首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We present a comparison between a plasma-generated 'starting jet' experiment and an axisymmetric numerical simulation of the flow. The experimental flow and the numerical simulation give results that agree both qualitatively and quantitatively, showing that the complex vortical structures arising in the flow are surprisingly well reproduced by the numerical model. This result inspires confidence in the accuracy of astrophysical jet numerical simulations. Also, even though the Mach number of our laboratory jet is somewhat low ( M ∼0.5), the dimensionless parameters of this jet are not very far from those expected for Faranoff–Riley class I radio jets.  相似文献   

2.
This paper discusses the formulation and the numerical integration of large systems of differential equations occurring in the gravitational problem ofn-bodies.Different forms of the pertinent differential equations of motion are presented, and various regularizing and smoothing transformations are compared. Details regarding the effectiveness and the efficiency of the Kustaanheimo-Stiefel and of other methods are discussed. In particular, a method is described in which some of the phase variables are treated in the regularized system and others in the ordinary system. This mixed method of numerical regularization offers some advantages.Several numerical integration techniques are compared. A high order Runge-Kutta method, Steffensen's method, and a finite difference method are investigated, especially with regard to their adaptability to regularization.The role of integrals and integral invariants is displayed in controlling the accuracy of the numerical integration.Numerical results are described with 5, 25 and 500 bodies participating. These examples compare the various integration techniques, several regularization methods and different logics in treating binaries.  相似文献   

3.
The study of the expansion of the solar wind out of a system of coronal holes is continued. To this end, we consider the numerical integration of partial differential equations for problems with icosahedral symmetry, in general. First, employing Weyl theory, orbifold coordinates are introduced. Second, the icosahedral coordinates are discussed in detail. Third, following an analysis of the properties of these coordinates and the derivation of a few expressions useful for grid construction, various alternatives for the distribution of lattice points required for numerical integration are considered. A comparison of these numerical grids motivates the choice of a specific grid optimized for the numerical integration carried out in the accompanying paper by Kalish et al.(2002). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A numerical model is presented to simulate the influence function of deformable mirror actuators. The numerical model is formed by Bessel Fourier orthogonal functions, which are constituted of Bessel orthogonal functions and a Fourier basis. A detailed comparison is presented between the new Bessel Fourier model, the Zernike model, the Gaussian influence function and the modified Gaussian influence function. Numerical experiments indicate that the new numerical model is easy to use and more accurate compared with other numerical models. The new numerical model can be used for describing deformable mirror performances and numerical simulations of adaptive optics systems.  相似文献   

5.
空间无碰撞激波的数值研究   总被引:2,自引:0,他引:2  
王水  陆全明 《天文学进展》1997,15(3):218-230
无碰撞激波是空间等离子体和宇宙等离子体中的重要物理现象。文中评述了数值研究空间无碰撞激波的两种方法-粒子模拟和混合模拟,给出了准垂直和准平行无碰撞激波的数值研究结果。还指出了一些尚未解决的研究问题。  相似文献   

6.
太阳大气中磁重联的MHD数值模拟   总被引:1,自引:0,他引:1  
陈鹏飞  方成 《天文学进展》1999,17(4):309-316
回顾了近30年太阳大气中磁重联过程的MHD数值模拟工作取得的进展。着重描述了在验证理论模型,解释观测现象,以及研究各种因素对重联的影响三个方面的成果,如快速磁重联,太阳耀斑机制及色球,日冕中的各种爆发现象等。指出了在数值模拟中应注意的几个问题,并对该领域今后的发展作了简要的展望。  相似文献   

7.
The problem of resonance trapping for particles subject to Poynting-Robertson drag is approached initially from an adiabatic regime theory. A simplified Hamiltonian system is presented for simple eccentricity-type resonances up to order 3, and expressions related to the trapping process are deduced. The fast dissipation provoked by Poynting-Robertson leads to the employment of a numerical approach for the computation of resonance capture probabilities, for particles in the size range of practical importance. Some aspects of the dynamical evolution of a particle after capture are noticed from results of numerical integrations. Analytical methods are used in order to confirm the numerical results.  相似文献   

8.
The concept of employing osculating reference position and velocity vectors in the numerical integration of the equations of motion of a satellite is examined. The choice of the reference point is shown to have a significant effect upon numerical efficiency and the class of trajectories described by the differential equations of motion. For example, when the position and velocity vectors on the osculating orbit at a fixed reference time are chosen, a universal formulation is yielded. For elliptical orbits, however, this formulation is unattractive for numerical integration purposes due to Poisson terms (mixed secular) appearing in the equations of motion. Other choices for the reference point eliminate this problem but usually at the expense of universality. A number of these formulations, including a universal one, are considered here. Comparisons of the numerical characteristics of these techniques with those of the Encke method are presented.  相似文献   

9.
Analytical solutions are constructed for the polytropen=1. An algorithm is devised to determine the numerical values of coefficients. These are compared with existing values determined from purely numerical schemes. The usefulness of the approach is discussed together with numerical strategies for this type of problem.  相似文献   

10.
We discuss the results of a numerical simulation of the hydrodynamic Bondi–Hoyle accretion obtained on the basis of a high-resolution numerical scheme with the proper entropy correction procedure necessary to avoid the 'weak' non-monotonicity intrinsic in these schemes. Both the axisymmetric and plane cases are considered. The axisymmetric accretion problem turns out to have steady-state solutions for all determining parameters. Steady-state solutions for the plane accretion are found in certain cases even for sinusoidally perturbed and strongly non-uniform winds. Non-stationary phenomena do exist but they are not very violent and can sometimes be attributed as well to numerical as to physical reasons.  相似文献   

11.
New high-precision, semianalytical and numerical solutions to the problem of the rotational motion of the Moon are obtained, for use in the long 418.9-year time frame. The dynamics of the rotational motion of the Moon is studied numerically using the Rodrigues-Hamilton parameters, relative to the fixed ecliptic for the epoch J2000. The results of the numerical solution to the problem under study are compared with a compiled semianalytical theory of Moon rotation (SMR). The initial conditions for the numerical integration have been taken from the SMR. The comparative discrepancies derived from the comparison between the numerical solutions and the SMR do not exceed 1.5″ on the time-scale of 418.9 yr. The investigation of the comparative discrepancies between the numerical and semianalytical solutions is performed using the least squares and spectral analysis methods in the Newtonian case. All the periodic terms describing the behavior of the comparative discrepancies are interpreted as the corrections to the semianalytical SMR theory. As a result, the series are constructed to describe the rotation of the Moon (MRS2010) in the time interval under study. The numerical solution for the Moon’s rotation has been obtained anew, with new initial conditions calculated using MRS2010. The discrepancies between the new numerical solution and MRS2010 do not exceed 20 arc milliseconds on the time-scale of 418.9 years. The results of the comparison suggest that that the MRS2010 series describe the rotation of the Moon more correctly than the SMR series.  相似文献   

12.
A numerical procedure is devised to find binary collision orbits in the free-fall three-body problem. Applying this procedure, families of binary collision orbits are found and a sequence of triple collision orbits are positioned. A property of sets of binary collision orbits which is convenient to search triple collision orbits is found. Important numerical results are formulated and summarized in the final section.  相似文献   

13.
Multi-ring impact basins have been found on the surfaces of almost all planetary bodies in the Solar system with solid crusts. The details of their formation mechanism are still unclear. We present results of our numerical modeling of the formation of the largest known terrestrial impact craters. The geological and geophysical data on these structures accumulated over many decades are used to place constraints on the parameters of available numerical models with a dual purpose: (i) to choose parameters in available mechanical models for the crustal response of planetary bodies to a large impact and (ii) to use numerical modeling to refine the possible range of original diameters and the morphology of partially eroded terrestrial craters. We present numerical modeling results for the Vredefort, Sudbury, Chicxulub, and Popigai impact craters and compare these results with available geological and geophysical information.  相似文献   

14.
人卫精密定轨中受摄星历(或称精密星历,即状态转移),可由分析解或数值解提供,相应的定轨方法亦有分析法定轨与数值法定轨之称。对于后者,在一般情况下,现有的常微分方程数值解法(或称积分器)已能满足精度要求,除长弧定轨外,有一定问题是值得注意的,即地影“间断”问题的处理,这关系到如何在保证星历精度的前提下提高计算效率的问题。本文针对这一问题,给出了相应的改进算法,并通过数值验证表明算法的有效性。  相似文献   

15.
We present a numerical treatment of radiative transfer in three dimensions. The radiation is modeled by the grey moment M 1 system. The introduced scheme is able to compute accurate numerical solutions over a broad class of regimes from the transport to the diffusive limit. We discuss numerical issues concerning the resolution and the parallelization of this scheme for multi-dimensional simulations. Several numerical results are then presented, which show that this approach is robust and have the correct behavior in both the diffusive and free-streaming limits. We also present a comparison in two dimensions of our code with a Monte-Carlo transfer code.  相似文献   

16.
The parameters of L matrices are applied to the numerical integration of regular equations describing the motion of minor bodies in the Solar System. The problem of the optimal choice of the regularizing change of variables is formulated in the context of the numerical integration of the equations of motion using the Runge–Kutta–Fehlberg method. Arbitrary perturbations are taken into account. This problem is completely solved in the case of planar motion. The solution of the optimization problem reduces the amount of computations needed to determine the vector of perturbing accelerations. Results of numerical integrations are given.  相似文献   

17.
We review what kinds of numerical integrators are used by astronomers in the field of dynamical astronomy and to what problems they are applied. This review is based on the questionaires distributed mainly to the members of IAU Commission 7 (Celestial Mechanics). Because of the restriction to the Commission 7 members, the answers are mainly from astronomers in the solar system dynamics and problems mentioned in the answers are also related to celestial bodies in the solar system. Other than above, two questions, how to check the precision or accuracy of numerically integrated results and how to treat a close approach, are also surveyed. The problem of the suitable choice of a numerical integrator from various numerical integrators is out of the scope of this review, and it depends strongly on the dynamical nature of a particular dynamical system and the required accuracy.  相似文献   

18.
One of the main difficulties encountered in the numerical integration of the gravitationaln-body problem is associated with close approaches. The singularities of the differential equations of motion result in losses of accuracy and in considerable increase in computer time when any of the distances between the participating bodies decreases below a certain value. This value is larger than the distance when tidal effects become important, consequently,numerical problems are encounteredbefore the physical picture is changed. Elimination of these singularities by transformations is known as the process of regularization. This paper discusses such transformations and describes in considerable detail the numerical approaches to more accurate and faster integration. The basic ideas of smoothing and regularization are explained and applications are given.  相似文献   

19.
A numerical study of asymmetric periodic solutions of the planar general three body problem is presented. The equations of variation are integrated numerically and the algorithms for the numerical determination of families of such periodic orbits are given. These orbits refer to a rotating frame of reference. The linear isoenergetic stability is examined through the stability parameters while the results are given in tables and figures.  相似文献   

20.
Helioseismology requires solar models computed with great accuracy. Results of investigations about the incidence in ZAMS models of one solar mass of the numerical errors arising from the interpolation of opacity tables and from the integration of the atmosphere are reported.Though the numerical accuracy reached by some actual codes is of the order of 10–4 (Christensen-Dalsgaard, 1989), it looks optimistic to expect a numerical accuracy better than few percent for models without mesh refinements in opacity tables and more consistency between atmospheric and internal structure models.Since most of the calculations were made with a new code based on spline/collocation, the numerical method used is outlined in an Appendix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号