首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigate the nature of the pulsar of the Be/X-ray binary, AX J0051-733. Although the system has a very short orbital period, it meets the basic definition of Be/X-ray binaries. We argue that, in order to interpret such a short orbital period, the initial magnetic field strength of the pulsar must be between 4.2×1013–5×1015 G, if typical values of the parameters chosen. Thus, the pulsar was most likely born as a magnetar. We further suggest that magnetar descendants can also be found among the massive X-ray binaries with extremely short-orbit periods, in addition to among the X-ray binaries with very long pulse periods.  相似文献   

2.
We present new multiband CCD photometric observations of three chromospherically active stars with long periods (V2075 Cyg, FG UMa and BM CVn). The observations were made at the Çanakkale Onsekiz Mart University Observatory in 2006 and 2007. We analyzed BVRI (Bessell) CCD observations of these three RS CVn-type SB1 binaries with the following three steps: (i) Photometric rotation periods were obtained by analyzing their light variations with a differential corrections method and a Fourier transform technique. (ii) Light variations, observed over three or more consecutive orbital cycles, were investigated by using dark (cool) spot models with the program SPOT. (iii) Surface differential rotation coefficients for the primary components of these binaries were derived using our own photometric periods together with orbital periods taken from the literature.  相似文献   

3.
In this paper, we review the formation scenario for field hot subdwarf stars and extreme horizontal branch stars in globular clusters and discuss how the scenario helps us to understand the UV-upturn phenomenon of elliptical galaxies. It is widely accepted that field hot subdwarf stars originate from binary evolution via the following three channels, common envelope evolution channel for hot subdwarf binaries with short orbital periods, stable Roche lobe overflow channel for hot subdwarf binaries with long orbital periods, and the double helium white dwarf merger channel for single hot subdwarfs. Such a scenario can also explain the lack of binarity of extreme horizontal branch stars in globular clusters. We have applied, in an a priori way, the scenario to the study of UV-upturn phenomenon of elliptical galaxies via an evolutionary population synthesis approach and found that the UV-upturn can be naturally explained. This has major implications for understanding the evolution of UV-upturn and elliptical galaxies in general. In particular, it implies that the UV-upturn is not a sign of age, as had been postulated previously, and should not be strongly dependent on the metallicity of the population, but exists universally from dwarf ellipticals to giant ellipticals. The above a priori UV-upturn model is supported by recent GALEX observations and has been applied to naturally explain the colours of both dwarf ellipticals and giant ellipticals without the requirement of dichotomy between their stellar population properties.  相似文献   

4.
The variations of the orbital periods of two nearly neglected W UMa-type eclipsing binaries, EK Comae Berenices and UX Eridani, are presented through a detailed analysis of the OC diagrams. It is found that the orbital period of EK Com is decreasing and the period of UX Eridani is increasing, and several sudden jumps have occurred in the orbital periods of both binaries. We analyze the mechanism(s), which might underlie the changes of the orbital periods of both systems, and obtain some new results. The long-term decrease of the orbital period of EK Comae Berenices might be caused by the decrease of the orbital angular momentum due to a magnetic stellar wind (MSW) or by mass transfer from the more massive to the less massive component. The secular increase in the orbital period of UX Eridani might be caused by mass transfer from the less massive to the more massive star. The possible mechanisms, which underlie the sudden changes in the orbital periods of the close binary systems are as the followings: (1) the variations of the structure due to the variation of the magnetic field; (2) the rapid mass exchange between the close binaries and their circumstellar matter. Finally, the evolutionary status of the systems EK Comae Berenices and UX Eridani is discussed.  相似文献   

5.
Observations of a large population of millisecond pulsars (MSPs) show a wide divergence in the orbital periods (from approximately hours to a few months). In the standard view, low‐mass X‐ray binaries (LMXBs) are considered as progenitors for some MSPs during the recycling process. We present a systematic study that combines different types of compact objects in binaries such as cataclysmic variables (CVs), LMXBs, and MSPs. We plot them together in the so called Corbet diagram. Larger and different samples are needed to better constrain the result as a function of the environment and formations. A scale diagram showing the distribution of MSPs for different orbital periods and the aspects for their progenitors relying on accretion induced collapse (AIC) of white dwarfs in binaries. Thus massive CVs (M ≥ 1.1 M) can play a vital role on binary evolution, as well as of the physical processes involved in the formation and evolution of neutron stars and their magnetic fields, and could turn into binary MSPs with different scales of orbital periods; this effect can be explained by the AIC process. This scenario also suggests that some fraction of isolated MSPs in the Galactic disk could be formed through the same channel, forming the contribution of some CVs to the single‐degenerate progenitors of Type Ia supernova. Furthermore, we have refined the statistical distribution and evolution by using updated data. This implies that the significant studies of compact objects in binary systems can benefit from the Corbet diagram.Observations of a large population of millisecond pulsars (MSPs) show a wide divergence in the orbital periods (from approximately hours to a few months). In the standard view, low‐mass X‐ray binaries (LMXBs) are considered as progenitors for some MSPs during the recycling process. We present a systematic study that combines different types of compact objects in binaries such as cataclysmic variables (CVs), LMXBs, and MSPs. We plot them together in the so called Corbet diagram. Larger and different samples are needed to better constrain the result as a function of the environment and formations. A scale diagram showing the distribution of MSPs for different orbital periods and the aspects for their progenitors re  相似文献   

6.
We present the results of a systematic exploration of an alternative evolutionary scenario to form double neutron star (DNS) binaries, first proposed by Brown (1995) , which does not involve a neutron star passing through a common envelope. In this scenario, the initial binary components have very similar masses, and both components have left the main sequence before they evolve into contact; preferably the primary has already developed a CO core. We have performed population synthesis simulations to study the formation of DNS binaries via this channel and to predict the orbital properties and system velocities of such systems. We obtain a merger rate for DNSs in this channel in the range of 0.1–12 Myr−1. These rates are still subject to substantial uncertainties such as the modelling of the contact phase.  相似文献   

7.
We present the JHKLM photometry for five close (W Ser) binary systems obtained in the period 1996–2004. Positive phase shifts (with respect of the adopted ephemerides) have been found in the orbital infrared light curves for three binaries, RX Cas, KX And, and β Lyr; the rates of increase in their periods are ~3.5 × 10?4, ~1.6 × 10?3, and ~1.4 × 10?4 days yr?1, respectively. We have performed the spectral classification of the components of the binaries under study and estimated their parameters.  相似文献   

8.
Photometric data on 17 binary near-Earth asteroids (15 of them are certain detections, two are probables) were analysed and characteristic properties of the near-Earth asteroid (NEA) binary population were inferred. We have found that binary systems with a secondary-to-primary mean diameter ratio Ds/Dp?0.18 concentrate among NEAs smaller than 2 km in diameter; the abundance of such binaries decreases significantly among larger NEAs. Secondaries show an upper size limit of Ds=0.5-1 km. Systems with Ds/Dp?0.5 are abundant but larger satellites are significantly less common. Primaries have spheroidal shapes and they rotate rapidly, with periods concentrating between 2.2 to 2.8 h and with a tail of the distribution up to ∼4 h. The fast rotators are close to the critical spin for rubble piles with bulk densities about 2 g/cm3. Orbital periods show an apparent cut-off at Porb∼11 h; closer systems with shorter orbital periods have not been discovered, which is consistent with the Roche limit for strengthless bodies. Secondaries are more elongated on average than primaries. Most, but not all, of their rotations appear to be synchronized with the orbital motion; nonsynchronous secondary rotations may occur especially among wider systems with Porb>20 h. The specific total angular momentum of most of the binary systems is similar to within ±20% and close to the angular momentum of a sphere with the same total mass and density, rotating at the disruption limit; this suggests that the binaries were created by mechanism(s) related to rotation near the critical limit and that they neither gained nor lost significant amounts of angular momentum during or since formation. A comparison with six small asynchronous binaries detected in the main belt of asteroids suggests that the population extends beyond the region of terrestrial planets, but with characteristics shifted to larger sizes and longer periods. The estimated mean proportion of binaries with Ds/Dp?0.18 among NEAs larger than 0.3 km is 15±4%. Among fastest rotating NEAs larger than 0.3 km with periods between 2.2 and 2.8 h, the mean proportion of such binaries is (66+10−12)%.  相似文献   

9.
This study concerns the long-term monitoring of the secular variation character in the orbital period of some short-period eclipsing binaries observed at the Ankara University Observatory. Among the systems of our observing list are CK Boo, V502 Oph and V836 Cyg that show long-term secular variations in their orbital periods. We use classical O-C diagram analysis technique as a tool to reveal the character of the period variations of these binary systems.  相似文献   

10.
A lot of data in time domain were obtained by the Kepler mission, including many contact binaries. Long-term observation lets us obtain more information about the short time scale variation in their light curves or in their orbital periods. Unfortunately, the exposure time is too long (most of them are 30 minutes). Hence, many variations in light curves are smoothed. To avoid this problem, we analyzed some Kepler contact systems with both long-cadence mode and short-cadence mode data. Using the latest version of the Wilson-Devinney code, we obtained the physical parameters of a batch of contact binaries and find out four targets(KIC 5123176, KIC 5296877, KIC 8496820, KIC 9776718) have low mass ratios (q  <  0.25) and one target (KIC 7950962) has a mass ratio very close to unit.  相似文献   

11.
《New Astronomy Reviews》1999,43(6-7):481-486
The orbital periods of binaries are known to great accuracy, their changes produce an easily detectable cumulative effect and many systems have been observed for more than a century. In tidally locked late-type binaries the orbital period changes are often related to structural or evolutionary changes. The study of the orbital period secular evolution can therefore provide information on phenomena taking place on timescales very short when compared to the typical stellar evolutionary scales, but still much longer than the human lifetime. This paper focuses on the dynamical evolution due to magnetic braking in late-type close binaries and on the detectability of angular momentum transfer among the stellar layers.  相似文献   

12.
We examine the proposal that the subset of neutron-star and black-hole X-ray binaries that form with Ap or Bp star companions will experience systemic angular-momentum losses due to magnetic braking, not otherwise operative with intermediate-mass companion stars. We suggest that for donor stars possessing the anomalously high magnetic fields associated with Ap and Bp stars, a magnetically coupled, irradiation-driven stellar wind can lead to substantial systemic loss of angular momentum. Hence, these systems, which would otherwise not be expected to experience 'magnetic braking', evolve to shorter orbital periods during mass transfer. In this paper, we detail how such a magnetic braking scenario operates. We apply it to a specific astrophysics problem involving the formation of compact black-hole binaries with low-mass donor stars. At present, it is not understood how these systems form, given that low-mass companion stars are not likely to provide sufficient gravitational potential to unbind the envelope of the massive progenitor of the black hole during a prior 'common-envelope' phase. On the other hand, intermediate-mass companions, such as Ap and Bp stars, could more readily eject the common envelope. However, in the absence of magnetic braking, such systems tend to evolve to long orbital periods. We show that, with the proposed magnetic braking properties afforded by Ap and Bp companions, such a scenario can lead to the formation of compact black-hole binaries with orbital periods, donor masses, lifetimes and production rates that are in accord with the observations. In spite of these successes, our models reveal a significant discrepancy between the calculated effective temperatures and the observed spectral types of the donor stars. Finally, we show that this temperature discrepancy would still exist for other scenarios invoking initially intermediate-mass donor stars, and this presents a substantial unresolved mystery.  相似文献   

13.
We report the results of a search for variable stars in the open cluster NGC 2141. Ten variable stars are detected, among which nine are new variable stars and they are classified as three short-period W UMa-type eclipsing binaries, two EAtype eclipsing binaries, one EB-type eclipsing binary, one very short-period RS CVntype eclipsing binary, one d-type RR Lyrae variable star, and one unknown type of variable star. The membership and physical properties are discussed, based on their light curves, positions in the color magnitude diagrams, spatial locations and periods.A known EB-type eclipsing binary is also identified as a blue straggler candidate in the cluster. Furthermore, we find that all eclipsing contact binaries have prominent asymmetric eclipses and display the O'Connell effect, which increases with a decrease in orbital periods. This suggests that the O'Connell effect is probably related to the evolution of the orbital period in short period eclipsing binary systems.  相似文献   

14.
A unique short‐period (P = 0.65356(1) d) Mercury‐size Kepler exoplanet candidate KIC012557548b has been discovered recently by Rappaport et al. (2012). This object is a transiting disintegrating exoplanet with a circum‐planetary material–comet‐like tail. Close‐in exoplanets, like KIC012557548b, are subjected to the greatest planet‐star interactions. This interaction may have various forms. In certain cases it may cause formation of the comet‐like tail. Strong interaction with the host star, and/or presence of an additional planet may lead to variations in the orbital period of the planet. Our main aim is to search for comet‐like tails similar to KIC012557548b and for long‐term orbital period variations. We are curious about frequency of comet‐like tail formation among short‐period Kepler exoplanet candidates. We concentrate on a sample of 20 close‐in candidates with a period similar to KIC012557548b from the Kepler mission. We first improved the preliminary orbital periods and obtained the transit light curves. Subsequently we searched for the signatures of a circum‐planetary material in these light curves. For this purpose the final transit light curve of each planet was fitted with a theoretical light curve, and the residuals were examined for abnormalities. We then searched for possible long‐term changes of the orbital periods using the method of phase dispersion minimization. In 8 cases out of 20 we found some interesting peculiarities, but none of the exoplanet candidates showed signs of a comet‐like tail. It seems that the frequency of comet‐like tail formation among short‐period Kepler exoplanet candidates is very low. We searched for comet‐like tails based on the period criterion. Based on our results we can conclude that the short‐period criterion is not enough to cause comet‐like tail formation. This result is in agreement with the theory of the thermal wind and planet evaporation (Perez‐Becker & Chiang 2013). We also found 3 cases of candidates which showed some changes of the orbital period. Based on our results we can see that orbital period changes are not caused by comet‐like tail disintegration processes, but rather by possible massive outer companions. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
We present a photometric study of three chromospherically active stars with long periods (V340 Gem, SAO 62042 and FI Cnc). The observations were made at the ÇOMU Observatory in 2006 and 2007. We have made initial photometric analyses of V340 Gem and SAO 62042, which are newly discovered RS CVn–type SB1 binaries, and established the photometric variations of FI Cnc, which is a single G8III active star. Photometric rotation periods of these stars were obtained by analyzing their light variations. The light variations, observed over three or more consecutive orbital cycles, were investigated by using spot models with the program SPOT. We also discussed the surface differential rotation coefficient for the primary component of the SB1 binary star SAO 62042 in this study, using our own photometric period together with an orbital period taken from the literature.  相似文献   

16.
The orbital elements of three red‐giant single‐lined spectroscopic binaries, HR 1304, HR 1908 and HD 126947, are presented. They are obtained from observations made with two photoelectric spectrometers of CORAVEL type, the first located at the Observatoire de Haute‐Provence and the second at the Cambridge Observatories. HR 1304 and HR 1908 are known to be chromospherically active stars and to have high spatial velocities; HD 126947 is an intrinsic variable newly detected by Hipparcos. The three systems have long orbital periods: 1.9, 3.2 and 7.7 yr for HR 1304, HR 1908 and HD 126947, respectively. From the orbital elements that we determined and other data available in the literature, we deduce some information about the unseen companions and their separations with respect to the primaries. Finally we discuss the rotation–revolution synchronism and conclude that one star, HR 1908, may have reached the state of pseudo‐synchronism, despite of its long orbital period. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Analyzing available photometry from the Super WASP and other databases, we performed the very first light curve analysis of eight eclipsing binary systems V537 And, GS Boo, AM CrB, V1298 Her, EL Lyn, FW Per, RU Tri, and WW Tri. All of these systems were found to be detached ones of Algol-type, having the orbital periods of the order of days. 722 new times of minima for these binaries were derived and presented, trying to identify the period variations caused by the third bodies in these systems.  相似文献   

18.
The EW-type eclipsing binaries are strongly interacting systems known to have often both component stars filling their crucial Roche lobes and having a common envelope. We present new BVRI light curves of the eclipsing binaries ZTF J214226.88+435,827.1 (ZTF21+43) and KAO-EGYPT J214216.38+440,015.1 (KAO21+44) based on CCD observations acquired with the 1.88-m Kottamia Astronomical Observatory (KAO) at Newtonian and Cassegrain telescope focus. The modeling results show that these two systems are to be W UMa contact binaries belonging to EW subtypes. All the light curves show the inverse O'Connell effect. We computed new ephemeris for each system using our times of minima and that available in the literature. Using our new times of minima and epochs for both systems from all available observations, the orbital period changes of these structures are studied for our systems. Using the PHOEBE package, a preliminary determination of the two systems' photometric orbital and physical parameters has been present. The positions of the systems were also depicted on the Hertzsprung-Russell (H-R), M-L, and Teff-L diagrams to test their evolutionary status.  相似文献   

19.
With the aim of providing new and up-to-date absolute parameters of some close binary systems, new BVR CCD photometry was carried out at the Ankara University Observatory (AUG) for five eclipsing binaries, ET Boo, V1123 Tau, V1191 Cyg, V1073 Cyg and V357 Peg between April, 2007 and October, 2008. In this paper, we present the orbital solutions for these systems obtained by simultaneous light and radial velocity curve analyses. Extensive orbital solution and absolute parameters for ET Boo system were given for the first time through this study. According to the analyses, ET Boo is a detached binary while the parameters of four remaining systems are consistent with the nature of contact binaries. The evolutionary status of the components of these systems are also discussed by referring to their absolute parameters found in this study.  相似文献   

20.
Most close double helium white dwarfs will merge within a Hubble time due to orbital decay by gravitational wave radiation.However,a significant fraction with low mass ratios will survive for a long time as a consequence of stable mass transfer.Such stable mass transfer between two helium white dwarfs(He WDs) provides one channel for the production of AM CVn binary stars.In previous calculations of double He WD progenitors,the accreting He WD was treated as a point mass.We have computed the evolution of 16 double He WD models in order to investigate the consequences of treating the evolution of both components in detail.We find that the boundary between binaries having stable and unstable mass transfer is slightly modified by this approach.By comparing with observed periods and mass ratios,we redetermine masses of eight known AM CVn stars by our double He WDs channel,i.e.HM Cnc,AM CVn,V406 Hya,J0926,J1240,GP Com,Gaia14 aae and V396 Hya.We propose that central spikes in the triple-peaked emission spectra of J1240,GP Com and V396 Hya and the surface abundance ratios of N/C/O in GP Com can be explained by the stable double He WD channel.The mass estimates derived from our calculations are used to discuss the predicted gravitational wave signal in the context of the Laser Interferometer Space Antenna(LISA) project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号