首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the solar-cycle variation of the zonal flow in the near-surface layers of the solar convection zone from the surface to a depth of 16 Mm covering the period from mid-2001 to mid-2013 or from the maximum of Cycle 23 through the rising phase of Cycle 24. We have analyzed Global Oscillation Network Group (GONG) and Helioseismic and Magnetic Imager (HMI) Dopplergrams with a ring-diagram analysis. The zonal flow varies with the solar cycle showing bands of faster-than-average flows equatorward of the mean latitude of activity and slower-than-average flows on the poleward side. The fast band of the zonal flow and the magnetic activity appear first in the northern hemisphere during the beginning of Cycle 24. The bands of fast zonal flow appear at mid-latitudes about three years in the southern and four years in the northern hemisphere before magnetic activity of Cycle 24 is present. This implies that the flow pattern is a direct precursor of magnetic activity. The solar-cycle variation of the zonal flow also has a poleward branch, which is visible as bands of faster-than-average zonal flow near 50° latitude. This band appears first in the southern hemisphere during the rising phase of the Cycle 24 and migrates slowly poleward. These results are in good agreement with corresponding results from global helioseismology.  相似文献   

2.
We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have analyzed Global Oscillation Network Group (GONG) Dopplergrams with a ring-diagram analysis covering about 15 years and Helioseismic and Magnetic Imager (HMI) Dopplergrams covering more than 6 years. After subtracting the average rotation rate and meridional flow, we have calculated the divergence of the horizontal residual flows from the maximum of Solar Cycle 23 through the declining phase of Cycle 24. The subsurface flows are mainly divergent at quiet regions and convergent at locations of high magnetic activity. The relationship is essentially linear between divergence and magnetic activity at all activity levels at depths shallower than about 10 Mm. At greater depths, the relationship changes sign at locations of high activity; the flows are increasingly divergent at locations with a magnetic activity index (MAI) greater than about 24 G. The flows are more convergent by about a factor of two during the rising phase of Cycle 24 than during the declining phase of Cycle 23 at locations of medium and high activity (about 10 to 40 G MAI) from the surface to at least 10 Mm. The subsurface divergence pattern of Solar Cycle 24 first appears during the declining phase of Cycle 23 and is present during the extended minimum. It appears several years before the magnetic pattern of the new cycle is noticeable in synoptic maps. Using linear regression, we estimate the amount of magnetic activity that would be required to generate the precursor pattern and find that it should be almost twice the amount of activity that is observed.  相似文献   

3.
The solar-cycle oscillations of the toroidal and poloidal components of the solar magnetic field in the northern solar hemisphere have a persistent phase difference of about \(\pi \). We propose a symmetrical Kuramoto model with three coupled oscillators as a simple way to understand this anti-synchronization. We solve an inverse problem and reconstruct natural frequencies of the top and bottom oscillators under the conditions of a constant coupling strength and a non-delayed coupling. These natural frequencies are associated with angular velocities of the meridional flow circulation near the solar surface and in the deep layer of the solar convection zone. A relationship between our reconstructions of the shallow and the deep meridional flow speed during recent Solar Cycles 21?–?23 is in agreement with estimates obtained in helioseismology and flux-transport dynamo modeling. The reconstructed top oscillator speed presents significant solar-cycle like variations that agree with recent helioseismical reconstructions. The evolution of reconstructed natural frequencies strongly depends on the coupling strength. We find two stable regimes in the case of strong coupling with a change of regime during anomalous solar cycles. We see the onset of a new transition in Solar Cycle 24. We estimate the admitted range of coupling values and find evidence of cross-equatorial coupling between solar hemispheres not accounted for by the model.  相似文献   

4.
We study the solar-cycle variation of subsurface flows from the surface to a depth of 16 Mm. We have used ring-diagram analysis to analyze Dopplergrams obtained with the Michelson Doppler Imager (MDI) Dynamics Program, the Global Oscillation Network Group (GONG), and the Helioseismic and Magnetic Imager (HMI) instrument. We combined the zonal and meridional flows from the three data sources and scaled the flows derived from MDI and GONG to match those from HMI observations. In this way, we derived their temporal variation in a consistent manner for Solar Cycles 23 and 24. We have corrected the measured flows for systematic effects that vary with disk positions. Using time-depth slices of the corrected subsurface flows, we derived the amplitudes and times of the extrema of the fast and slow zonal and meridional flows during Cycles 23 and 24 at every depth and latitude. We find an average difference between maximum and minimum amplitudes of \(8.6 \pm0.4~\mbox{m}\,\mbox{s}^{-1}\) for the zonal flows and \(7.9 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the meridional flows associated with Cycle 24 averaged over a depth range from 2 to 12 Mm. The corresponding values derived from GONG data alone are \(10.5 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the zonal and \(10.8 \pm0.3~\mbox{m}\,\mbox{s}^{-1}\) for the meridional flow. For Cycle 24, the flow patterns are precursors of the magnetic activity. The timing difference between the occurrence of the flow pattern and the magnetic one increases almost linearly with increasing latitude. For example, the fast zonal and meridional flow appear \(2.1 \pm 0.6\) years and \(2.5\pm 0.6\) years, respectively, before the magnetic pattern at \(30^{\circ}\) latitude in the northern hemisphere, while in the southern hemisphere, the differences are \(3.2 \pm 1.2\) years and \(2.6 \pm 0.6\) years. The flow patterns of Cycle 25 are present and have reached \(30^{\circ}\) latitude. The amplitude differences of Cycle 25 are about 22% smaller than those of Cycle 24, but are comparable to those of Cycle 23. Moreover, polynomial fits of meridional flows suggest that equatorward meridional flows (counter-cells) might exist at about \(80^{\circ}\) latitude except during the declining phase of the solar cycle.  相似文献   

5.
We have analysed a large set of sunspot group data (1874 – 2004) and find that the meridional flow strongly varies with the phase of the solar cycle, and the variation is quite different in the northern and the southern hemispheres. We also find the existence of considerable cycle-to-cycle variation in the meridional velocity, and about a 11-year difference between the phases of the corresponding variations in the northern and the southern hemispheres. In addition, our analysis also indicates the following: (i) the existence of a considerable difference (about 180°) between the phases of the solar-cycle variations in the latitude-gradient terms of the northern and the southern hemispheres’ rotations; (ii) the existence of correlation (good in the northern hemisphere and weak in the southern hemisphere) between the mean solar-cycle variations of meridional flow and the latitude-gradient term of solar rotation; (iii) in the northern hemisphere, the cycle-to-cycle variation of the mean meridional velocity leads that of the equatorial rotation rate by about 11 years, and the corresponding variations have approximately the same phase in the southern hemisphere; and (iv) the directions of the mean meridional velocity is largely toward the pole in the longer sunspot cycles and largely toward the equator in the shorter cycles.  相似文献   

6.
We have determined the meridional flows in subsurface layers for 18 Carrington rotations (CR 2097 to 2114) analyzing high-resolution Dopplergrams obtained with the Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). We are especially interested in flows at high latitudes up to 75° in order to address the question whether the meridional flow remains poleward or reverses direction (so-called counter cells). The flows have been determined in depth from near-surface layers to about 16 Mm using the HMI ring-diagram pipeline. The measured meridional flows show systematic effects, such as a variation with the B 0-angle and a variation with central meridian distance (CMD). These variations have been taken into account to lead to more reliable flow estimates at high latitudes. The corrected average meridional flow is poleward at most depths and latitudes with a maximum amplitude of about $20~\mathrm{m\,s}^{-1}$ near 37.5° latitude. The flows are more poleward on the equatorward side of the mean latitude of magnetic activity at 22° and less poleward on the poleward side, which can be interpreted as convergent flows near the mean latitude of activity. The corrected meridional flow is poleward at all depths within ±?67.5° latitude. The corrected flow is equatorward only at 75° latitude in the southern hemisphere at depths between about 4 and 8 Mm and at 75° latitude in the northern hemisphere only when the B 0 angle is barely large enough to measure flows at this latitude. These counter cells are most likely the remains of an insufficiently corrected B 0-angle variation and not of solar origin. Flow measurements and B 0-angle corrections are difficult at the highest latitude because these flows are only determined during limited periods when the B 0 angle is sufficiently large.  相似文献   

7.
R. Komm  R. Howe  F. Hill 《Solar physics》2012,277(2):205-226
We study the temporal variation of the vorticity of subsurface flows of 828 active regions and 977 quiet regions. The vorticity of these flows is derived from measured subsurface velocities. The horizontal flows are determined by analyzing high-resolution Global Oscillation Network Group Doppler data with ring-diagram analysis covering a range of depths from the surface to about 16 Mm. The vertical velocity component is derived from the divergence of the measured horizontal flows using mass conservation. We determine the change in unsigned magnetic flux density during the disk passage of each active region using Michelson Doppler Imager (MDI) magnetograms binned to the ring-diagram grid with centers spaced by 7.5° ranging ± 52.5° in latitude and central meridian distance with an effective diameter of 15° after apodization. We then sort the data by their flux change from decaying to emerging flux and divide the data into five subsets of equal size. We find that the vorticity of subsurface flows increases during flux emergence and decreases when active regions decay. For flux emergence, the absolute values of the zonal and meridional vorticity components show the most coherent variation with activity, while for flux decrease the strongest signature is in the absolute values of the meridional and vertical vorticity components. The temporal variation of the enstrophy (residual vorticity squared) is thus a good indicator for either flux increase or decrease. There are some indications that the increase in vorticity during flux emergence happens about a day later at depths below about 8 Mm compared to layers shallower than about 4 Mm. This timing difference might imply that the vorticity signal analyzed here is caused by the interaction between magnetic flux and turbulent flows near the solar surface. There are also hints that the vorticity decrease during flux decay begins about a day earlier at layers deeper than about 8 Mm compared to shallower ones. However, the timing difference between the change at different depths is comparable to the time step of the analysis.  相似文献   

8.
We study the North–South asymmetry of zonal and meridional components of horizontal, solar subsurface flows during the years 2001–2004, which cover the declining phase of solar cycle 23. We measure the horizontal flows from the near-surface layers to 16 Mm depth by analyzing 44 consecutive Carrington rotations of Global Oscillation Network Group (GONG) Doppler images with a ring-diagram analysis technique. The meridional flow and the errors of both flow components show an annual variation related to the B 0-angle variation, while the zonal flow is less affected by the B 0-angle variation. After correcting for this effect, the meridional flow is mainly poleward but it shows a counter cell close to the surface at high latitudes in both hemispheres. During the declining phase of the solar cycle, the meridional flow mainly increases with time at latitudes poleward of about 20˚, while it mainly decreases at more equatorward latitudes. The temporal variation of the zonal flow in both hemispheres is significantly correlated at latitudes less than about 20˚. The zonal flow is larger in the southern hemisphere than the northern one, and this North–South asymmetry increases with depth. Details of the North–South asymmetry of zonal and meridional flow reflect the North–South asymmetry of the magnetic flux. The North–South asymmetries of the flows show hints of a variation with the solar cycle.  相似文献   

9.
We study the meridional flow of small magnetic features, using high-resolution magnetograms taken from 1978 to 1990 with the NSO Vacuum Telescope on Kitt Peak. Latitudinal motions are determined by a two-dimensional crosscorrelation analysis of 514 pairs of consecutive daily observations from which active regions are excluded. We find a meridional flow of the order of 10 m s–1, which is poleward in each hemisphere, increases in amplitude from 0 at the equator, reaches a maximum at mid-latitude, and slowly decreases poleward. The average observed meridional flow is fit adequately by an expansion of the formM () = 12.9(±0.6) sin(2) + 1.4(±0.6) sin(4), in m s–1 where is the latitude and which reaches a maximum of 13.2 m s–1 at 39°. We also find a solar-cycle dependence of the meridional flow. The flow remains poleward during the cycle, but the amplitude changes from smaller-than-average during cycle maximum to larger-than-average during cycle minimum for latitudes between about 15° and 45°. The difference in amplitude between the flows at cycle minimum and maximum depends on latitude and is about 25% of the grand average value. The change of the flow amplitude from cycle maximum to minimum occurs rapidly, in about one year, for the 15–45° latitude range. At the highest latitude range analyzed, centered at 52.5°, the flow is more poleward-than-average during minimumand maximum, and less at other times. These data show no equatorward migration of the meridional flow pattern during the solar cycle and no significant hemispheric asymmetry. Our results agree with the meridional flow and its temporal variation derived from Doppler data. They also agree on average with the meridional flow derived from the poleward migration of the weak large-scale magnetic field patterns but differ in the solar-cycle dependence. Our results, however, disagree with the meridional flow derived from sunspots or plages.Operated by the Association of Universities for Research in Astronomy, Inc. under cooperative agreement with the National Science Foundation.  相似文献   

10.
As large-distance rays (say, 10?–?24°) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large-separation travel times associated with supergranulation cannot be studied using the standard phase-speed filters of time–distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations, reduce the resultant travel-time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center–annulus travel-time difference [δt oi] in the separation range Δ=10?–?24° is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity, 5.1±0.1 seconds, is constant over the distance range. This magnitude of the signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 m?s?1 extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 m?s?1 at a depth of 2.3 Mm and a peak horizontal flow of 700 m?s?1 at a depth of 1.6 Mm.  相似文献   

11.
R. Komm  R. Howe  F. Hill 《Solar physics》2011,268(2):407-428
We study the temporal variation of subsurface flows of 828 active regions and 977 quiet regions. The horizontal flows cover a range of depths from the surface to about 16 Mm and are determined by analyzing Global Oscillation Network Group high-resolution Doppler data with ring-diagram analyses. The vertical velocity component is derived from the divergence of the measured horizontal flows using mass conservation. For comparison, we analyze Michelson Doppler Imager (MDI) Dynamics Run data covering 68 active regions common to both data sets. We determine the change in unsigned magnetic flux during the disk passage of each active region using MDI magnetograms binned to the ring-diagram grid. We then sort the data by their flux change from decaying to emerging flux and divide the data into five subsets of equal size. We find that emerging flux has a faster rotation than the ambient fluid and pushes it up, as indicated by enhanced vertical velocity and faster-than-average zonal flow. After active regions are formed, downflows are established within two days of emergence in shallow layers between about 4 and 10 Mm. Emerging flux in existing active regions shows a similar scenario, where the upflows at depths greater than about 10 Mm are enhanced and the already established downflows at shallower depths are weakened. When active regions decay, the corresponding flow pattern disappears as well; the zonal flow slows down to values comparable to that of quiet regions and the upflows become weaker at deeper layers. The residual meridional velocity is mainly poleward and shows no obvious variation. The magnitude of the residual velocity, defined as the sum of the squares of the residual velocity components, increases with increasing magnetic flux and decreases with decreasing flux.  相似文献   

12.
Surface granulation of the Sun is primarily a consequence of thermal transport in the outer 1 % of the radius. Its typical scale of about 1?–?2 Mm?is set by the balance between convection, free-streaming radiation, and the strong density stratification in the surface layers. The physics of granulation is well understood, as demonstrated by the close agreement between numerical simulation, theory, and observation. Superimposed on the energetic granular structure comprising high-speed flows, are larger-scale long-lived flow systems (≈?300 m?s?1) called supergranules. Supergranulation has a typical scale of 24?–?36 Mm. It is not clear if supergranulation results from the interaction of granules or is causally linked to deep convection or a consequence of magneto–convection. Other outstanding questions remain: how deep are supergranules? How do they participate in global dynamics of the Sun? Further challenges are posed by our lack of insight into the dynamics of larger scales in the deep convection region. Recent helioseismic constraints have suggested that convective-velocity amplitudes on large scales may be overestimated by an order of magnitude or more, implying that Reynolds stresses associated with large-scale convection, thought to play a significant role in the sustenance of differential rotation and meridional circulation, might be two orders of magnitude weaker than theory and computation predict. While basic understanding on the nature of convection on global scales and the maintenance of global circulations is incomplete, progress is imminent, given substantial improvements in computation, theory, and helioseismic inferences.  相似文献   

13.
Laurent Gizon 《Solar physics》2004,224(1-2):217-228
Flows in the upper convection zone are measured by helioseismology on a wide variety of scales. These include differential rotation and meridional circulation, local flows around complexes of magnetic activity and sunspots, and convective flows. The temporal evolution of flows through cycle 23 reveals connections between mass motions in the solar interior and the large-scale characteristics of the magnetic cycle. Here I summarize the latest observations and their implications. Observations from local helioseismology suggest that subsurface flows around active regions introduce a solar-cycle variation in the meridional circulation.  相似文献   

14.
The temporal variation of the horizontal velocity in sub-surface layers beneath three different types of active region is studied using the technique of ring diagrams. In this study, we select active regions (ARs) 10923, 10930, 10935 from three consecutive Carrington rotations: AR 10930 contains a fast-rotating sunspot in a strong emerging active region while other two have non-rotating sunspots with emerging flux in AR 10923 and decaying flux in AR 10935. The depth range covered is from the surface to about 12 Mm. In order to minimize the influence of systematic effects, the selection of active and quiet regions is made so that these were observed at the same heliographic locations on the solar disk. We find a significant variation in both components of the horizontal velocity in active regions as compared to quiet regions. The magnitude is higher in emerging-flux regions than in the decaying-flux region, in agreement with earlier findings. Further, we clearly see a significant temporal variation in depth profiles of both zonal and meridional flow components in AR 10930, with the variation in the zonal component being more pronounced. We also notice a significant influence of the plasma motion in areas closest to the rotating sunspot in AR 10930, while areas surrounding the non-rotating sunspots in all three cases are least affected by the presence of the active region in their neighborhood.  相似文献   

15.
We present meridional flow measurements of the Sun using a novel helioseismic approach for analyzing SOHO/MDI data in order to push the current limits in radial depth. Analyzing three consecutive months of data during solar minimum, we find that the meridional flow is as expected poleward in the upper convection zone, turns equatorward at a depth of around 40 Mm (∼ 0.95 R), and possibly changes direction again in the lower convection zone. This may indicate two meridional circulation cells in each hemisphere, one beneath the other. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
R. Komm  S. Gosain  A. A. Pevtsov 《Solar physics》2014,289(7):2399-2418
We study the hemispheric distribution of the kinetic helicity of subsurface flows in the near-surface layers of the solar convection zone and its variation with magnetic activity. We determine subsurface flows with a ring-diagram analysis applied to Global Oscillation Network Group (GONG) Dopplergrams and Dynamics Program data from the Michelson Doppler Imager (MDI) instrument onboard the Solar and Heliospheric Observatory (SOHO). We determine the average kinetic helicity density as a function of Carrington rotation and latitude. The average kinetic helicity density at all depths and the kinetic helicity, integrated over 2?–?7 Mm, follow the same hemispheric rule as the current/magnetic helicity proxies with predominantly positive values in the southern and negative ones in the northern hemisphere. This holds true for all levels of magnetic activity from quiet to active regions. However, this is a statistical result; only about 55 % of all locations follow the hemispheric rule. But these locations have larger helicity values than those that do not follow the rule. The average values of helicity density increase with depth for all levels of activity, which might reflect an increase of the characteristic size of convective motions with greater depth. The average helicity of subsets of high magnetic activity is about five times larger than that of subsets of low activity. The solar-cycle variation of helicity is thus mainly due to the presence or absence of active regions. During the rising phase of cycle 24, locations of high magnetic activity at low latitudes show a weaker hemispheric behavior compared to the rising phase of cycle 23.  相似文献   

17.
The standard methods for determining the meridional flow on the Sun from the motions of tracers are shown to give an error related to the latitudinal nonuniformity of the tracer distribution. We suggest a simple method for eliminating this error. Using this method to determine the meridional circulation from the motions of sunspots brings the result into agreement with helioseismological data on the meridional flow. The discussed effects can be important for observations of meridional flows on stars.  相似文献   

18.
19.
Recently, Duvall and Hanasoge (Solar Phys. 287, 71, 2013) found that large-distance separation [Δ] travel-time differences from a center to an annulus [δt oi] implied a model of the average supergranular cell that has a peak upflow of 240 m?s?1 at a depth of 2.3 Mm and a corresponding peak outward horizontal flow of 700 m?s?1 at a depth of 1.6 Mm. In the present work, this effect is further studied by measuring and modeling center-to-quadrant travel-time differences [δt qu], which roughly agree with this model. Simulations are analyzed that show that such a model flow would lead to the expected travel-time differences. As a check for possible systematic errors, the center-to-annulus travel-time differences [δt oi] are found not to vary with heliocentric angle. A consistency check finds an increase of δt oi with the temporal frequency [ν] by a factor of two, which is not predicted by the ray theory.  相似文献   

20.
In this paper the origin and evolution of the Sun's open magnetic flux is considered by conducting magnetic flux transport simulations over many solar cycles. The simulations include the effects of differential rotation, meridional flow and supergranular diffusion on the radial magnetic field at the surface of the Sun as new magnetic bipoles emerge and are transported poleward. In each cycle the emergence of roughly 2100 bipoles is considered. The net open flux produced by the surface distribution is calculated by constructing potential coronal fields with a source surface from the surface distribution at regular intervals. In the simulations the net open magnetic flux closely follows the total dipole component at the source surface and evolves independently from the surface flux. The behaviour of the open flux is highly dependent on meridional flow and many observed features are reproduced by the model. However, when meridional flow is present at observed values the maximum value of the open flux occurs at cycle minimum when the polar caps it helps produce are the strongest. This is inconsistent with observations by Lockwood, Stamper and Wild (1999) and Wang, Sheeley, and Lean (2000) who find the open flux peaking 1–2 years after cycle maximum. Only in unrealistic simulations where meridional flow is much smaller than diffusion does a maximum in open flux consistent with observations occur. It is therefore deduced that there is no realistic parameter range of the flux transport variables that can produce the correct magnitude variation in open flux under the present approximations. As a result the present standard model does not contain the correct physics to describe the evolution of the Sun's open magnetic flux over an entire solar cycle. Future possible improvements in modeling are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号