首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four microwave bursts have been selected from the Nobeyama Radio Polarimeter (NoRP) observations with an extremely flat spectrum in the optically thin part and a very hard spectral index between 0 and ?1 in the maximum phase of all bursts. It is found that the time evolution of the turnover frequency is inversely proportional to the time profiles of the radio flux in all bursts. Based on the nonthermal gyrosynchrotron theory of Ramaty (Astrophys. J. 158, 753, 1969), the local magnetic field strength and the electron spectral index are calculated uniquely from the observed radio spectral index and the turnover frequency. We found that the electron energy spectrum is very hard (spectral index 1?–?2), and the time variation of the magnetic field strength is also inversely proportional to the radio flux as a function of time in all bursts. Hence, the time evolution of the turnover frequency can be explained directly by its dependence on the local magnetic field strength. The high turnover frequency (several tens of GHz) is mainly caused by a strong magnetic field of up to several hundred gauss, and probably by the Razin effect under a high plasma density over \(10^{10}~\mbox{cm}^{-3}\) in the maximum phase of these bursts. Therefore, the extremely flat microwave spectrum can be well understood by the observed high turnover frequency and the calculated hard electron spectral index.  相似文献   

2.
Previous sub-THz studies were derived from single-event observations. We here analyze for the first time spectral trends for a larger collection of sub-THz bursts. The collection consists of a set of 16 moderate to small impulsive solar radio bursts observed at 0.2 and 0.4 THz by the Solar Submillimeter-wave Telescope (SST) in 2012?–?2014 at El Leoncito, in the Argentinean Andes. The peak burst spectra included data from new solar patrol radio telescopes (45 and 90 GHz), and were completed with microwave data obtained by the Radio Solar Telescope Network, when available. We critically evaluate errors and uncertainties in sub-THz flux estimates caused by calibration techniques and the corrections for atmospheric transmission, and introduce a new method to obtain a uniform flux scale criterion for all events. The sub-THz bursts were searched during reported GOES soft X-ray events of class C or larger, for periods common to SST observations. Seven out of 16 events exhibit spectral maxima in the range 5?–?40 GHz with fluxes decaying at sub-THz frequencies (three of them associated to GOES class X, and four to class M). Nine out of 16 events exhibited the sub-THz spectral component. In five of these events, the sub-THz emission fluxes increased with a separate frequency from that of the microwave spectral component (two classified as X and three as M), and four events have only been detected at sub-THz frequencies (three classified as M and one as C). The results suggest that the THz component might be present throughout, with the minimum turnover frequency increasing as a function of the energy of the emitting electrons. The peculiar nature of many sub-THz burst events requires further investigations of bursts that are examined from SST observations alone to better understand these phenomena.  相似文献   

3.
The observational data from radio to X-ray wavebands were collected from the SSDC (Italian Space Agency Science Data Center) for 68 Fermi blazars, and their spectral energy distributions (SEDs) were calculated by means of the least square fitting with a log-parabolic function. Based on the SED fitting parameters, the correlations of the synchrotron peak frequency, curvature and effective spectral index were discussed, and an empirical formula was also proposed to estimate the synchrotron peak frequencies by using the effective spectral indexes. The main results are as follows: (1) From the linear correlation between the synchrotron peak frequency (lg νp) and the curvature (k), we find that the result supports the energy-dependent acceleration probability model for all BL Lac objects, while the result for the BL Lac objects of lg νp > 15.3 is consistent with the model of fluctuation of fractional acceleration gain. (2) For the sources of nearly same lg νp, a significant correlation between the effective spectral index αro of the radio-optical waveband and the curvature is detected, while the effective spectral index αox of the optical-x-ray waveband is not correlated with the curvature. According to the effective spectral index αro, a relation between the synchrotron peak frequency and the curvature can be defined.  相似文献   

4.
The lack of open literature publication of the distributional properties of the cm-λ spectra of solar microwave bursts has lead to some erroneous concepts of the typical characteristics of these spectra. To provide more accurate information, this paper sets forth various distributions of the peak flux density spectra of large numbers of bursts, based on observations of the Sagamore Hill Radio Observatory at nine discrete frequencies between 245 and 35000 MHz over the years 1968–1971. As a foundation for the distribution studies, the basic spectral classification system is outlined. The majority of burst spectra were found to contain a cm-λ component having a single spectral maximum in the 1400 to 35000 MHz range; such spectra are designated C type. A study of the correlation of the spectral maximum frequency f max of the cm component and the photospheric magnetic field strength of the associated region shows a tendency for greater correlation at higher f max for stronger magnetic sssfields. A study of the correlation for C type spectra between f max and the quasi-cutoff frequency f qc on the low-frequency side shows that for bursts of moderate peak flux density (50–500 sfu) f qc is well correlated with f max; a good fit to the relation f max=A f qc is found with A =3.4. The possible attenuating mechanisms responsible for the spectral shaping of the cm component are discussed.  相似文献   

5.
We studied the relationship between the power-law exponent γ on the rigidity R of the spectrum of galactic cosmic-ray (GCR) intensity variation (δD(R)/D(R)∝R ?γ ) and the exponents ν y and ν z of the power spectral density (PSD) of the B y and B z components of the interplanetary magnetic field (IMF) turbulence (PSD~f ?ν , where f is the frequency). We used the data from neutron monitors and IMF for the period of 1968?–?2002. The exponents ν y and ν z were calculated in the frequency interval Δf=f 2?f 1=3×10?6 Hz of the resonant frequencies (f 1=1×10?6 Hz, f 2=4×10?6 Hz) that are responsible for the scattering of GCR particles with the rigidity range detected by neutron monitors. We found clear inverse correlations between γ and ν y or ν z when the time variations of the resonant frequencies were derived from in situ measurements of the solar wind velocity U sw and IMF strength B during 1968?–?2002. We argue that these inverse relations are a fundamental feature in the GCR modulation that is not restricted to the analyzed years of 1968?–?2002.  相似文献   

6.
Several models for pulsating type IV radio bursts are presented based on the assumption that the pulsations are the result of fluctuations in the synchrotron emission due to small variations in the magnetic field of the source. It is shown that a source that is optically thick at low frequencies due to synchrotron self-absorption exhibits pulsations that occur in two bands situated on either side of the spectral peak. The pulsations in the two bands are 180° out of phase and the band of pulsations at the higher frequencies is the more intense. In contrast, a synchrotron source that is optically thin at all frequencies and whose low frequency emission is suppressed due to the Razin effect develops only a single band of pulsations around the frequency of maximum emission. However, the flux density associated with the later model would be too small to explain the more intense pulsations that have been observed unless the source area is considerably larger than presently seems reasonable.  相似文献   

7.
This paper presents an alternative interpretation for the wide scatter and apparent lack of anti-correlation in the relationship between the spectral luminosity (L ν ) and synchrotron peak frequency (ν peak ) in a sample of BL Lac Objects contained in Wu et al. (Astron. Astrophys. 466:43, 2007) compilation. The apparent lack of correlation between the parameters contradicts the blazar sequence proposed by Fossati et al. (in Mon. Not. R. Astron. Soc. 299:433, 1998), which predicts a general decline in L ν with increasing ν peak . Analysis of the radio luminosity and synchrotron peak frequency data of the sample reveals a strong selection effect, due to Malmquist bias. We show that a clear anti-correlation (r~?0.7) between the radio luminosity at synchrotron peak (L peak ) and ν peak exists for the BL Lac sample above some redshift cut-off (z c =0.3), which may correspond to the flux limit of the sample. The results are not only in agreement with FRI–BL Lac unification, but also suggest that the present data is consistent with the blazar sequence.  相似文献   

8.
We consider the damping mechanisms for the radial oscillations of solar coronal loops in the approximation of a thin magnetic flux tube. We show that the free tube oscillations can have a high Q if the plasma density inside the magnetic flux tube is much higher than the density outside. We analyze the effect of radial coronal-loop magnetic-field oscillations on the modulation of the microwave radiation from solar flares. In the case of a nonthermal gyrosynchrotron mechanism, the fluxes from optically thin and optically thick sources are modulated in antiphase. Based on our model, we diagnose the flare plasma. For the event of May 23, 1990, we estimate the spectral index for accelerated electrons, α≈4.4, and the magnetic-field strength in the region of energy release, B≈190 G.  相似文献   

9.
The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39?–?11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (\(\gtrsim 300\) keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.  相似文献   

10.
We consider the modulation of nonthermal gyrosynchrotron emission from solar flares by the ballooning and radial oscillations of coronal loops. The damping mechanisms for fast magnetoacoustic modes are analyzed. We suggest a method for diagnosing the plasma of flare loops that allows their main parameters to be estimated from peculiarities of the microwave pulsations. Based on observational data obtained with the Nobeyama Radioheliograph (17 GHz) and using a technique developed for the event of May 8, 1998, we determined the particle density n≈3.7×1010 cm?3, the temperature T≈4×107 K, and the magnetic field strength B≈220 G in the region of flare energy release. A wavelet analysis for the solar flare of August 28, 1999, has revealed two main types of microwave oscillations with periods P1≈7, 14 s and P2≈2.4 s, which we attribute to the ballooning and radial oscillations of compact and extended flare loops, respectively. An analysis of the time profile for microwave emission shows evidence of coronal loop interaction. We determined flare plasma parameters for the compact (T≈5.3×107 K, n≈4.8≈1010 cm?3, B≈280 G) and extended (T≈2.1≈107 K, n≈1.2≈1010 cm?3, B≈160 G) loops. The results of the soft X-ray observations are consistent with the adopted model.  相似文献   

11.
Statistical studies of hard X-ray flares position on the solar disk have shown that the more energetic hard X-rays have a tendency to be more concentrated near the limb rather than at disk center, whereas lower-energy hard X-ray emission seems isotropic. Since the high-frequency radio emission is believed to be produced by the same energetic electron population responsible for the high-energy hard X-rays, we searched the microwave/millimeter emitting bursts for center-to-limb variation in their emission. A total of 499 bursts observed by the radio telescopes in Bern at the frequencies of 3.1, 5.2, 8.4, 11.8, 19.6, 35.0, and 50.0 GHz were analyzed. Simultaneous Hα flares were used for determination of the radio burst position on the solar disk. For each of the 7 frequencies, the peak flux and duration were studied as a function of heliocentric position. For 312 bursts, spectral parameters such as spectral index, peak frequency, and flux at spectral maximum were analyzed. For a subset of 43 bursts with emission at all frequencies, the emission and spectral parameters were analyzed. Center-to-limb variations of the spectral parameters for all bursts were sought. In order to interpret the observational results, we have performed a numerical simulation of gyrosynchrotron spectra. We find that high-frequency events, which are also the more energetic ones, have larger center-to-limb variations in their parameters than do the overall flares. Moreover, this behavior agrees with theoretical predictions.  相似文献   

12.
We consider the plasma mechanism of sub-terahertz emission from solar flares and determine the conditions for its realization in the solar atmosphere. The source is assumed to be localized at the chromospheric footpoints of coronal magnetic loops, where the electron density should reach n ≈ 1015 cm?3. This requires chromospheric heating at heights h ? 500 km to coronal temperatures, which provides a high degree of ionization needed for Langmuir frequencies ν p ≈ 200–400 GHz and reduces the bremsstrahlung absorption of the sub-THz emission as it escapes from the source. The plasma wave excitation threshold for electron-ion collisions imposes a constraint on the lower density limit for energetic electrons in the source, n 1 > 4 × 109 cm?3. The generation of emission at the plasma frequency harmonic ν ≈ 2ν p rather than the fundamental tone turns out to be preferred. We show that the electron acceleration and plasma heating in the sub-THz emission source can be realized when the ballooning mode of the flute instability develops at the chromospheric footpoints of a flare loop. The flute instability leads to the penetration of external chromospheric plasma into the loop and causes the generation of an inductive electric field that efficiently accelerates the electrons and heats the chromosphere in situ. We show that the ultraviolet radiation from the heated chromosphere emerging in this case does not exceed the level observed during flares.  相似文献   

13.
Recently, Duvall and Hanasoge (Solar Phys. 287, 71, 2013) found that large-distance separation [Δ] travel-time differences from a center to an annulus [δt oi] implied a model of the average supergranular cell that has a peak upflow of 240 m?s?1 at a depth of 2.3 Mm and a corresponding peak outward horizontal flow of 700 m?s?1 at a depth of 1.6 Mm. In the present work, this effect is further studied by measuring and modeling center-to-quadrant travel-time differences [δt qu], which roughly agree with this model. Simulations are analyzed that show that such a model flow would lead to the expected travel-time differences. As a check for possible systematic errors, the center-to-annulus travel-time differences [δt oi] are found not to vary with heliocentric angle. A consistency check finds an increase of δt oi with the temporal frequency [ν] by a factor of two, which is not predicted by the ray theory.  相似文献   

14.
Dynamic spectra of low-frequency modulation of microwave emission from solar flares are obtained. Data of 15 bursts observed in 1989–2000 with Metsähovi radio telescope at 37 GHz have been used. During 13 bursts a 5-min modulation of the microwave emission intensity was detected with the frequency of ν I = 3.2± 0.24 (1σ) mHz. Five bursts revealed a 5-min wave superimposed on a ~1 Hz, linear frequency modulated signal generated, presumably, by coronal magnetic loop, this wave frequency is νfm = 3.38± 0.37 (1σ) mHz. Both intensity and frequency modulations detected are in good agreement with the data on 5-min global oscillations of photosphere and with the data on the umbral velocity oscillations observed in the vicinity of sunspots. Possible role of p-mode photospheric oscillations in modulation of microwave burst emission is discussed.  相似文献   

15.
The X-ray spectral and timing properties of ultraluminous X-ray sources (ULXs) have many similarities with the very high state of stellar-mass black holes (power-law dominated, at accretion rates greater than the Eddington rate). On the other hand, their cool disk components, large characteristic inner-disk radii and low characteristic timescales have been interpreted as evidence of black hole masses ~1000 M (intermediate-mass black holes). Here we re-examine the physical interpretation of the cool disk model, in the context of accretion states of stellar-mass black holes. In particular, XTE J1550–564 can be considered the missing link between ULXs and stellar-mass black holes, because it exhibits a high-accretion-rate, low-disk-temperature state (ultraluminous branch). On the ultraluminous branch, the accretion rate is positively correlated with the disk truncation radius and the bolometric disk luminosity, while it is anti-correlated with the peak temperature and the frequency of quasi-periodic-oscillations. Two prototypical ULXs (NGC?1313 X-1 and X-2) also seem to move along that branch. We use a phenomenological model to show how the different range of spectral and timing parameters found in the two classes of accreting black holes depends on both their masses and accretion rates. We suggest that ULXs are consistent with black hole masses ~50–100 M , moderately inefficiently accreting at ≈20 times Eddington.  相似文献   

16.
A new radio spectrograph, dedicated to observe the Sun, has been recently commissioned by the Indian Institute of Astrophysics (IIA) at the Gauribidanur Radio Observatory, about 100 km North of Bangalore. The instrument, called the Gauribidanur Low-frequency Solar Spectrograph (GLOSS), operates in the frequency range≈40?–?440 MHz. Radio emission in this frequency range originates close to the Sun, typically in the radial distance range r≈1.1?–?2.0 R. This article describes the characteristics of the GLOSS and the first results.  相似文献   

17.
A New Catalogue of Fine Structures Superimposed on Solar Microwave Bursts   总被引:1,自引:0,他引:1  
The 2.6-3.8 GHz, 4.5-7.5 GHz, 5.2-7.6 GHz and 0.7-1.5 GHz component spectrometers of Solar Broadband Radio Spectrometer (SBRS) started routine observations, respectively, in late August 1996, August 1999, August 1999, and June 2000. They just managed to catch the coming 23rd solar active maximum. Consequently, a large amount of microwave burst data with high temporal and high spectral resolution and high sensitivity were obtained. A variety of fine structures (FS) superimposed on microwave bursts have been found. Some of them are known, such as microwave type Ⅲ bursts, microwave spike emission, but these were observed with more detail; some are new. Reported for the first time here are microwave type U bursts with similar spectral morphology to those in decimetric and metric wavelengths, and with outstanding characteristics such as very short durations (tens to hundreds ms), narrow bandwidths, higher frequency drift rates and higher degrees of polarization. Type N and type M bursts were also observed. Detailed zebra pattern and fiber bursts at the high frequency were found. Drifting pulsation structure (DPS) phenomena closely associated with CME are considered to manifest the initial phase of the CME, and quasi-periodic pulsation with periods of tens ms have been recorded. Microwave “patches”, unlike those reported previously, were observed with very short durations (about 300ms), very high flux densities (up to 1000 sfu), very high polarization (about 100% RCP), extremely narrow bandwidths (about 5%), and very high spectral indexes. These cannot be interpreted with the gyrosynchrotron process. A superfine structure in the form of microwave FS (ZPS,type U), consisting of microwave millisecond spike emission (MMS), was also found.  相似文献   

18.
Estimating for the frequency drift rates of type III solar bursts is crucial for characterizing their source development in the solar corona. According to Melnik et al. (Solar Phys.269, 335, 2011), the analysis of powerful decameter type III solar bursts, observed in July?–?August 2002, found a linear approximation for the drift rate versus frequency. The conclusion contradicts reliable results of many other well-known solar observations. In this paper we report on the reanalysis of the solar data with a more advanced method. Our study shows that the decameter type III solar bursts of July?–?August 2002, as standard type III bursts, follow a power law in frequency drift rates. We explain the possible reasons for this discrepancy.  相似文献   

19.
The theory of gravity says that a binary with orbital frequency ν should be a source of gravitational waves at the double frequency and higher harmonics. This implies that long-term exposure of an ensemble of binaries to gravity waves with frequency ν G can result in (a) a lack of binaries with frequencies near frequency ν G /2 and its higher harmonics (the effect of unstable orbits) and/or (b) an excess of binaries whose orbital frequencies are “absolutely” incommensurable with ν G /2 and its higher harmonics (the effect of stable orbits). It is assumed that the stable-orbit frequencies are almost equal to multiples of πν G /2 and ν G /2π, where π plays the role of a “perfect” factor ensuring the best antiresonance of binaries. The statistical analysis of frequencies of 5774 Galactic close binary systems (CBSs) with periods P less than 10 days is based on calculating the resonance spectrum that indicates the best common multiple for a given set of frequencies with allowance for the factor π. The CBS distribution turns out to be modulated by the frequency ν G = 104.4(5) μHz, and this effect is the most pronounced for superfast and compact rotators, such as cataclysmic variables (CVs) and related objects. The frequency ν G is, within the error, equal to the “enigmatic” frequency ν0 = 104.160(1) μHz com discovered earlier in the power spectra of the Sun and brightness variations of some extragalactic sources. This confirms the existence of a “coherent cosmic oscillation” of the Universe with frequency ν0 G ). The new astrophysical phenomenon naturally explains an “CV period gap” at frequencies ≈πν G /3 (P ≈ 153 min) and maxima at the neighboring frequencies ≈πν G /2 and ≈πν G /4 (P ≈ 102 and ≈204 min, respectively). The remarkable and “mysterious” role of the transcendental number π for the world of binaries is emphasized, and the mystery of physical nature of the “universal” oscillation ν0 G ) is highlighted.  相似文献   

20.
A detailed investigation on geoeffective CMEs associated with meter to Deca-Hectometer (herein after m- and DH-type-II) wavelengths range type-II radio bursts observed during the period 1997–2005 is presented. The study consists of three steps: i) the characteristics of m-and DH-type-II bursts associated with flares and geoeffective CMEs; ii) characteristics of geo and non-geoeffective radio-loud and quiet CMEs, iii) the relationships between the geoeffective CMEs and flares properties. Interestingly, we found that 92 % of DH-type-II bursts are extension of m-type-II burst which are associated with faster and wider geoeffective DH-CMEs and also associated with longer/stronger flares. The geoeffective CME-associated m-type-II bursts have higher starting frequency, lower ending frequency and larger bandwidth compared to the general population of m-type-II bursts. The geoeffective CME-associated DH-type-II bursts have longer duration (P?1 %), lower ending frequency (P=2 %) and lower drift rates (P=2 %) than that of DH-type-IIs associated with non-geoeffective CMEs. The differences in mean speed of geoeffective DH-CMEs and non-geoeffective DH-CMEs (1327 km?s?1 and 1191 km?s?1, respectively) is statistically insignificant (P=20 %).However, the mean difference in width (339° and 251°, respectively) is high statistical significant (P=0.8 %). The geo-effective general populations of LASCO CMEs speeds (545 km?s?1 and 450 km?s?1, respectively) and widths (252° and 60°, respectively) is higher than the non geo-effective general populations of LASCO CMEs (P=3 % and P=0.02 %, respectively). The geoeffective CMEs associated flares have longer duration, and strong flares than non-geoeffective DH-CMEs associated flares (P=0.8 % and P=1 %, respectively). We have found a good correlation between the geo-effective flare and DH-CMEs properties: i) CMEs speed—acceleration (R=?0.78, where R is a linear correlation coefficient), ii) acceleration—flare peak flux (R=?0.73) and, iii) acceleration—Dst index intensity (R=0.75). The radio-rich CMEs (DH-CMEs) produced more energetic storm than the radio-quiet CMEs (general populations of LASCO CMEs). The above results indicate that the DH-type-II bursts tend to be related with flares and geoeffective CMEs, although there is no physical explanation for the result. If the DH-type-II burst is a continuation of m-type-II burst, it could be a good indicator of geoeffective storms, which has important implications for space weather studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号