首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spatial distribution of hydraulic properties in the subsurface controls groundwater flow and solute transport. However, many approaches to modeling these distributions do not produce geologically realistic results and/or do not model the anisotropy of hydraulic conductivity caused by bedding structures in sedimentary deposits. We have developed a flexible object-based package for simulating hydraulic properties in the subsurface—the Hydrogeological Virtual Realities (HyVR) simulation package. This implements a hierarchical modeling framework that takes into account geological rules about stratigraphic bounding surfaces and the geometry of specific sedimentary structures to generate realistic aquifer models, including full hydraulic-conductivity tensors. The HyVR simulation package can create outputs suitable for standard groundwater modeling tools (e.g., MODFLOW), is written in Python, an open-source programming language, and is openly available at an online repository. This paper presents an overview of the underlying modeling principles and computational methods, as well as an example simulation based on the Macrodispersion Experiment site in Columbus, Mississippi. Our simulation package can currently simulate porous media that mimic geological conceptual models in fluvial depositional environments, and that include fine-scale heterogeneity in distributed hydraulic parameter fields. The simulation results allow qualitative geological conceptual models to be converted into digital subsurface models that can be used in quantitative numerical flow-and-transport simulations, with the aim of improving our understanding of the influence of geological realism on groundwater flow and solute transport.  相似文献   

2.
Spring-block models, such as the Olami-Feder-Christensen (OFC) model, were introduced several years ago to describe earthquake dynamics in the context of self-organized criticality. With the aim to address the dependency of the seismicity style on source’s material properties, we present an analytical enrichment of a 2D OFC model. We conclude with an analytical expression which introduces, through an appropriate constitutive equation, an effective dissipation parameter a eff related analytically not only with the elastic properties of the fault plane, but also with stochastic structural heterogeneities and structural processes of the source through a gradient coefficient. Moreover, within the proposed formulation, the low b values experimentally observed in foreshock sequences can be modeled by a process of material softening in the seismogenic volume. To check our analytical findings, a cellular automaton was built-up whereas simulation results have verified the model’s predictions for the evolution of b in macroscopic records.  相似文献   

3.
Intensity attenuation for active crustal regions   总被引:1,自引:0,他引:1  
We develop globally applicable macroseismic intensity prediction equations (IPEs) for earthquakes of moment magnitude M W 5.0?C7.9 and intensities of degree II and greater for distances less than 300?km for active crustal regions. The IPEs are developed for two distance metrics: closest distance to rupture (R rup) and hypocentral distance (R hyp). The key objective for developing the model based on hypocentral distance??in addition to more rigorous and standard measure R rup??is to provide an IPE which can be used in near real-time earthquake response systems for earthquakes anywhere in the world, where information regarding the rupture dimensions of a fault may not be known in the immediate aftermath of the event. We observe that our models, particularly the model for the R rup distance metric, generally have low median residuals with magnitude and distance. In particular, we address whether the direct use of IPEs leads to a reduction in overall uncertainties when compared with methods which use a combination of ground-motion prediction equations and ground motion to intensity conversion equations. Finally, using topographic gradient as a proxy and median model predictions, we derive intensity-based site amplification factors. These factors lead to a small reduction of residuals at shallow gradients at strong shaking levels. However, the overall effect on total median residuals is relatively small. This is in part due to the observation that the median site condition for intensity observations used to develop these IPEs is approximately near the National Earthquake Hazard Reduction Program CD site-class boundary.  相似文献   

4.
A review of experiments in which arrays of recording magnetometers deployed over an area of land to study induction problems is presented. Intensive array activities take place on a continual basis in North America, Australia, Scotland and Africa and array studies have been conducted in India, Scandinavia, and Russia. The main results are summarised. Analysis, presentation and interpretation of array data have also enjoyed significant developments which are discussed with illustrations. The use of multi-techniques in the analysis of array data has improved the reliability of the interpretational inferences. One-dimensional conductivity profiles can now be deduced by the simple inversion of the inductive response functionC(w, t) estimated from the vertical field Z and spatial gradient of the horizontal field components (ΔXxYy) of magnetometer array data with large gradient. Bounds can be placed on accepted profiles using the Monte Carlo process just as it is done in magnetotelluric data inversion. The results from array studies continue to improve our understanding of the synthesis of realistic tectonic models of the continents. The structure under some geothermal zones are now known through a number of recent studies.  相似文献   

5.
Accurate and precise estimation of return levels is often a key goal of any extreme value analysis. For example, in the UK the British Standards Institution (BSI) incorporate estimates of ‘once-in-50-year wind gust speeds’—or 50-year return levels—into their design codes for new structures; similarly, the Dutch Delta Commission use estimates of the 10,000-year return level for sea-surge to aid the construction of flood defence systems. In this paper, we briefly highlight the shortcomings of standard methods for estimating return levels, including the commonly-adopted block maxima and peaks over thresholds approach, before presenting an estimation framework which we show can substantially increase the precision of return level estimates. Our work allows explicit quantification of seasonal effects, as well as exploiting recent developments in the estimation of the extremal index for handling extremal clustering. From frequentist ideas, we turn to the Bayesian paradigm as a natural approach for building complex hierarchical or spatial models for extremes. Through simulations we show that the return level posterior mean does not have an exceedance probability in line with the intended encounter risk; we also argue that the Bayesian posterior predictive value gives the most satisfactory representation of a return level for use in practice, accounting for uncertainty in parameter estimation and future observations. Thus, where feasible, we propose a Bayesian estimation strategy for optimal return level inference.  相似文献   

6.
The time-dependent three-dimensional distribution of a population of Karenia brevis is explored through the use of an Eulerian model. The model combines a previously developed physiologically based behavioral model of these dinoflagellates with a simple model for a three-dimensional wind driven flow field over a variable-depth continental shelf. The behavioral model is simplified from that used in previous applications and sigma coordinates are utilized in the model. Model results indicate that even for the relatively weak wind driven currents used in our simulation a non-quantized population can develop into two spatially distinct quantized populations in a period as short as 1 day where, for present purposes, a quantized population is one in which all cells are at the same stage of the cell cycle.  相似文献   

7.
In this paper we present a stochastic model reduction method for efficiently solving nonlinear unconfined flow problems in heterogeneous random porous media. The input random fields of flow model are parameterized in a stochastic space for simulation. This often results in high stochastic dimensionality due to small correlation length of the covariance functions of the input fields. To efficiently treat the high-dimensional stochastic problem, we extend a recently proposed hybrid high-dimensional model representation (HDMR) technique to high-dimensional problems with multiple random input fields and integrate it with a sparse grid stochastic collocation method (SGSCM). Hybrid HDMR can decompose the high-dimensional model into a moderate M-dimensional model and a few one-dimensional models. The moderate dimensional model only depends on the most M important random dimensions, which are identified from the full stochastic space by sensitivity analysis. To extend the hybrid HDMR, we consider two different criteria for sensitivity test. Each of the derived low-dimensional stochastic models is solved by the SGSCM. This leads to a set of uncoupled deterministic problems at the collocation points, which can be solved by a deterministic solver. To demonstrate the efficiency and accuracy of the proposed method, a few numerical experiments are carried out for the unconfined flow problems in heterogeneous porous media with different correlation lengths. The results show that a good trade-off between computational complexity and approximation accuracy can be achieved for stochastic unconfined flow problems by selecting a suitable number of the most important dimensions in the M-dimensional model of hybrid HDMR.  相似文献   

8.
Observations of turbulent dissipation rates measured by two independent instruments are compared with numerical model runs to investigate the injection of turbulence generated by sea surface gravity waves. The near-surface observations are made by a moored autonomous instrument, fixed at approximately 8 m below the sea surface. The instrument is equipped with shear probes, a high-resolution pressure sensor, and an inertial motion package to measure time series of dissipation rate and nondirectional surface wave energy spectrum. A free-falling profiler is used additionally to collect vertical microstructure profiles in the upper ocean. For the model simulations, we use a one-dimensional mixed layer model based on a kε type second moment turbulence closure, which is modified to include the effects of wave breaking and Langmuir cells. The dissipation rates obtained using the modified kε model are elevated near the sea surface and in the upper water column, consistent with the measurements, mainly as a result of wave breaking at the surface, and energy drawn from wave field to the mean flow by Stokes drift. The agreement between observed and simulated turbulent quantities is fairly good, especially when the Stokes production is taken into account.  相似文献   

9.
We use a three-dimensional mixed-wet random network model representing Berea sandstone to extend our previous work on relative permeability hysteresis during water-alternating-gas (WAG) injection cycles [Suicmez, VS, Piri, M, Blunt, MJ, 2007, Pore-scale simulation of water alternate gas injection, Transport Porous Med 66(3), 259–86]. We compute the trapped hydrocarbon saturation for tertiary water-flooding, which is water injection into different initial gas saturations, Sgi, established by secondary gas injection after primary drainage. Tertiary water-flooding is continued until all the gas and oil is trapped. We study four different wettability conditions: water-wet, weakly water-wet, weakly oil-wet and oil-wet. We demonstrate that the amounts of oil and gas that are trapped show surprising trends with wettability that cannot be captured using previously developed empirical trapping models. We show that the amount of oil that is trapped by water in the presence of gas increases as the medium becomes more oil-wet, which is opposite from that seen for two-phase flow. It is only through a careful analysis of displacement statistics and fluid configurations that these results can be explained. This illustrates the need to have detailed models of the displacement processes that represent the three-phase displacement physics as carefully as possible. Further work is needed to explore the full range of behavior as a function of wettability and displacement path.  相似文献   

10.
11.
—?A program package, called HYPOSAT, has been under development that attempts to use the maximum information possible to estimate the hypocenter of a seismic source. The standard input parameters can be used: arrival times of first and later onsets with backazimuths and ray parameters (or apparent velocities). In addition, travel-time differences between different phases observed at the same station can be optionally used. The observed standard deviations are used to weight all input parameters and the inversion is done with a generalized matrix inversion code.¶A starting solution with a priori uncertainties can be calculated as the intersection of all backazimuth observations. If S observations are also available, a preliminary origin time is estimated using Wadati's approach to estimate a source time.¶Global earth models and user-defined horizontally layered local or regional models can be used alone or together to locate seismic events. To gain the best result from all input data, observations of all seismic phases as defined in the IASPEI91 tables can be inverted. Station corrections and corrections for phases with reflection points at the earth's surface can be applied by using local velocity structures.  相似文献   

12.
Hydrological models have been widely applied in flood forecasting, water resource management and other environmental sciences. Most hydrological models calibrate and validate parameters with available records. However, the first step of hydrological simulation is always to quantitatively and objectively split samples for use in calibration and validation. In this paper, we have proposed a framework to address this issue through a combination of a hierarchical scheme through trial and error method, for systematic testing of hydrological models, and hypothesis testing to check the statistical significance of goodness-of-fit indices. That is, the framework evaluates the performance of a hydrological model using sample splitting for calibration and validation, and assesses the statistical significance of the Nash–Sutcliffe efficiency index (Ef), which is commonly used to assess the performance of hydrological models. The sample splitting scheme used is judged as acceptable if the Ef values exceed the threshold of hypothesis testing. According to the requirements of the hierarchical scheme for systematic testing of hydrological models, cross calibration and validation will help to increase the reliability of the splitting scheme, and reduce the effective range of sample sizes for both calibration and validation. It is illustrated that the threshold of Ef is dependent on the significance level, evaluation criteria (both regarded as the population), distribution type, and sample size. The performance rating of Ef is largely dependent on the evaluation criteria. Three types of distributions, which are based on an approximately standard normal distribution, a Chi square distribution, and a bootstrap method, are used to investigate their effects on the thresholds, with two commonly used significance levels. The highest threshold is from the bootstrap method, the middle one is from the approximately standard normal distribution, and the lowest is from the Chi square distribution. It was found that the smaller the sample size, the higher the threshold values are. Sample splitting was improved by providing more records. In addition, outliers with a large bias between the simulation and the observation can affect the sample values of Ef, and hence the output of the sample splitting scheme. Physical hydrology processes and the purpose of the model should be carefully considered when assessing outliers. The proposed framework in this paper cannot guarantee the best splitting scheme, but the results show the necessary conditions for splitting schemes to calibrate and validate hydrological models from a statistical point of view.  相似文献   

13.
Ancient kauri (Agathis australis) buried in bogs across Northland, New Zealand, provide potential for a continuous high-precision radiocarbon calibration curve that extends to the full chronologic range of the dating method. Here we report four new tree-ring series which in addition to previous work represent some 5312 years across Oxygen Isotope Stage 3, a period during which human evolution, migration and extinction took place against a backdrop of extreme and abrupt global climate and environmental change. We compare our radiocarbon-dated series against three different calibration datasets and find considerable differences in the wiggle-matched solutions, demonstrating the difficulty in undertaking high-precision correlation between ice, marine and terrestrial sequences. One way around the apparent impasse is the use of 10Be in the Greenland and Antarctic ice cores to precisely link to kauri 14C from which a decadally/bidecadally-resolved floating ‘calibration’ dataset can be generated.  相似文献   

14.
All Quaternary dating methods involve the measurement of one or more variables to estimate the age of a sample. Each measured quantity has an associated error and uncertainty, and may also be subject to natural variation. We review the statistical estimation of such uncertainties and variation for comparing and interpreting age estimates, with specific reference to the estimation of equivalent dose (De) values in the optically stimulated luminescence (OSL) dating of sediments. We discuss statistical aspects of OSL signal and background estimation, the determination of De values for multi-grain aliquots and individual mineral grains from the same and different samples, and the extent of variation commonly observed among such estimates. Examples are drawn from geological and archaeological contexts. We discuss the strengths and weaknesses of various graphical methods of displaying multiple, independent estimates of De, along with statistical tests and models to compare and appropriately combine them. Many of our recommendations are applicable also to the clear presentation of data obtained using other Quaternary dating methods. We encourage the use of models and methods that are based on well established statistical principles and, ideally, are validated by appropriate numerical simulations; and we discourage the adoption of ad hoc methods developed using a particular set of measurement conditions and tested on a limited number of samples, as these may not be applicable more generally. We emphasise that the choice of statistical models should not be made solely on statistical grounds (or arbitrary rules) but should take into account the broader scientific context of each sample and any additional pertinent information.  相似文献   

15.
A common way to simulate fluid flow in porous media is to use Lattice Boltzmann (LB) methods. Permeability predictions from such flow simulations are controlled by parameters whose settings must be calibrated in order to produce realistic modelling results. Herein we focus on the simplest and most commonly used implementation of the LB method: the single-relaxation-time BGK model. A key parameter in the BGK model is the relaxation time τ which controls flow velocity and has a substantial influence on the permeability calculation. Currently there is no rigorous scheme to calibrate its value for models of real media. We show that the standard method of calibration, by matching the flow profile of the analytic Hagen-Poiseuille pipe-flow model, results in a BGK-LB model that is unable to accurately predict permeability even in simple realistic porous media (herein, Fontainebleau sandstone). In order to reconcile the differences between predicted permeability and experimental data, we propose a method to calibrate τ using an enhanced Transitional Markov Chain Monte Carlo method, which is suitable for parallel computer architectures. We also propose a porosity-dependent τ calibration that provides an excellent fit to experimental data and which creates an empirical model that can be used to choose τ for new samples of known porosity. Our Bayesian framework thus provides robust predictions of permeability of realistic porous media, herein demonstrated on the BGK-LB model, and should therefore replace the standard pipe-flow based methods of calibration for more complex media. The calibration methodology can also be extended to more advanced LB methods.  相似文献   

16.
We present a closed-form frequency-wave number (ω – k) Green’s function for a layered, elastic half-space under SH wave propagation. It is shown that for every (ω – k) pair, the fundamental solution exhibits two distinctive features: (1) the original layered system can be reduced to a system composed by the uppermost superficial layer over an equivalent half-space; (2) the fundamental solution can be partitioned into three different fundamental solutions, each one carrying out a different physical interpretation, i.e., an equivalent half-space, source image impact, and dispersive wave effect, respectively. Such an interpretation allows the proper use of analytical and numerical integration schemes, and ensures the correct assessment of Cauchy principal value integrals. Our method is based upon a stiffness-matrix scheme, and as a first approach we assume that observation points and the impulsive SH line-source are spatially located within the uppermost superficial layer. We use a discrete wave number boundary element strategy to test the benefits of our fundamental solution. We benchmark our results against reported solutions for an infinitely long circular canyon subjected to oblique incident SH waves within a homogeneous half-space. Our results show an almost exact agreement with previous studies. We further shed light on the impact of horizontal strata by examining the dynamic response of the circular canyon to oblique incident SH waves under different layered half-space configurations and incident angles. Our results show that modifications in the layering structure manifest by larger peak ground responses, and stronger spatial variability due to interactions of the canyon geometry with trapped Love waves in combination with impedance contrast effects.  相似文献   

17.
Wind is responsible for systematic errors that affect rain gauge measurements. The authors investigate the use of computational fluid dynamics (CFD) to calculate airflow around rain gauges by applying a high-resolution large eddy simulation (LES) model to determine the flow fields around a measuring system of two rain gauges. The simulated air flow field is characterized by the presence of massive separation which induces the formation and shedding of highly unsteady eddies in the detached shear layers and wakes. Parts of these detached structures occur over the orifice of the rain gauges and may substantially affect the dynamics of the raindrops in this critical region. Non-dissipative LES methods used with fine enough meshes can successfully predict these eddies and their associated fluctuations. The authors compare statistics from LES with steady-state Reynolds averaged Navier–Stokes (RANS) simulations using the kε and shear stress transport kω turbulence models. They find that both RANS and LES models predict similar mean velocity distributions around the rain gauges. However, they determine the distribution of the resolved turbulent kinetic energy (TKE) to be strongly dependent on the RANS model used. Neither RANS model predictions of TKE are close to those of LES. The authors conclude that the failure of RANS to predict TKE is an important limitation, as TKE is needed to scale the local velocity fluctuations in stochastic models used to calculate the motion of raindrops in the flow field.  相似文献   

18.
The 3-h Kp index is widely used as a measure of geomagnetic activity for ionospheric studies. Specifically, it is the planetary index used to determine the geomagnetic dependence of statistical auroral patterns and the convection electric field for certain models. Its quasi anti-logarithm, the Ap index, is similarly used in statistical models of the neutral atmosphere and neutral wind. Physics-based ionospheric models, such as the Utah State University (USU) Time-Dependent Ionospheric Model (TDIM), use these statistical models as magnetospheric and thermospheric inputs. However, the 3-h time interval between index computations is now considered a shortfall with regard to specifying and forecasting phenomena known to have faster time constants, e.g., auroral electrojet variations during a substorm. Therefore, these indices have been targeted for high-time resolution development; we have developed such indices in Della-Rose et al. (1999). We now use our 15-minute station “K-like” index to determine the effect of introducing high-time resolution magnetic fluctuations into the TDIM inputs. This study represented the high-latitude ionosphere by a grid of 1484 locations, and was carried out for a geomagnetic storm period during solar maximum and “simulated” winter solstice conditions. We found that, for fixed Interplanetary Magnetic Field (IMF) By/Bz ratio, driving the TDIM with our 15-minute “K-like” index altered the average high-latitude NmF2 value by as much as 8% (vs. the average NmF2 obtained using a 3-h index to drive the TDIM). More significantly, the standard deviation of the NmF2 variations was up to 35%. Under some conditions, the average NmF2 was changed by up to 30% with a standard deviation of over 60%. However, the effect of selecting different convection patterns that represented three southward IMF Bz orientations led to larger effects. The high-latitude average NmF2 changed by 10% or less, but the spread in the distribution always ranged from standard deviations of 29 to 68%. These results indicate that there is a substantial need to consider both short-term magnetic fluctuations and inclusion of real-time IMF data in the inputs to ionospheric models.  相似文献   

19.
Upscaling pore-scale processes into macroscopic quantities such as hydrodynamic dispersion is still not a straightforward matter for porous media with complex pore space geometries. Recently it has become possible to obtain very realistic 3D geometries for the pore system of real rocks using either numerical reconstruction or micro-CT measurements. In this work, we present a finite element–finite volume simulation method for modeling single-phase fluid flow and solute transport in experimentally obtained 3D pore geometries. Algebraic multigrid techniques and parallelization allow us to solve the Stokes and advection–diffusion equations on large meshes with several millions of elements. We apply this method in a proof-of-concept study of a digitized Fontainebleau sandstone sample. We use the calculated velocity to simulate pore-scale solute transport and diffusion. From this, we are able to calculate the a priori emergent macroscopic hydrodynamic dispersion coefficient of the porous medium for a given molecular diffusion Dm of the solute species. By performing this calculation at a range of flow rates, we can correctly predict all of the observed flow regimes from diffusion dominated to convection dominated.  相似文献   

20.
One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time (T 1) and transverse relaxation time (T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times (T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings (T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号