文献   

8.
During the course of an ongoing CCD monitoring program to investigate low-level light variations in subdwarf B (sdB) stars, weserendipitously discovered a new class of multimode pulsators withperiods of the order of an hour. These periods are a factor of tenlonger than those of previously known multimode sdB pulsators (EC14026 stars), implying the new pulsations are due to gravity modes rather than pressure modes. The iron opacity instability that drives the short period EC 14026 stars is effective in hot sdB's. Thelong period pulsators are found only among cooler sdB stars, wherethey are surprisingly common. The mechanism responsible for excitingthe deeper g-modes in cool sdB's is currently unknown, but thetemperature and gravity range in which these stars occur must be animportant clue. We present the first observational results for thisnew class of pulsating sdB stars, and discuss some possible implications.  相似文献   

9.
A large fraction of the sdB stars reside in short period binaries. It is therefore clear that binary evolution plays an important role in the still unsolved problem of hot subdwarf formation. Here we present new results from different projects devoted to the analysis of sdBs in close binaries. The nature and masses of the unseen companions of 31 sdBs have been constrained by an analysis of high resolution spectra. In the course of this study candidate systems with massive compact companions have been discovered. The HYPERMUCHFUSS project aims at finding such systems making use of the huge spectral database of SDSS. A multi-site follow-up campaign of promising radial velocity variable sdBs started in 2009 and preliminary results are shown here. The most recent discovery of a substellar companion to the bright sdB HD?149382 may provide new evidence for the decisive role of low mass companions for sdB formation in general. A mysterious IR-excess has been detected, which may be caused by this otherwise invisible companion. Another low mass companion has been found to orbit the sdB star EGB?5 within 16.5 days. The space mission CoRoT is performing wide field and high precision photometry. First preliminary results from a spectroscopic survey of the COROT fields are also reported.  相似文献   

10.
The subdwarf B (sdB) star KPD 0422 + 5421 was discovered to be a single-lined spectroscopic binary with a period of P  = 0.090 1795 ± (3 × 10−7) d (2 h 10 min). The U B light curves display an ellipsoidal modulation with amplitudes of ≈ 0.02 mag. The sdB star contributes nearly all of the observed flux. This and the absence of any reflection effect suggest that the unseen companion star is small (i.e. R comp ≈ 0.01 R) and therefore degenerate. We modelled the U B light curves and derived i  = 78.05° ± 0.50° and a mass ratio of q  =  M comp/ M sdB = 0.87 ± 0.15. The sdB star fills 69 per cent of its Roche lobe. These quantities may be combined with the mass function of the companion [ f ( M ) = 0.126 ± 0.028 M] to derive M sdB = 0.72 ± 0.26 M and M comp = 0.62 ±  0.18 M. We used model spectra to derive the effective temperature, surface gravity and helium abundance of the sdB star. We found T eff = 25 000 ± 1500 K, log g  = 5.4 ± 0.1 and [He/H] = −1.0. With a period of 2 h 10 min, KPD 0422 + 5421 has one of the shortest known orbital periods of a detached binary. This system is also one of only a few known binaries that contain a subdwarf B star and a white dwarf. Thus KPD 0422 + 5421 represents a relatively unobserved, and short-lived, stage of binary star evolution.  相似文献   

11.
We briefly review the recent advances that have been made on the front of pulsating subdwarf B (sdB) stars. The first family of sdB pulsators, the EC 14026 stars, was discovered a few years ago and consists of short-period (~100?200 s) p-mode variables. The second type of pulsating sdB’s consists of the PG 1716+426 stars, a group of variables showing long-period (~1 h) g-mode pulsations. The existence of the latter was first reported less than a year ago. While the two types of sdB pulsators differ markedly in their observational characteristics, we recently found a unifying property in the sense that the observed modes in these objects are excited through the same driving process, a classic kappa mechanism associated with the radiative levitation of iron in the stellar envelope.  相似文献   

12.
We present the first results of an observational campaign aimed at detecting rapid extreme horizontal branch (EHB) pulsators in globular clusters. So far, we have observed multi-frequency luminosity variations for three EHB stars in ω Cen, with typical periods in the 100–120 s range. This is towards the short end, but comparable to, the periodicities measured for rapidly pulsating subdwarf B (sdB) stars in the field. Given that the effective temperatures of the variables discovered seem to be compatible with the instability strip for fast sdB pulsators, we believe we have uncovered the first such variables in a globular cluster.  相似文献   

13.
We present the results of Monte Carlo mass-loss computations for hot low-mass stars, specifically for subdwarf B (sdB) stars. It is shown that the mass-loss rates on the Horizontal Branch (HB) computed from radiative line-driven wind models are not high enough to create sdB stars. We argue, however, that mass loss plays a role in the chemical abundance patterns observed both in field sdB stars, as well as in cluster HB stars. The derived mass loss recipe for these (extremely) hot HB stars may also be applied to other groups of hot low-mass stars, such as post-HB (AGB-manqué, UV-bright) stars, over a range in effective temperatures between ?10 000 and 50 000 K. Finally, we present preliminary spectral synthesis on the more luminous sdB stars for which emission cores in Hα have been detected (Heber, U., et al.: 2003, in:Stellar Atmosphere Modeling, ASP Conference Proceedings, p. 251). We find that these line profiles can indeed be interpreted as the presence of a stellar wind with mass loss on the order of 10?11?M yr ?1.  相似文献   

14.
We have secured FUSE observations for a sample of hot, hydrogen-rich subdwarf B stars. The main objective of this project is to map in a more detailed way than has been done in the past pattern of heavy element abundances in sdB stars in order to understand the competing roles of gravitational settling, radiative element support, and mass loss in their photospheres. We present abundances analyses for a subsample of four objects and compare these results with predictions of the parameter-free version of the radiative levitation theory.  相似文献   

15.
We report additional photometric CCD observations of KPD 0422+5421, a binary with an orbital period of 2.16 h which contains a subdwarf B star (sdB) and a white dwarf. There are two main results of this work. First, the light curve of KPD 0422+5421 contains two distinct periodic signals, the 2.16-h ellipsoidal modulation discovered by Koen, Orosz & Wade and an additional modulation at 7.8 h. This 7.8-h modulation is clearly not sinusoidal: the rise time is about 0.25 in phase, whereas the decay time is 0.75 in phase. Its amplitude is roughly half of the amplitude of the ellipsoidal modulation. Secondly, after the 7.8-h modulation is removed, the light curve folded on the orbital period clearly shows the signature of the transit of the white dwarf across the face of the sdB star and the signature of the occultation of the white dwarf by the sdB star. We have used the Wilson–Devinney code to model the light curve to obtain the inclination, the mass ratio and the Ω potentials, and a Monte Carlo code to compute confidence limits on interesting system parameters. We find component masses of     and     ( M total     , 68 per cent confidence limits). If we impose an additional constraint and require the computed mass and radius of the white dwarf to be consistent with a theoretical mass–radius relation, we find     and     (68 per cent confidence limits). In this case the total mass of the system is less than 1.4 M at the 99.99 per cent confidence level. We briefly discuss possible interpretations of the 7.8-h modulation and the importance of KPD 0422+5421 as a member of a rare class of evolved binaries.  相似文献   

16.
We discuss whether the hypothesis that “all (or most) subdwarfs are in close binaries” is supported by the frequently reported observations of photometrically or spectroscopically composite character of many hot subdwarf stars. By way of a possible counter-argument, we focus on resolved companions (optical pairs) of hot subdwarf stars. On a statistical basis, many of these are physically associated with the hot subdwarfs, i.e. they are common proper motion pairs. These resolved pairs make a several percent contribution to the catalog of hot subdwarf stars per decade in projected separation. If they are just the relatively wide members of a binary population similar to the local G-dwarf binary population (A&A, 248, 485), which has a very wide distribution of orbital separations, then many of the unresolved but composite hot subdwarf binaries may not be “close” in the astrophysical sense. In that case, binary channels for hot subdwarf formation may be less important than expected, or must involve companions (white dwarfs) that do not result in a composite spectrum system.  相似文献   

17.
We continue our programme of extended single-site observations of pulsating subdwarf B (sdB) stars and present the results of extensive time-series photometry to resolve the pulsation spectra for use in asteroseismological analyses. PG 0154+182, HS 1824+5745 and HS2151+0857 were observed at the MDM Observatory during 2004 and 2005. Our observations are sufficient to resolve the pulsations of all three target stars. We extend the number of known frequencies for PG 0154+182 from one to six, confirm that HS 1824+5745 is a monoperiodic pulsator and extend the number of known frequencies to five for HS 2151+0857. We perform standard tests to search for multiplet structure, measure amplitude variations as pertains to stochastic excitation and examine the mode density to constrain the mode degree ℓ.  相似文献   

18.
In an attempt to discover new southern BL Lac objects, 14 optically featureless objects from the Edinburgh–Cape Survey were selected. Optical polarimetry and spectroscopy, radio and IR observations were carried out in order to improve their classifications. The 14 objects were examined according to special criteria that are described. Their UBV and JHK colour–colour distributions, spectrograms, radio observations and visible-region polarimetry were utilized to conclude that the selected objects are not BL Lacs. Most of them are apparently not extragalactic objects. It is suggested that four of the 14 candidates are DC white dwarfs, one is a QSO, three are DA white dwarfs or sdB subdwarfs, one is a cataclysmic variable, one is a DAO/sdO and another is possibly a DA+dM binary (composite system with a 'primary' hot white dwarf and a 'secondary' M-type main-sequence dwarf) or a cataclysmic variable. One object is likely to be a subdwarf, while two remain unclassifiable.  相似文献   

19.
Hot cluster horizontal branch (HB) stars and field subdwarf B (sdB) stars are core helium burning stars that exhibit abundance anomalies that are believed to be due to atomic diffusion. Diffusion can be effective in these stars because they are slowly rotating. In particular, the slow rotation of the hot HB stars (Teff > 11000 K), which show abundance anomalies, contrasts with the fast rotation of the cool HB stars, where the observed abundances are consistent with those of red giants belonging to the same cluster. The reason why sdB stars and hot HB stars are rotating slowly is unknown. In order to assess the possible role of magnetic fields on abundances and rotation, we investigated the occurrence of such fields in sdB stars with Teff < 30 000 K, whose temperatures overlap with those of the hot HB stars. We conclude that large‐scale organised magnetic fields of kG order are not generally present in these stars but at the achieved accuracy, the possibility that they have fields of a few hundred Gauss remains open. We report the marginal detection of such a field in SB 290; further observations are needed to confirm it (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We present the initial results of an abundance analysis of echelle UV spectra of five hot subdwarf B (sdB) stars. These stars have been identified as core helium burning objects on the extreme Horizontal Branch. Around 5% of sdBs show short-period acoustic-mode oscillations. Models predict that these oscillations are due to an opacity bump caused by the ionisation of iron group elements. The necessary metal abundance has to be maintained by diffusive equilibrium between gravitational settling and radiative levitation. However, analyses of high-resolution optical spectra has revealed that we cannot discriminate between pulsating and non-pulsating sdBs on the basis of the surface iron abundance. We have therefore obtained HST/STIS observations of three pulsators and two non-pulsators in the near- and far-UV to measure the surface abundance of elements that are unobservable from the ground. The overall aim of our study is to test diffusion and pulsation calculations by searching for significant differences between these surface abundances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号