首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 481 毫秒
1.
—Whereas the coast of Peru south of 10°S is historically accustomed to tsunamigenic earthquakes, the subduction zone north of 10°S has been relatively quiet. On 21 February 1996 at 21:51 GMT (07:51 local time) a large, tsunamigenic earthquake (Harvard estimate M w = 7.5) struck at 9.6°S, 79.6°W, approximately 130 km off the northern coast of Peru, north of the intersection of the Mendaña fracture zone with the Peru–Chile trench. The likely mechanism inferred from seismic data is a low-angle thrust consistent with subduction of the Nazca Plate beneath the South American plate, with relatively slow rupture characteristics. Approximately one hour after the main shock, a damaging tsunami reached the Peruvian coast, resulting in twelve deaths. We report survey measurements, from 7.7°S to 11°S, on maximum runup (2–5m, between 8 and 10°S), maximum inundation distances, which exceeded 500 m, and tsunami sediment deposition patterns. Observations and numerical simulations show that the hydrodynamic characteristics of this event resemble those of the 1992 Nicaragua tsunami. Differences in climate, vegetation and population make these two tsunamis seem more different than they were. This 1996 Chimbote event was the first large (M w >7) subduction-zone (interplate) earthquake between about 8 and 10°S, in Peru, since the 17th century, and bears resemblance to the 1960 (M w 7.6) event at 6.8°S. Together these two events are apparently the only large subduction-zone earthquakes in northern Peru since 1619 (est. latitude 8°S, est. M w 7.8); these two tsunamis also each produced more fatalities than any other tsunami in Peru since the 18th century. We concur with Pelayo and Wiens (1990, 1992) that this subduction zone, in northern Peru, resembles others where the subduction zone is only weakly coupled, and convergence is largely aseismic. Subduction-zone earthquakes, when they occur, are slow, commonly shallow, and originate far from shore (near the tip of the wedge). Thus they are weakly felt, and the ensuing tsunamis are unanticipated by local populations. Although perhaps a borderline case, the Chimbote tsunami clearly is another wake-up example of a "tsunami earthquake."  相似文献   

2.
Sources of Tsunami and Tsunamigenic Earthquakes in Subduction Zones   总被引:1,自引:0,他引:1  
—We classified tsunamigenic earthquakes in subduction zones into three types earth quakes at the plate interface (typical interplate events), earthquakes at the outer rise, within the subducting slab or overlying crust (intraplate events), and "tsunami earthquakes" that generate considerably larger tsunamis than expected from seismic waves. The depth range of a typical interplate earthquake source is 10–40km, controlled by temperature and other geological parameters. The slip distribution varies both with depth and along-strike. Recent examples show very different temporal change of slip distribution in the Aleutians and the Japan trench. The tsunamigenic coseismic slip of the 1957 Aleutian earthquake was concentrated on an asperity located in the western half of an aftershock zone 1200km long. This asperity ruptured again in the 1986 Andreanof Islands and 1996 Delarof Islands earthquakes. By contrast, the source of the 1994 Sanriku-oki earthquake corresponds to the low slip region of the previous interplate event, the 1968 Tokachi-oki earthquake. Tsunamis from intraplate earthquakes within the subducting slab can be at least as large as those from interplate earthquakes; tsunami hazard assessments must include such events. Similarity in macroseismic data from two southern Kuril earthquakes illustrates difficulty in distinguishing interplate and slab events on the basis of historical data such as felt reports and tsunami heights. Most moment release of tsunami earthquakes occurs in a narrow region near the trench, and the concentrated slip is responsible for the large tsunami. Numerical modeling of the 1996 Peru earthquake confirms this model, which has been proposed for other tsunami earthquakes, including 1896 Sanriku, 1946 Aleutian and 1992 Nicaragua.  相似文献   

3.
The Java earthquake occurred on July 17,2006 with magnitude 7.8 associated to the subduction process of Indo-Australian plate and Sundaland block off southwestern coast of Java. We present postseismic deformation parameters of the 2006 Java earthquake analyzed using campaign GPS observation from 2006 to 2008 and continuous observation from 2007 to 2014. We use an analytical approach of logarithmic and exponential functions to model these GPS data. We find that the decay time in the order of hundreds of days after the mainshock as observed by 8 years' data after the mainshock for magnitude 7 earthquake is longer than a general megathrust earthquake event. Our findings suggest that the 2006 Java earthquake which is considered as ‘‘tsunami earthquake' most probably occurred in the region that has low rigidity and tends to continuously slip for long time periods.  相似文献   

4.
Tsunamis are one of the most destructive disasters in the ocean.Large tsunamis are mostly generated by earthquakes,and they can propagate across the ocean without significantly losing energy.During the shoaling process in coastal areas,the wave amplitude increases dramatically,causing severe life loss and property damage.There have been frequent tsunamis since the 21 st century,drawing the attention of many countries on the study of tsunami mechanism and warning.Tsunami records also play an essential role in deriving earthquake rupture models in subduction zones.This paper reviews the recent progress and limitations of tsunami research,from the aspects of tsunami generation,propagation,inversion and warning.Potential tsunami warning strategies are discussed and future prospects on tsunami research are provided.  相似文献   

5.
On November 15, 2006, Crescent City in Del Norte County, California was hit by a tsunami generated by a M w 8.3 earthquake in the central Kuril Islands. Strong currents that persisted over an eight-hour period damaged floating docks and several boats and caused an estimated $9.2 million in losses. Initial tsunami alert bulletins issued by the West Coast Alaska Tsunami Warning Center (WCATWC) in Palmer, Alaska were cancelled about three and a half hours after the earthquake, nearly five hours before the first surges reached Crescent City. The largest amplitude wave, 1.76-meter peak to trough, was the sixth cycle and arrived over two hours after the first wave. Strong currents estimated at over 10 knots, damaged or destroyed three docks and caused cracks in most of the remaining docks. As a result of the November 15 event, WCATWC changed the definition of Advisory from a region-wide alert bulletin meaning that a potential tsunami is 6 hours or further away to a localized alert that tsunami water heights may approach warning- level thresholds in specific, vulnerable locations like Crescent City. On January 13, 2007 a similar Kuril event occurred and hourly conferences between the warning center and regional weather forecasts were held with a considerable improvement in the flow of information to local coastal jurisdictions. The event highlighted the vulnerability of harbors from a relatively modest tsunami and underscored the need to improve public education regarding the duration of the tsunami hazards, improve dialog between tsunami warning centers and local jurisdictions, and better understand the currents produced by tsunamis in harbors.  相似文献   

6.
A field survey of the June 3, 1994 East Java earthquake tsunami was conducted within three weeks, and the distributions of the seismic intensities, tsunami heights, and human and house damages were surveyed. The seismic intensities on the south coasts of Java and Bali Islands were small for an earthquake with magnitudeM 7.6. The earthquake caused no land damage. About 40 minutes after the main shock, a huge tsunami attacked the coasts, several villages in East Java Province were damaged severely, and 223 persons perished. At Pancer Village about 70 percent of the houses were swept away and 121 persons were killed by the tsunami. The relationship between tsunami heights and distances from the source shows that the Hatori's tsunami magnitude wasm=3, which seems to be larger for the earthquake magnitude. But we should not consider this an extraordinary event because it was pointed out byHatori (1994) that the magnitudes of tsunamis in the Indonesia-Philippine region generally exceed 1–2 grade larger than those of other regions.  相似文献   

7.
A great earthquake occurred at 00:58:49 (UTC) on Sunday, December 26, 2004 off the northwest coast of Sumatra, Indonesia. Its revised moment magnitude was M 9.3 making it in the top four largest earthquakes in the world since 1900 and the largest since the Alaskan 1964 event. The earthquake caused tsunami waves which killed more than 300,000 people in Southern Asia and Africa. There were 31 earthquakes with magnitudes between 5.5 and 7.3 in the 48-h period after the main event, and it seemed that seismicity migrated northwards along the 1200 km fault (http: //www.ga.gov.au). Similar size events occurred in that location off Sumatra in the 19th century, but no evidence of written records of their tsunami effects in Australia is found. The devastating megathrust earthquake of 26 December 2004 occurred on the interface of the Indo-Australian and Euro-Asian plates where the first plate subducts beneath the overriding second plate and the Indo-Australian plate begins its descent into the mantle. In the epicentral region, the Indo-Australian plate moves toward the northeast at a rate of about 7 cm/year relative to the Euro-Asian plate resulting in oblique convergence and partitioning into thrust-faulting. From the size of the earthquake, it is likely that the displacement on the fault plane was up to fifteen meters. As with the recent event, megathrust earthquakes often generate large tsunamis that cause damage over a much wider area than is directly affected by ground shaking near the earthquake’s rupture. The subduction zone continues further south of the Indonesian archipelago and that area is also a potential risk of producing a megathrust event that may affect coastal parts of northwest Australia. The tragic events of Boxing Day 2004 highlighted the importance of establishing a tsunami warning system for the Indian Ocean like the one for the Pacific. Issues like more and better instrumentation, and a long-term program to educate people in the region about the dangers of tsunamis, were identified as priorities. Of particular interest is the time for identifying and issuing alerts for such devastating earthquakes with possibility to reduce it in future for warning purposes.  相似文献   

8.
The importance of accurate tsunami simulation has increased since the 2004 Sumatra-Andaman earthquake and the Indian Ocean tsunami that followed it, because it is an important tool for inundation mapping and, potentially, tsunami warning. An important source of uncertainty in tsunami simulations is the source model, which is often estimated from some combination of seismic, geodetic or geological data. A magnitude 8.3 earthquake that occurred in the Kuril subduction zone on 15 November, 2006 resulted in the first teletsunami to be widely recorded by bottom pressure recorders deployed in the northern Pacific Ocean. Because these recordings were unaffected by shallow complicated bathymetry near the coast, this provides a unique opportunity to investigate whether seismic rupture models can be inferred from teleseismic waves with sufficient accuracy to be used to forecast teletsunami. In this study, we estimated the rupture model of the 2006 Kuril earthquake by inverting the teleseimic waves and used that to model the tsunami source. The tsunami propagation was then calculated by solving the linear long-wave equations. We found that the simulated 2006 Kuril tsunami compared very well to the ocean bottom recordings when simultaneously using P and long-period surface waves in the earthquake source process inversion.  相似文献   

9.
Yuichiro  Tanioka  Larry  Ruff Kenji  Satake 《Island Arc》1997,6(3):261-266
Abstract The lateral (along trench axis) variation in the mode of large earthquake occurrence near the northern Japan Trench is explained by the variation in surface roughness of the subducting plate. The surface roughness of the ocean bottom near the trench is well correlated with the large-earthquake occurrence. The region where the ocean bottom is smooth is correlated with'typical'large underthrust earthquakes (e.g. the 1968 Tokachioki event) in the deeper part of the seismogenic plate interface, and there are no earthquakes in the shallow part (aseismic zone). The region where the ocean bottom is rough (well-developed horst and graben structure) is correlated with large normal faulting earthquakes (e.g. the 1933 Sanriku event) in the outer-rise region, and large tsunami earthquakes (e.g. the 1896 Sanriku event) in the shallow region of the plate interface zone. In the smooth surface region, the coherent metamorphosed sediments form a homogeneous, large and strong contact zone between the plates. The rupture of this large strong contact causes great under-thrust earthquakes. In the rough surface region, large outer-rise earthquakes enhance the well-developed horst and grabens. As these structure are subducted with sediments in the graben part, the horsts create enough contact with the overriding block to cause an earthquake in the shallow part of the interface zone, and this earthquake is likely to be a tsunami earthquake. When the horst and graben structure is further subducted, many small strong contacts between the plates are formed, and they can cause only small underthrust earthquakes.  相似文献   

10.
We develop stochastic approaches to determine the potential for tsunami generation from earthquakes by combining two interrelated time series, one for the earthquake events, and another for the tsunami events. Conditional probabilities for the occurrence of tsunamis as a function of time are calculated by assuming that the inter-arrival times of the past events are lognormally distributed and by taking into account the time of occurrence of the last event in the time series. An alternative approach is based on the total probabilitiy theorem. Then, the probability for the tsunami occurrence equals the product of the ratio, r (= tsunami generating earthquakes/total number of earthquakes) by the conditional probability for the occurrence of the next earthquake in the zone. The probabilities obtained by the total probability theorem are bounded upwards by the ratio r and, therefore, they are not comparable with the conditional probabilities. The two methods were successfully tested in three characteristic seismic zones of the Pacific Ocean: South America, Kuril-Kamchatka and Japan. For time intervals of about 20 years and over the probabilities exceed 0.50 in the three zones. It has been found that the results depend on the approach applied. In fact, the conditional probabilities of tsunami occurrence in Japan are slightly higher than in the South America region and in Kuril-Kamchatka they are clearly lower than in South America. Probabilities calculated by the total probability theorem are systematically higher in South America than in Japan while in Kuril-Kamchatka they are significantly lower than in Japan. The stochastic techniques tested in this paper are promising for the tsunami potential assessment in other tsunamigenic regions of the world.  相似文献   

11.
Anomalous earthquakes such as creep events, tsunami earthquakes and silent earthquakes have been reported in the recent literature. In this paper we discuss an anomalous “slow earthquake” that occurred on June 6, 1960 in southern Chile. Although the surface-wave magnitude of this event is only 6.9, it excited anomalously large long-period multiple surface waves with a seismic moment of 5.6 · 1027 dyn cm. The Benioff long-period seismogram of this earthquake recorded at Pasadena shows an extremely long, about 1.5–2 h coda of Rayleigh waves, with a period of 10–25 s. The coda length for other events with a comparable magnitude which occurred in the same region is about 10 min. This observation suggests that the long coda length is due to a long source rupture process which lasted at least 1 h. Although at least 15 distinct events can be identified in the coda, no short-period body waves were recorded corresponding to these, except for the first one. These results suggest that a relatively small (Ms ? 6.9) earthquake triggered a series of slow events; the duration of the whole sequence being longer than 1 h. This event probably occurred on a transform fault on the extension of the Chile Rise and provides important information regarding the nature of the transform fault.  相似文献   

12.
13.
Mechanism of tsunami earthquakes   总被引:1,自引:0,他引:1  
  相似文献   

14.
A Probabilistic Tsunami Hazard Assessment for Western Australia   总被引:2,自引:0,他引:2  
The occurrence of the Indian Ocean Tsunami on 26 December, 2004 has raised concern about the difficulty in determining appropriate tsunami mitigation measures in Australia, due to the lack of information on the tsunami threat. A first step in the development of such measures is a tsunami hazard assessment, which gives an indication of which areas of coastline are most likely to experience tsunamis, and how likely such events are. Here we present the results of a probabilistic tsunami hazard assessment for Western Australia (WA). Compared to other parts of Australia, the WA coastline experiences a relatively high frequency of tsunami occurrence. This hazard is due to earthquakes along the Sunda Arc, south of Indonesia. Our work shows that large earthquakes offshore of Java and Sumba are likely to be a greater threat to WA than those offshore of Sumatra or elsewhere in Indonesia. A magnitude 9 earthquake offshore of the Indonesian islands of Java or Sumba has the potential to significantly impact a large part of the West Australian coastline. The level of hazard varies along the coast, but is highest along the coast from Carnarvon to Dampier. Tsunamis generated by other sources (e.g., large intra-plate events, volcanoes, landslides and asteroids) were not considered in this study.  相似文献   

15.
We have developed a new, unified modeling technique for the total simulation of seismic waves, ocean acoustic waves, and tsunamis resulting from earthquakes, based on a finite difference method simulation of the 3D equations of motion. Using the equilibrium between the pressure gradient and gravity in these equations, tsunami propagation is naturally incorporated in the simulation based on the equations of motion. The performance of the parallel computation for the newly developed tsunami-coupled equations using a domain partitioning procedure shows a high efficiency coefficient with a large number of CPU cores. The simulation results show how the near-field term associated with seismic waves produced by shallow earthquakes leads to a permanent coseismic deformation of the ground surface, which gives rise to the initial tsunami on the sea surface. Propagation of the tsunami along the sea surface as a gravity wave, and ocean acoustic waves in seawater with high-frequency multiple P-wave reflections between the free surface and sea bottom, are also clearly demonstrated by the present simulations. We find a good agreement in the tsunami waveform between our results and those obtained by other simulations based on an analytical model and the Navier–Stokes equations, demonstrating the effectiveness of the tsunami-coupling simulation model. Based on this simulation, we show that the ratio of the amplitude of ocean acoustic waves to the height of the tsunami, both of which are produced by the earthquake, strongly depends on the rise time of the earthquake rupture. This ratio can be used to obtain a more detailed understanding of the source rupture processes of subduction zone earthquakes, and for implementing an improved tsunami alert system for slow tsunami earthquakes.  相似文献   

16.
Operational prediction of near-field tsunamis in all existing Tsunami Warning Systems (TWSs) is based on fast determination of the position and size of submarine earthquakes. Exceedance of earthquake magnitude above some established threshold value, which can vary over different tsunamigenic zones, results in issuing a warning signal. Usually, a warning message has several (from 2 to 5) grades reflecting the degree of tsunami danger and sometimes contains expected wave heights at the coast. Current operational methodology is based on two main assumptions: (1) submarine earthquakes above some threshold magnitude can generate dangerous tsunamis and (2) the height of a resultant tsunami is, in general, proportional to the earthquake magnitude. While both assumptions are physically reasonable and generally correct, statistics of issued warnings are far from being satisfactory. For the last 55 years, up to 75% of warnings for regional tsunamis have turned out to be false, while each TWS has had at least a few cases of missing dangerous tsunamis. This paper presents the results of investigating the actual dependence of tsunami intensity on earthquake magnitude as it can be retrieved from historical observations and discusses the degree of correspondence of the above assumptions to real observations. Tsunami intensity, based on the Soloviev-Imamura scale is used as a measure of tsunami “size”. Its correlation with the M s and M w magnitudes is investigated based on historical data available for the instrumental period of observations (from 1900 to present).  相似文献   

17.
Two large shallow earthquakes occurred in 1942 along the South American subduction zone inclose proximity to subducting oceanic ridges: The 14 May event occurred near the subducting Carnegie ridge off the coast of Ecuador, and the 24 August event occurred off the coast of southwestern Peru near the southern flank of the subducting Nazca ridge. Source parameters for these for these two historic events have been determined using long-periodP waveforms,P-wave first motions, intensities and local tsunami data.We have analyzed theP waves for these two earthquakes to constrain the focal mechanism, depth, source complexity and seismic moment. Modeling of theP waveform for both events yields a range of acceptable focal mechanisms and depths, all of which are consistent with underthrusting of the Nazca plate beneath the South American plate. The source time function for the 1942 Ecuador event has one simple pulse of moment release with a duration of 22 suconds, suggesting that most of the moment release occurred near the epicenter. The seismic moment determined from theP waves is 6–8×1020N·m, corresponding ot a moment magnitude of 7.8–7.9. The reported location of the maximum intensities (IX) for this event is south of the main shock epicenter. The relocated aftershcks are in an area that is approximately 200 km by 90 km (elongated parallel to the trench) with the majority of aftershocks north of the epicenter. In contrast, the 1942 Peru event has a much longer duration and higher degree of complexity than the Ecuador earthquake, suggesting a heterogeneous rupture. Seismic moment is released in three distinct pulses over approximately 74 seconds; the largest moment release occurs 32 seconds after rupture initiation. the seismic moment as determined from theP waves for the 1942 Peru event is 10–25×1020N·m, corresponding to a moment magnitude of 7.9–8.2. Aftershock locations reported by the ISS occur over a broad area surrounding the main shock. The reported locations of the maximum intensities (IX) are concentrated south of the epicenter, suggesting that at least part of the rupture was to the south.We have also examined great historic earthquakes along the Colombia-Ecuador and Peru segments of the South American subduction zone. We find that the size and rupture length of the underthrusting earthquakes vary between successive earthquake cycles. This suggests that the segmentation of the plate boundary as defined by earthquakes this century is not constant.  相似文献   

18.
简要介绍了南中国海区域海啸预警与减灾系统的建设和发展历程,同时重点阐述了地震监测系统构成及其基本功能。作为重要组成部分,地震监测系统通过地震数据的实时汇集、存储、自动处理和分析,并结合人机交互方式实现了地震定位、震源机制解和有限断层模型反演。实际应用表明,地震监测系统对全球6.0级以上地震定位时间不超过8 min,在震后10—15 min内完成W震相方法快速反演海底强震震源机制解,在震后短时间内完成有限断层模型反演,为海啸预警提供快速、准确、可靠的地震基本参数和震源特征参数。   相似文献   

19.
In 2011, Japan was hit by a tsunami that was generated by the greatest earthquake in its history. The first tsunami warning was announced 3 min after the earthquake, as is normal, but failed to estimate the actual tsunami height. Most of the structural countermeasures were not designed for the huge tsunami that was generated by the magnitude M = 9.0 earthquake; as a result, many were destroyed and did not stop the tsunami. These structures included breakwaters, seawalls, water gates, and control forests. In this paper we discuss the performance of these countermeasures, and the mechanisms by which they were damaged; we also discuss damage to residential houses, commercial and public buildings, and evacuation buildings. Some topics regarding tsunami awareness and mitigation are discussed. The failures of structural defenses are a reminder that structural (hard) measures alone were not sufficient to protect people and buildings from a major disaster such as this. These defenses might be able to reduce the impact but should be designed so that they can survive even if the tsunami flows over them. Coastal residents should also understand the function and limit of the hard measures. For this purpose, non-structural (soft) measures, for example experience and awareness, are very important for promoting rapid evacuation in the event of a tsunami. An adequate communication system for tsunami warning messages and more evacuation shelters with evacuation routes in good condition might support a safe evacuation process. The combination of both hard and soft measures is very important for reducing the loss caused by a major tsunami. This tsunami has taught us that natural disasters can occur repeatedly and that their scale is sometimes larger than expected.  相似文献   

20.
Early warning systems are becoming increasingly important in the modern world. These systems combine several components: predictive systems (For example, tsunami warning systems), earthquake early warning systems, emergency message services, and systems of seismic damage monitoring. Information about shaking intensity becomes especially important in the case of a strong earthquake occurrence. These data are necessary for planning emergency rescue operations, but they are difficult to collect in a natural disasters situation because of possible communication problems. Application of data on instrumental seismic intensity may make it possible to solve this problem. Early warning systems predicting seismic intensity distributions just after the occurrence of an earthquake have already been developed in many seismically active regions of the world. Such a system also needs to be implemented in Kamchatka, where the strongest earthquakes can produce extremely high values of strong motion acceleration. As a result of the development of a system for seismological observation in Kamchatka, a unified specialized system for collection, transmission, archiving, and processing of seismic information was created. Seismological observations in Kamchatka were significantly improved with the update of the tsunami warning service in 2006–2011. As a result, a network of strong motion stations is currently operating in Kamchatka and can serve as a basis for creating a quasi-real-time seismic early warning system under the auspices the Kamchatka Branch of the Geophysical Survey, Russian Academy of Sciences (KB GS RAS). It uses data from strong motion stations to estimate the instrumental seismic intensity in quasi-real-time mode and visualizes the results. During the operational period while the service is being intensively used in the framework of the Seismic Early Warning Reports Tsunami Warning Service in the Kamchatka and Sakhalin branches of the GS RAS for real-time warning of interested parties about the shaking intensities at observation points, the technology implemented in this service has proved highly informative. In total, 75 messages on instrumental intensity in various places of Kamchatka krai and the northern Kuril Islands (Paramushir Islands) have been sent since the service was commissioned at the end of 2014. The currently operating version of the service has proved its informativeness and applicability for special departments of the Emergency Situations Ministry. In addition, real-time warning has improved coordination between the departments of KB GS RAS, and the results of this system are being used in a number of basic research projects. Further development of the service is related to the creation of denser instrumental networks to record strong ground motions and the transition to automatic decision-making and message sending.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号