首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hot stellar component in elliptical galaxies offers clues to both stellar evolution and galaxy evolution. Current observations suggest that extreme horizontal branch (EHB) stars dominate the far-UV emission from galaxies with the strongest "UV upturns," while post asymptotic giant branch (PAGB) stars are probably significant contributors for weaker galaxies. Spectra near the Lyman limit indicate that a rather narrow range of temperature (and hence EHB star mass) is required. However, other arguments suggest that most of the helium-burning stars in elliptical galaxies are in the red clump. The HB star mass distribution therefore appears to be strongly bimodal. Such bimodality is qualitatively reproduced by two radically different stellar population models, (those of Lee and Bressan et al., 1994), both of which require that the galaxies be very old. However, the Galactic open cluster NGC 6791 also contains EHB stars and exhibits strong bimodality, indicating that old age may not necessarily be a requirement for the UV upturn phenomenon. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The UV upturn phenomenon found in bright elliptical galaxies has notable implications for stellar evolution, galaxy evolution and even for cosmology. The recent space observations of three galaxy clusters made by Brown and his collaborators shed great lights on this field of study. Theoretical models are being improved based on such data. While the core-helium burning stars remain the strongest candidate for the UV upturn, there is a growing concern that the canonical models may be missing important elements, such as binaries. I review the current theoretical understanding and future prospects.  相似文献   

3.
It is now believed that the UV upturn sources in nearby early-type galaxies are horizontal-branch (HB) stars and their progeny. Recent studies have suggested that the HB temperature variation is mainly caused by age along with metallicity, which makes the UV upturn attractive as a potential age indicator for presumably the oldest populations in the universe—elliptical galaxies. However, the age explanation for HB temperature variation still has a number of hurdles to pass. Here, we summarize the pros and cons of the age hypothesis and report our recent progress in understanding of HB stars. Finally, we discuss whether it is valid to assume that the UV upturn can reliably date early-type galaxies.  相似文献   

4.
The rest-frame UV-to-optical flux ratio, which characterizes the "UV upturn" phenomenon, is potentially the most sensitive tracer of age in elliptical galaxies; models predict that it may change by orders of magnitude over the course of a few gigayears. In order to trace the evolution of the UV upturn as a function of redshift, we have used the far-UV camera on the Space Telescope Imaging Spectrograph to image the galaxy cluster CL 0016+16 at z=0.55. Our 25"x25" field includes four bright elliptical galaxies, spectroscopically confirmed to be passively evolving cluster members. The weak UV emission from the galaxies in our image demonstrates that the UV upturn is weaker at a look-back time approximately 5.6 Gyr earlier than our own, as compared to measurements of the UV upturn in cluster E and S0 galaxies at z=0 and z=0.375. These images are the first with sufficient depth to demonstrate the fading of the UV upturn expected at moderate redshifts. We discuss these observations and the implications for the formation history of galaxies.  相似文献   

5.
Galaxy harassment has been proposed as a physical process that morphologically transforms low surface density disc galaxies into dwarf elliptical galaxies in clusters. It has been used to link the observed very different morphology of distant cluster galaxies (relatively more blue galaxies with 'disturbed' morphologies) with the relatively large numbers of dwarf elliptical galaxies found in nearby clusters. One prediction of the harassment model is that the remnant galaxies should lie on low surface brightness tidal streams or arcs. We demonstrate in this paper that we have an analysis method that is sensitive to the detection of arcs down to a surface brightness of 29 B μ and we then use this method to search for arcs around 46 Virgo cluster dwarf elliptical galaxies. We find no evidence for tidal streams or arcs and consequently no evidence for galaxy harassment as a viable explanation for the relatively large numbers of dwarf galaxies found in the Virgo cluster.  相似文献   

6.
Gradients of absorption line indices are studied and mean stellar metallicities are estimated for 46 elliptical galaxies. The mean stellar metallicities range from 〈 [Fe/H] 〉 ≃ =0.8 to +0.2 and ellipticals with smaller central velocity dispersions tend to have lower 〈 [Fe/H] 〉 thus the mass-metallicity relation holds not only for the galaxy center but also for the whole part of the galaxy. There is an evidence that the magnesium is enhanced systematically in all ellipticals by 0.2 dex with respect to the iron. Giant elliptical galaxies show lack of metal-poor stars (the G-dwarf problem). Metal-poor globular clusters of ellipticals formed well in advance of the formation of metal-rich ones which formed simultaneously with the bulk of stars of mother galaxies under the influence of galaxy chemical enrichment. The bimodal [Fe/H] distribution of globular clusters does not necessarily mean that elliptical galaxies formed by the mergers of disc galaxies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Since Baade's photographic study of M32 in the mid 1940s, it has been accepted as an established fact that M32 is a compact dwarf satellite of M31. The purpose of this paper is to report on the findings of our investigation into the nature of the existing evidence. We find that the case for M32 being a satellite of M31 rests upon Hubble Space Telescope (HST) based stellar population studies which have resolved red-giant branch (RGB) and red clump stars in M32 as well as other nearby galaxies. Taken in isolation, this recent evidence could be considered to be conclusive in favour of the existing view. However, the conventional scenario does not explain M32's anomalously high central velocity dispersion for a dwarf galaxy (several times that of either NGC 147, NGC 185 or NGC 205) or existing planetary nebula observations (which suggest that M32 is more than twice as distant as M31) and also requires an elaborate physical explanation for M32's inferred compactness. Conversely, we find that the case for M32 being a normal galaxy, of the order of three times as distant as M31, is supported by: (1) a central velocity dispersion typical of intermediate galaxies, (2) the published planetary nebula observations, and (3) known scaling relationships for normal early-type galaxies. However, this novel scenario cannot account for the high apparent luminosities of the RGB stars resolved in the M32 direction by HST observations. We are therefore left with two apparently irreconcilable scenarios, only one of which can be correct, but both of which suffer from potentially fatal evidence to the contrary. This suggests that current understanding of some relevant fields is still very far from adequate.  相似文献   

8.
Gravitational wave emission by coalescing black holes (BHs) kicks the remnant BH with a typical velocity of hundreds of  km s−1  . This velocity is sufficiently large to remove the remnant BH from a low-mass galaxy but is below the escape velocity from the Milky Way (MW) galaxy. If central BHs were common in the galactic building blocks that merged to make the MW, then numerous BHs that were kicked out of low-mass galaxies should be freely floating in the MW halo today. We use a large statistical sample of possible merger tree histories for the MW to estimate the expected number of recoiled BH remnants present in the MW halo today. We find that hundreds of BHs should remain bound to the MW halo after leaving their parent low-mass galaxies. Each BH carries a compact cluster of old stars that populated the core of its original host galaxy. Using the time-dependent Fokker–Planck equation, we find that the present-day clusters are  ≲1 pc  in size, and their central bright regions should be unresolved in most existing sky surveys. These compact systems are distinguishable from globular clusters by their internal (Keplerian) velocity dispersion greater than 100 km s−1 and their high mass-to-light ratio owing to the central BH. An observational discovery of this relic population of star clusters in the MW halo would constrain the formation history of the MW and the dynamics of BH mergers in the early Universe. A similar population should exist around other galaxies and may potentially be detectable in M31 and M33.  相似文献   

9.
We have discovered a new type of galaxy in the Fornax Cluster: `ultra-compact' dwarfs (UCDs). The UCDs are unresolved in ground-based imaging and have spectra typical of old stellar systems. Although the UCDs resemble overgrown globular clusters, based on VLT UVES echelle spectroscopy, they appear to be dynamically distinct systems with higher internal velocity dispersions and M/L ratios for a given luminosity than Milky Way or M31 globulars. Our preferred explanation for their origin is that they are the remnant nuclei of dwarf elliptical galaxies which have been tidally stripped, or `threshed' by repeated encounters with the central cluster galaxy, NGC1399. If correct, then tidal stripping of nucleated dwarfs to form UCDs may, over a Hubble time, be an important source of the plentiful globular cluster population in the halo of NGC1399, and, by implication, other cD galaxies. In this picture, the dwarf elliptical halo contents, up to 99% of the original dwarf luminosity, contribute a significant fraction of the populations of intergalactic stars, globulars, and gas in galaxy clusters. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The discovery of a flux excess in the far-ultraviolet (FUV) spectrum of elliptical galaxies was a major surprise in 1969. While it is now clear that this UV excess is caused by an old population of hot helium-burning stars without large hydrogen-rich envelopes, rather than young stars, their origin has remained a mystery. Here we show that these stars most likely lost their envelopes because of binary interactions, similar to the hot subdwarf population in our own Galaxy. We have developed an evolutionary population synthesis model for the FUV excess of elliptical galaxies based on the binary model developed by Han et al. for the formation of hot subdwarfs in our Galaxy. Despite its simplicity, it successfully reproduces most of the properties of elliptical galaxies with a UV excess: the range of observed UV excesses, both in  (1550 − V )  and  (2000 − V )  , and their evolution with redshift. We also present colour–colour diagrams for use as diagnostic tools in the study of elliptical galaxies. The model has major implications for understanding the evolution of the UV excess and of elliptical galaxies in general. In particular, it implies that the UV excess is not a sign of age, as had been postulated previously, and predicts that it should not be strongly dependent on the metallicity of the population, but exists universally from dwarf ellipticals to giant ellipticals.  相似文献   

11.
It has frequently been suggested in the literature that the stellar IMF in galaxies was top-heavy at early times. This would be plausible physically if the IMF depended on a mass-scale such as the Jeans mass that was higher at earlier times because of the generally higher temperatures that were present then. In this paper it is suggested, on the basis of current evidence and theory, that the IMF has a universal Salpeter-like form at the upper end, but flattens below a characteristic stellar mass that may vary with time. Much of the evidence that has been attributed to a top-heavy early IMF, including the ubiquitous G-dwarf problem, the high abundance of heavy elements in clusters of galaxies, and the high rate of formation of massive stars in high-redshift galaxies, can be accounted for with such an IMF if the characteristic stellar mass was several times higher during the early stages of galaxy evolution. However, significant variations in the mass-to-light ratios of galaxies and large amounts of dark matter in stellar remnants are not as easily explained in this way, because they require more extreme and less plausible assumptions about the form and variability of the IMF. Metal-free 'population III' stars are predicted to have an IMF that consists exclusively of massive stars, and they could help to account for some of the evidence that has been attributed to a top-heavy early IMF, as well as contributing importantly to the energetics and chemical enrichment of the early Universe.  相似文献   

12.
A large number of early-type galaxies are now known to possess blue and red subpopulations of globular clusters. We have compiled a data base of 28 such galaxies exhibiting bimodal globular cluster colour distributions. After converting to a common V – I colour system, we investigate correlations between the mean colour of the blue and red subpopulations with galaxy velocity dispersion. We support previous claims that the mean colours of the blue globular clusters are unrelated to their host galaxy. They must have formed rather independently of the galaxy potential they now inhabit. The mean blue colour is similar to that for halo globular clusters in our Galaxy and M31. The red globular clusters, on the other hand, reveal a strong correlation with galaxy velocity dispersion. Furthermore, in well-studied galaxies the red subpopulation has similar, and possibly identical, colours to the galaxy halo stars. Our results indicate an intimate link between the red globular clusters and the host galaxy; they share a common formation history. A natural explanation for these trends would be the formation of the red globular clusters during galaxy collapse.  相似文献   

13.
The group of galaxies RXJ1340.6+4018 has approximately the same bolometric X-ray luminosity as other bright galaxy groups and poor clusters such as the Virgo cluster. However, 70 per cent of the optical luminosity of the group comes from a dominant giant elliptical galaxy, compared with 5 per cent from M87 in Virgo.The second brightest galaxy in RXJ1340.6+4018 is a factor of 10 fainter (Δ m 12=2.5 mag) than the dominant elliptical, and the galaxy luminosity function has a gap at about L *.
We interpret the properties of the system as a result of galaxy merging within a galaxy group. We find that the central galaxy lies on the Fundamental Plane of ellipticals, has an undisturbed, non-cD morphology, and has no spectral features indicative of recent star formation, suggesting that the last major merger occurred ≳4 Gyr ago. The deviation of the system from the cluster L X− T relation in the opposite sense to most groups may be caused by an early epoch of formation of the group or a strong cooling flow.
The unusual elongation of the X-ray isophotes and the similarity between the X-ray and optical ellipticities at large radii (∼230 kpc) suggest that both the X-ray gas and the outermost stars of the dominant galaxy are responding to an elongated dark matter distribution. RXJ1340.6+4018 may be part of a filamentary structure related to infall in the outskirts of the cluster A1774.  相似文献   

14.
In this paper, we review the formation scenario for field hot subdwarf stars and extreme horizontal branch stars in globular clusters and discuss how the scenario helps us to understand the UV-upturn phenomenon of elliptical galaxies. It is widely accepted that field hot subdwarf stars originate from binary evolution via the following three channels, common envelope evolution channel for hot subdwarf binaries with short orbital periods, stable Roche lobe overflow channel for hot subdwarf binaries with long orbital periods, and the double helium white dwarf merger channel for single hot subdwarfs. Such a scenario can also explain the lack of binarity of extreme horizontal branch stars in globular clusters. We have applied, in an a priori way, the scenario to the study of UV-upturn phenomenon of elliptical galaxies via an evolutionary population synthesis approach and found that the UV-upturn can be naturally explained. This has major implications for understanding the evolution of UV-upturn and elliptical galaxies in general. In particular, it implies that the UV-upturn is not a sign of age, as had been postulated previously, and should not be strongly dependent on the metallicity of the population, but exists universally from dwarf ellipticals to giant ellipticals. The above a priori UV-upturn model is supported by recent GALEX observations and has been applied to naturally explain the colours of both dwarf ellipticals and giant ellipticals without the requirement of dichotomy between their stellar population properties.  相似文献   

15.
The smallest dwarf galaxies are the most straight forward objects in which to study star formation processes on a galactic scale. They are typically single cell star forming entities, and as small potentials in orbit around a much larger one they are unlikely to accrete much (if any) extraneous matter during their lifetime (either intergalactic gas, or galaxies) because they will typically lose the competition with the much larger galaxy. We can utilise observations of stars of a range of ages to measure star formation and enrichment histories back to the earliest epochs. The most ancient objects we have ever observed in the Universe are stars found in and around our Galaxy. Their proximity allows us to extract from their properties detailed information about the time in the early Universe into which they were born. A currently fashionable conjecture is that the earliest star formation in the Universe occurred in the smallest dwarf galaxy sized objects. Here I will review some recent observational highlights in the study of dwarf galaxies in the Local Group and the implications for understanding galaxy formation and evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
We present an analysis of the density profile in the central region of the Sagittarius dwarf spheroidal galaxy. A strong density enhancement of Sgr stars is observed. The position of the peak of the detected cusp is indistinguishable from the centre of M54. The photometric properties of the cusp are fully compatible with those observed in the nuclei of dwarf elliptical galaxies, indicating that the Sgr dSph would appear as a nucleated galaxy independently of the presence of M54 at its centre.  相似文献   

17.
We compare observations of the high-redshift galaxy population to the predictions of the galaxy formation model of Croton et al. and De Lucia & Blaizot. This model, implemented on the Millennium Simulation of the concordance Lambda cold dark matter cosmogony, introduces 'radio mode' feedback from the central galaxies of groups and clusters in order to obtain quantitative agreement with the luminosity, colour, morphology and clustering properties of the present-day galaxy population. Here we construct deep light cone surveys in order to compare model predictions to the observed counts and redshift distributions of distant galaxies, as well as to their inferred luminosity and mass functions out to redshift 5. With the exception of the mass functions, all these properties are sensitive to modelling of dust obscuration. A simple but plausible treatment agrees moderately well with most of the data. The predicted abundance of relatively massive  (∼ M *)  galaxies appears systematically high at high redshift, suggesting that such galaxies assemble earlier in this model than in the real Universe. An independent galaxy formation model implemented on the same simulation matches the observed mass functions slightly better, so the discrepancy probably reflects incomplete or inaccurate galaxy formation physics rather than problems with the underlying cosmogony.  相似文献   

18.
Recent UV observations of the most massive Galactic globular clusters show a significant population of hot stars below the zero-age HB (“blue hook” stars), which cannot be explained by canonical stellar evolution. Stars which suffer unusually large mass loss on the red giant branch and thus experience the helium-core flash while descending the white dwarf cooling curve could populate this region. They should show higher temperatures than the hottest canonical HB stars and their atmospheres should be helium-rich and probably C/N-rich. We have obtained spectra of blue hook stars in ω Cen and NGC 2808 to test this possibility. Our analysis shows that the blue hook stars in these clusters reach effective temperatures well beyond the hot end of the canonical EHB and have higher helium abundances than canonical EHB stars. These results support the hypothesis that the blue hook stars arise from stars which ignite helium on the white dwarf cooling curve.  相似文献   

19.
The galaxy population in rich local galaxy clusters shows a ratio of one quarter elliptical galaxies, two quarters S0 galaxies, and one quarter spiral galaxies. Observations of clusters at redshift 0.5 show a perspicuously different ratio, the dominant galaxy type are spiral galaxies with a fraction of two quarters while the number of S0 galaxies decreases to a fraction of one quarter (Dressler et al. 1997). This shows an evolution of the galaxy population in clusters since redshift 0.5 and it has been suspected that galaxy transformation processes during the infall into a cluster are responsible for this change. These could be merging, starburst or ram-pressure stripping. We use our evolutionary synthesis models to describe various possible effects of those interactions on the star formation of spiral galaxies infalling into clusters. We study the effects of starbursts of various strengths as well as of the truncation of star formation at various epochs on the color and luminosity evolution of model galaxies of various spectral types. As a first application we present the comparison of our models with observed properties of the local S0 galaxy population to constrain possible S0 formation mechanisms in clusters. Application to other types of galaxies is planned for the future. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
We present results for a galaxy formation model that includes a simple treatment for the disruption of dwarf galaxies by gravitational forces and galaxy encounters within galaxy clusters. This is implemented a posteriori in a semi-analytic model by considering the stability of cluster dark matter subhaloes at   z = 0  . We assume that a galaxy whose dark matter substructure has been disrupted will itself disperse, while its stars become part of the population of intracluster stars responsible for the observed intracluster light. Despite the simplicity of this assumption, our results show a substantial improvement over previous models and indicate that the inclusion of galaxy disruption is indeed a necessary ingredient of galaxy formation models. We find that galaxy disruption suppresses the number density of dwarf galaxies by about a factor of 2. This makes the slope of the faint end of the galaxy luminosity function shallower, in agreement with observations. In particular, the abundance of faint, red galaxies is strongly suppressed. As a result, the luminosity function of red galaxies and the distinction between the red and the blue galaxy populations in colour–magnitude relationships are correctly predicted. Finally, we estimate a fraction of intracluster light comparable to that found in clusters of galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号