首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Migrating bands of weak, zonal flow, associated with the activity bands in the solar cycle, have been observed at the solar surface for some time. More recently, these flows have been probed deep within the convection zone using global helioseismology and examined in more detail close to the surface with the techniques of local helioseismology. We compare the near-surface results from global and local helioseismology using data from the Michelson Doppler Imager and the Global Oscillation Network Group with surface Doppler velocity measurements from the Mount Wilson 150-foot tower and find that the results are in reasonable agreement, with some explicable differences in detail. All of the data sets show zones of faster rotation approaching the equator from mid-latitudes during the solar cycle, with a variation at any given location that can be approximately, but not completely, described by a single sinusoid and an amplitude that does not drop off steeply below the surface.  相似文献   

2.
Owens  Mathew J. 《Solar physics》2020,295(10):1-28

Time–distance helioseismology is a set of powerful tools to study localized features below the Sun’s surface. Inverse methods are needed to robustly interpret time–distance measurements, with many examples in the literature. However, techniques that utilize a more statistical approach to inferences, and that are broadly used in the astronomical community, are less-commonly found in helioseismology. This article aims to introduce a potentially powerful inversion scheme based on Bayesian probability theory and Monte Carlo sampling that is suitable for local helioseismology. We first describe the probabilistic method and how it is conceptually different from standard inversions used in local helioseismology. Several example calculations are carried out to compare and contrast the setup of the problems and the results that are obtained. The examples focus on two important phenomena that are currently outstanding issues in helioseismology: meridional circulation and supergranulation. Numerical models are used to compute synthetic observations, providing the added benefit of knowing the solution against which the results can be tested. For demonstration purposes, the problems are formulated in two and three dimensions, using both ray- and Born-theoretical approaches. The results seem to indicate that the probabilistic inversions not only find a better solution with much more realistic estimation of the uncertainties, but they also provide a broader view of the range of solutions possible for any given model, making the interpretation of the inversion more quantitative in nature. The probabilistic inversions are also easy to set up for a broad range of problems, and they can take advantage of software that is publicly available. Unlike the progress being made in fundamental measurement schemes in local helioseismology that image the far side of the Sun, or have detected signatures of global Rossby waves, among many others, inversions of those measurements have had significantly less success. Such statistical methods may help overcome some of these barriers to move the field forward.

  相似文献   

3.
The minimum in the solar-activity cycle observed between Cycles 23 and 24 is generally regarded as being unusually deep and long. This minimum is being followed by a cycle with one of the smallest amplitudes in recent history. We perform an in-depth analysis of this minimum with helioseismology. We use Global Oscillation Network Group (GONG) data to demonstrate that the frequencies of helioseismic oscillations are a sensitive probe of the Sun’s magnetic field: The frequencies of the helioseismic oscillations were found to be systematically lower in the minimum following Cycle 23 than in the minimum preceding it. This difference is statistically significant and may indicate that the Sun’s global magnetic field was weaker in the minimum following Cycle 23. The size of the shift in oscillation frequencies between the two minima is dependent on the frequency of the oscillation and takes the same functional form as the frequency dependence observed when the frequencies at cycle maximum are compared with the cycle-minimum frequencies. This implies that the same near-surface magnetic perturbation is responsible. Finally, we determine that the difference in the mean magnetic field between the minimum preceding Cycle 23 and that following it is approximately 1 G.  相似文献   

4.
Solar active regions are distinguished by their strong magnetic fields. Modern local helioseismology seeks to probe them by observing waves which emerge at the solar surface having passed through their interiors. We address the question of how an acoustic wave from below is partially converted to magnetic waves as it passes through a vertical magnetic field layer where the sound and Alfvén speeds coincide (the equipartition level), and find that (i) there is no associated reflection at this depth, either acoustic or magnetic, only transmission and conversion to an ongoing magnetic wave; and (ii) conversion in active regions is likely to be strong, though not total, at frequencies typically used in local helioseismology, with lower frequencies less strongly converted. A simple analytical formula is presented for the acoustic-to-magnetic conversion coefficient.  相似文献   

5.
6.
Inversions for local helioseismology are an important and necessary step for obtaining three-dimensional maps of various physical quantities in the solar interior. Frequently, the full inverse problems that one would like to solve prove intractable because of computational constraints. Due to the enormous seismic data sets that already exist and those forthcoming, this is a problem that needs to be addressed. To this end, we present a very efficient linear inversion algorithm for local helioseismology. It is based on a subtractive optimally localized averaging (SOLA) scheme in the Fourier domain, utilizing the horizontal-translation invariance of the sensitivity kernels. In Fourier space the problem decouples into many small problems, one for each horizontal wave vector. This multichannel SOLA method is demonstrated for an example problem in time–distance helioseismology that is small enough to be solved both in real and Fourier space. We find that both approaches are successful in solving the inverse problem. However, the multichannel SOLA algorithm is much faster and can easily be parallelized.  相似文献   

7.
B. Pintér 《Solar physics》2008,251(1-2):329-340
Helioseismic global modes change in time, in particular on time scales of the solar cycle. These changes show, in fact, strong correlation with the magnetic activity cycle of the Sun, indicating that a most likely cause of the variation of the mode characteristics, such as frequency, is the magnetic field. In the present paper I attempt to find out in what ways and to what degree the magnetic atmosphere of the Sun can influence the f and p modes of helioseismology. Frequency shifts of the order of a microhertz, line widths of the order of a nanohertz, and penetration depths of the order of a megameter are obtained.  相似文献   

8.
Sivaraman  K.R.  Sivaraman  Hari  Gupta  S.S.  Howard  Robert F. 《Solar physics》2003,214(1):65-87
We find from an analysis of the Kodaikanal sunspot group data that the rotation rates of spot groups increase with their age when the rotation rates are computed after sorting the spot groups life-span-wise. We confirm these findings from an analysis of the Mt. Wilson sunspot data set too. We show that this trend is in good agreement with the internal rotation profiles from helioseismology (GONG) observations and is also consistent with the concept that the footpoints of the magnetic loops of spot groups are initially anchored in the deeper layers in the solar interior and rise to shallower layers as the spots age, and that the spots reflect the rotation rates at the respective depths at which their footpoints are temporally located. We project the `first-day rotation rates' and the `daily rotation rates' of spot groups on the rotation profiles from the GONG observations and derive the initial anchoring depths of the footpoints of the magnetic loops of the spot groups and their rates of rise as the spot groups age. Our results of the rotation rates are in antithesis to the results reported by investigators from the Greenwich spot group data that show a deceleration in rotation rates as the spot groups age which are also inconsistent with the rotation profiles from helioseismology observations.  相似文献   

9.
The propagation of solar waves through the sunspot of AR?9787 is observed by using temporal cross-correlations of SOHO/MDI Dopplergrams. We then use three-dimensional MHD numerical simulations to compute the propagation of wave packets through self-similar magnetohydrostatic sunspot models. The simulations are set up in such a way as to allow a comparison with observed cross-covariances (except in the immediate vicinity of the sunspot). We find that the simulation and the f-mode observations are in good agreement when the model sunspot has a peak field strength of 3 kG at the photosphere and less so for lower field strengths. Constraining the sunspot model with helioseismology is only possible because the direct effect of the magnetic field on the waves has been fully taken into account. Our work shows that the full-waveform modeling of sunspots is feasible.  相似文献   

10.
R. M. Bonnet 《Solar physics》1983,82(1-2):487-493
We review the observables of helioseismology that can contribute to our knowledge of the physical conditions in the solar interior. We discuss the limitations which presently prevent helioseismology from reaching its ultimate goal. We finally present a list of projects which either are already underway or that are planned for the near future, and we conclude by showing the crucial role that space observations may play in the future.  相似文献   

11.
Toutain  Thierry 《Solar physics》2001,200(1-2):353-360
The rotational splitting of low-degree p modes is still a controversial issue. There are small but nevertheless real discrepancies between the different measurements of splittings obtained with the existing helioseismology experiments from ground (BISON, IRIS, GONG, LOWL) or from space (VIRGO, GOLF, MDI). I review the current status of rotational splitting in the field of low-degree helioseismology and how we could explain the remaining discrepancies between the various sets of splittings.  相似文献   

12.
The change of sound speed has been found at the base of the convection during the solar cycles,which can be used to constrain the solar internal magnetic field.We aim to check whether the magnetic field generated by the solar dynamo can lead to the cyclic variation of the sound speed detected through helioseismology.The basic configuration of magnetic field in the solar interior was obtained by using a Babcock-Leighton(BL) type flux transport dynamo.We reconstructed one-dimensional solar models by assimilating magnetic field generated by an established dynamo and examined their influences on the structural variables.The results show that magnetic field generated by the dynamo is able to cause noticeable change of the sound speed profile at the base of the convective zone during a solar cycle.Detailed features of this theoretical prediction are also similar to those of the helioseismic results in solar cycle 23 by adjusting the free parameters of the dynamo model.  相似文献   

13.
《Icarus》1987,71(3):350-375
Previous discussions of Mercury's evolution have assumed that its cratering chronology is tied to that of the Moon, i.e., with Caloris forming about 3.9 Gyr ago as part of a late heavy bombardment that affected all of the terrestrial planets. That assumption requires that Mercury's core formed very early, because associated expansion features are not visible, and must have been erased before the cratering flux declined. Moreover, the modest amount of global shrinkage inferred from visible compressional features on Mercury's surface implies that the core is either largely molten at present, or had largely solidified before the end of the bombardment. The former interpretation requires a significant volatile content or implausibly large internal heat sources, while the latter raises questions about how to generate the planet's magnetic field. We have investigated whether constraints on Mercury's chronology could be relaxed by effects of a Mercury-specific bombarding population of planetesimals interior to its orbit, encountering the planet only occasionally due to secular perturbations. Such “vulcanoids” could have been a significant source of early cratering. However, those in orbits that can cross Mercury's are depleted by mutual collisions in ⪅1 Gyr, and can provide at most a modest extension of the period of heavy bombardment. Further inside Mercury's orbit, lower collisional velocities might allow survival of vulcanoids to the present. We report on a search for such bodies and on observational limits to such a population. We also review evidence that Mercury's intercrater plains are of volcanic origin and mainly predate Caloris, and that scarp formation (and global contraction) mainly postdates Caloris and has continued to recent times. If global lineaments are the product of tidal despinning, they constrain core formation to the first half of the planet's lifetime. While some questions and inconsistencies remain, the preponderance of evidence suggests that Mercury differentiated early, and at least half of its core volume is presently molten, probably due to a significant content of some light element such as sulfur.  相似文献   

14.
The Sun is not a rigid body and it is well known that its surface rotation is differential, the polar regions rotating substantially slower than the equator. This differential rotation has been demonstrated by helioseismology to continue down to the base of the convective zone, below which it becomes closer to a rigid body rotation. Far deeper, inside the energy generating core, the rotation has generally been assumed to be much faster, keeping memory of the presumably high speed of the young Sun. However, several recent results of helioseismology have decreased this likelihood more and more, so that the core rotation could be suspected to be only marginally, or even not at all faster than the envelope. Certain results would even imply a core rotation slower than the envelope, an interesting but unlikely possibility. We present here a complete analysis of the rotational splitting of the low degree modes measured in three different time series obtained in 1990, 1991, and 1992 by the IRIS full-disk network. With a time of integration slightly longer than 4 months, the splitting has been measured by 4 different global methods on 42 doublets of l = 1, 35 triplets of l = 2, and 30 quadruplets of l = 3. With a high level of confidence, our result is consistent with a rigid solar core rotation.  相似文献   

15.
The purpose of deep-focusing time–distance helioseismology is to construct seismic measurements that have a high sensitivity to the physical conditions at a desired target point in the solar interior. With this technique, pairs of points on the solar surface are chosen such that acoustic ray paths intersect at this target (focus) point. Considering acoustic waves in a homogeneous medium, we compare travel-time and amplitude measurements extracted from the deep-focusing cross-covariance functions. Using a single-scattering approximation, we find that the spatial sensitivity of deep-focusing travel times to sound-speed perturbations is zero at the target location and maximum in a surrounding shell. This is unlike the deep-focusing amplitude measurements, which have maximum sensitivity at the target point. We compare the signal-to-noise ratio for travel-time and amplitude measurements for different types of sound-speed perturbations, under the assumption that noise is solely due to the random excitation of the waves. We find that, for highly localized perturbations in sound speed, the signal-to-noise ratio is higher for amplitude measurements than for travel-time measurements. We conclude that amplitude measurements are a useful complement to travel-time measurements in time–distance helioseismology.  相似文献   

16.
Local helioseismology is providing new views of subphotospheric flows from supergranulation to global-scale meridional circulation and for studying structures and dynamics in the quiet Sun and active regions. In this short review we focus on recent developments, and in particular on a number of current issues, including the sensitivity of different measures of travel time and testing the forward modelling used in local helioseismology. We discuss observational and theoretical concerns regarding the adequacy of current analyses of waves in sunspots and active regions, and we report on recent progress in the use of numerical simulations to test local helioseismic methods.  相似文献   

17.
We study the effect of localized sound-speed perturbations on global mode frequencies by applying techniques of global helioseismology to numerical simulations of the solar acoustic wave field. Extending the method of realization-noise subtraction (e.g., Hanasoge, Duvall, and Couvidat, Astrophys. J. 664, 1234, 2007) to global modes and exploiting the luxury of full spherical coverage, we are able to achieve very highly resolved frequency differences that are then used to study sensitivities and the signatures of the thermal asphericities. We find that i) global modes are almost twice as sensitive to sound-speed perturbations at the bottom of the convection zone in comparison to anomalies well inside the radiative interior (r?0.55R ), ii) the m degeneracy is lifted ever so slightly, as seen in the a coefficients, and iii) modes that propagate in the vicinity of the perturbations show small amplitude shifts. Through comparisons with error estimates obtained from Michelson Doppler Imager (MDI; Scherrer et al., Solar Phys. 162, 129, 1995) observations, we find that the frequency differences are detectable with a sufficiently long time series (70?–?642 days).  相似文献   

18.
H. Moradi  P. S. Cally 《Solar physics》2008,251(1-2):309-327
In time?–?distance helioseismology, wave travel times are measured from the cross-correlation between Doppler velocities recorded at any two locations on the solar surface. However, one of the main uncertainties associated with such measurements is how to interpret observations made in regions of strong magnetic field. Isolating the effects of the magnetic field from thermal or sound-speed perturbations has proved to be quite complex and has yet to yield reliable results when extracting travel times from the cross-correlation function. One possible way to decouple these effects is by using a 3D sunspot model based on observed surface magnetic-field profiles, with a surrounding stratified, quiet-Sun atmosphere to model the magneto-acoustic ray propagation, and analyse the resulting ray travel-time perturbations that will directly account for wave-speed variations produced by the magnetic field. These artificial travel-time perturbation profiles provide us with several related but distinct observations: i) that strong surface magnetic fields have a dual effect on helioseismic rays?–?increasing their skip distance while at the same time speeding them up considerably compared to their quiet-Sun counterparts, ii) there is a clear and significant frequency dependence of both skip-distance and travel-time perturbations across the simulated sunspot radius, iii) the negative sign and magnitude of these perturbations appears to be directly related to the sunspot magnetic-field strength and inclination, iv) by “switching off” the magnetic field inside the sunspot, we are able to completely isolate the thermal component of the travel-time perturbations observed, which is seen to be both opposite in sign and much smaller in magnitude than those measured when the magnetic field is present. These results tend to suggest that purely thermal perturbations are unlikely to be the main effect seen in travel times through sunspots, and that strong, near-surface magnetic fields may be directly and significantly altering the magnitude and lateral extent of sound-speed inversions of sunspots made by time?–?distance helioseismology.  相似文献   

19.
Oscillations of magnetic flux tubes are of great importance as they contain information about the geometry and fine structure of the flux tubes. Here we derive and analytically solve in terms of Kummer’s functions the linear governing equations of wave propagation for sausage surface and body modes (m=0) of a magnetically twisted compressible flux tube embedded in a compressible uniformly magnetized plasma environment in cylindrical geometry. A general dispersion relation is obtained for such flux tubes. Numerical solutions for the phase velocity are obtained for a wide range of wavenumbers and for varying magnetic twist. The effect of magnetic twist on the period of oscillations of sausage surface modes for different values of the wavenumber and vertical magnetic field strength is calculated for representative photospheric and coronal conditions. These results generalize and extend previous studies of MHD waves obtained for incompressible or for compressible but nontwisted flux tubes. It is found that magnetic twist may change the period of sausage surface waves of the order of a few percent when compared to counterparts in straight nontwisted flux tubes. This information will be most relevant when high-resolution observations are used for diagnostic exploration of MHD wave guides in analogy to solar-interior studies by means of global eigenoscillations in helioseismology.  相似文献   

20.
We summarize studies of helical properties of solar magnetic fields such as current helicity and twist of magnetic fields in solar active regions (ARs), that are observational tracers of the alpha-effect in the solar convective zone (SCZ). Information on their spatial distribution is obtained by analysis of systematic mag-netographic observations of active regions taken at Huairou Solar Observing Station of National Astronomical Observatories of Chinese Academy of Sciences. The main property is that the tracers of the alpha-effect are antisymmetric about the solar equator. Identifying longitudinal migration of active regions with their individual rotation rates and taking into account the internal differential rotation law within the SCZ known from helioseismology, we deduce the distribution of the effect over depth. We have found evidence that the alpha-effect changes its value and sign near the bottom of the SCZ, and this is in accord with the theoretical studies and numerical simulations. We discuss  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号