首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Distribution of ammonites in the Bajocian-Bathonian boundary beds of the Izhma River basin is considered. A new scheme of zonal subdivisions suggested for the Pechora basin includes the Arctocephalites arcticus Zone of the upper Bajocian and the Arctocephalites greenlandicus-Arcticoceras ishmae Zone of the lower Bathonian. The Dreshchanka Formation age (late Bajocian-early Bathonian) and the commencement time of the Boreal sea transgression (Late Bajocian) are specified. Correlation of the Bajocian-Bathonian boundary strata of the northern Caucasus, central and northern Russia with stratigraphic scales of Western Europe and East Greenland are discussed. New infrazonal subdivisions, i.e., the faunal horizons, are described. As is shown, the parkinsoni-zigzag zonal boundary accepted to be the Bajocian-Bathonian boundary in standard scale corresponds to boundaries separating the michalskii and besnosovi zones in the Lower Volga region and the arcticus and greenlandicus zones in the Boreal areas.  相似文献   

2.
The suggestions to transfer the Arcticoceras ishmae Zone from the middle to the lower Bathonian and the Arctocephalites arcticus Zone from the lower Bathonian to the upper Bajocian put forward by some researchers, are critically considered. These suggestions are based on paleontological records from the Sokur quarry near Saratov. Based on paleontological data from Siberia represented in a number of regional ammonite, belemnite, and retroceram zonations, we infer that the proposed zonal subdivision of the Jurassic in the Sokur quarry to be untrue and believe the revision of the correlation of the above-mentioned zones with the stage and zonal standard to be premature because of insufficient argumentation.  相似文献   

3.
The lower Callovian succession observable in cliffs of Anabar Bay and Bolshoi Begichev Island is described with consideration of zonal subdivisions and beds with ammonites. The unified summary biozonation suggested for North Siberia includes the Cadoceras elatmae Zone with C. frearsi and C. elatmae (instead former C. anabarense) subzones, subsequent C. tschernyschewi and C. tolype zones, and successive C. cf. sublaeve, Rondiceras milaschevici, and Cadoceras ex gr. durum (formerly part of the middle Callovian) beds. As in Siberia and East Europe there are species in common C. elatmae (Nik.), C. frearsi (Orb.), C. tolype Buck., and C. emelianzevi Vor.; certain ammonite zones of Siberian succession are directly correlated with the East European, East Greenland and standard zonations. It is concluded that the lower Callovian is completely represented in Siberia. The lower part of the interval, formerly attributed to the middle Callovian, represents the upper part of the lower Callovian Substage. Zones established in the lower Callovian succession of Siberia are contiguous, whereas equivalents of the Elatmae Subzone and Tschernyschewi Zone have not been distinguished in sections of East Greenland. Evolutionary trends of species in subfamily Cadoceratinae are preliminary discussed.  相似文献   

4.
The Oxfordian Stage of West Siberia contains Boreal ammonites Cardioceratidae. The authors’ bank of paleontological data includes ~ 500 definitions of Cardioceratinae, permitting a considerable refinement of the official Oxfordian regional zonal scale. The lower substage is divided into the Cardioceras (Scarburgiceras) obliteratum, C. (S.) scarburgense, and C. (S.) gloriosum Zones instead of beds with C. (S.) spp., whereas the C. (Cardioceras) percaelatum and C. (C.) cordatum Zones are recognized instead of beds with C. (C.) spp. We have found new ammonites typical of the Middle Oxfordian C. (Subvertebriceras) densiplicatum and C. (Miticardioceras) tenuiserratum Zones. The first of these zones is divided into two subzones. The Upper Oxfordian includes the Amoeboceras glosense and A. serratum Zones instead of beds with A. spp., and the A. regulare Zone and beds with A. rosenkrantzi are recognized instead of the A. ex gr. regulare Zone. The genus Ringsteadia (Aulacostephanidae) is observed only in the northwestern part of the region, along the eastern slope of the North Urals; therefore, two upper units of the biostratigraphic scale correspond to beds with Ringsteadia marstonensis.In the Oxfordian, West Siberia and northern Siberia belonged to the North Siberian province of the Arctic realm. Only in the latest Oxfordian did the northwestern West Siberian basin become part of the Boreal-Atlantic realm, as evidenced by the distribution of Ringsteadia on the eastern slope of the Cis-Polar Urals.  相似文献   

5.
It is proposed to use a Boreal scale based on the succession of cardioceratids (with the Bauhini, Kitchini, Sokolovi, and Decipiens zones) for the subdivision of the Kimmeridgian of Western Siberia instead of the aulacospephanid-based Subpolar Urals scale which was traditionally used in this region. It is shown that the use of the Boreal scale allows a finer subdivision and correlation of the Kimmeridgian of Western Siberia. A complete succession of zones and subzones based on cardioceratids and several biohorizons previously established in western Arctic are confirmed. The infrazonal Kimmeridgian scale of Western Siberia is correlated with the scales of Franz Josef Land, Spitsbergen, and northern Central Siberia. The diagnosis and ranges of Plasmatites zieteni (Rouill.), characteristic of the basal part of the Kimmeridgian (zieteni biohorizon), are given. The new species Amoeboceras (?) klimovae Rogov, sp. nov. and Amoebites peregrinator Rogov, sp. nov. (index species of the biohorizons recognized by the present author) are described.  相似文献   

6.
The Dalichai Formation with an age of Late Bajocian-Late Callovian was sampled in Central Alborz Mountains of northern Iran and studied for palynological, palaeobiogeographical and palynocorrelation purposes. Palynological studies revealed diverse and well-preserved dinoflagellate cyst assemblages and lead to identification of three zones i.e., Cribroperidiniumcrispum (Late Bajocian), Dichadogonyaulaxsellwoodii (Bathonian to Early Callovian) and Ctenidodiniumcontinuum (Early to Middle Callovian) Zones. Subzone a of the D. sellwoodii Zone (Early to Middle Bathonian) was also differentiated. This biozonation corresponds to those recognised in Northwest Europe. Furthermore, the ammonoid families recorded including Phylloceratidae, Oppeliidae, Reineckeiidae, Perisphinctidae, Haploceratidae, Parkinsoniidae and Sphaeroceratidae, which confirm the Late Bajocian to Late Callovian age, are quite similar to those of Northwest Europe and the northwestern Tethys. The close similarities of the dinoflagellate cyst assemblages and ammonite fauna of northern Iran with those of Northwest Europe and the northwestern Tethys during the Middle Jurassic indicate direct but episodic marine connection and faunal exchange between the two areas.  相似文献   

7.
The Middle Oxfordian to lowermost Upper Kimmeridgian ammonite faunas from northern Central Siberia (Nordvik, Chernokhrebetnaya, and Levaya Boyarka sections) are discussed, giving the basis for distinguishing the ammonite zones based on cardioceratid ammonites of the genus Amoeboceras (Boreal zonation), and, within the Kimmeridgian Stage, faunas–for distinguishing zones based on the aulacostephanid ammonites (Subboreal zonation). The succession of Boreal ammonites is essentially the same as in other areas of the Arctic and NW Europe, but the Subboreal ammonites differ somewhat from those known from NW Europe and Greenland. The Siberian aulacostephanid zones—the Involuta Zone and the Evoluta Zone—are correlated with the Baylei Zone (without its lowermost portion), and the Cymodoce Zone/lowermost part of the Mutabilis Zone (the Askepta Subzone) from NW Europe. The uniform character of the Boreal ammonite faunas in the Arctic makes possible a discussion on their phylogeny during the Late Oxfordian and Kimmeridgian: the succession of particular groups of Amoeboceras species referred to successive subgenera is revealed by the occurrence of well differentiated assemblages of typical normal-sized macro and microconchs, intermittently marked by the occurrence of assemblages of paedomorphic “small-sized microconchs” appearing at some levels preceeding marked evolutionary modifications. Some comments on the paleontology of separate groups of ammonites are also given. These include a discussion on the occurrence of Middle Oxfordian ammonites of the genus Cardioceras in the Nordvik section in relation to the critical review of the paper of Rogov and Wierzbowski (2009) by Nikitenko et al. (2011). The discussion shows that the oldest deposits in the section belong to the Middle Oxfordian, which results in the necessity for some changes in the foraminiferal zonal scheme of Nikitenko et al. (2011). The ammonites of the Pictonia involuta group are distinguished as the new subgenus Mesezhnikovia Wierzbowski and Rogov.  相似文献   

8.
The study of the large collections of plant remains gained from cores of numerous boreholes drilled in Western Siberia made it possible to determine the taxonomic composition of the Jurassic flora of this region, the stages of its evolution, and the sequence of floral assemblages, which characterize the regional stratigraphic horizons indirectly correlated via series of parallel faunal, microfaunal, spore and pollen zonal scales with a general stratigraphic scale. The compositions of floral assemblages was established in the Hettangian-lower part of the upper Pliensbachian, upper part of the upper Pliensbachian, lower Toarcian, upper Toarcian, Aalenian, Bajocian, Bathonian, and Callovian-Oxfordian sediments. Criteria were elaborated to substantiate the Triassic-Jurassic and Lower-Middle Jurassic boundaries. Lithologically and biostrati-graphically, the Middle-Upper Jurassic boundary is poorly expressed.  相似文献   

9.
The analysis of all available data on the structure of the Bajocian-Bathonian boundary section in the outskirts of Saratov (Sokur quarry) and the taxonomic composition of its ammonites, belemnites, and bivalves revealed a continuous succession of the Pseudocosmoceras michalskii (Upper Bajocian), Oraniceras besnosovi, and Arcticoceras ishmae (Lower Bathonian) zones. In connection with the critique by Meledina et al. (2009), correlation of Bajocian and Bathonian boundary strata of the Central Russia and Northern Siberia is discussed. The inconsistency of Siberian bivalve and belemnite assemblages with Central Russian ammonite zones is explained by heterochronous invasions of different molluscan groups.  相似文献   

10.
The 5th meeting of the IUGS Lower Cretaceous Ammonite Working Group (the Kilian Group) held in Ankara, Turkey, 31st August 2013, discussed the Mediterranean ammonite zonation, and its calibration with different ammonite zonal schemes of the Boreal, Austral and Central Atlantic realms. Concerning the standard zonation, that corresponds to the zonal scheme of the West Mediterranean province, some changes have been made on two stages. For the Valanginian, the Busnardoites campylotoxus Zone was abandoned; the upper part of the lower Valanginian is now characterised by the Neocomites neocomiensiformis and Karakaschiceras inostranzewi zones. For the upper Barremian, the former Imerites giraudi Zone is here subdivided into two zones, a lower I. giraudi Zone and an upper Martellites sarasini Zone. The I. giraudi Zone is now subdivided into the I. giraudi and Heteroceras emerici subzones, previously considered as horizons. The current M. sarasini and Pseudocrioceras waagenoides subzones correspond to the lower and upper parts of the M. sarasini Zone, respectively. The Anglesites puzosianum Horizon is kept. The Berriasian, Hauterivian, Aptian and Albian zonal schemes have been discussed but no change was made. The upper Hauterivian zonal scheme of the Georgian (Caucasus) region (East Mediterranean province) has been compared with the standard zonation. Discussions and some attempts at correlations are presented here between the standard zonation and the zonal schemes of different palaeobiogeographical provinces: the North-West European area for the Valanginian and Hauterivian, the Argentinean region for the Berriasian, Valanginian and Hauterivian, and the Mexican area for the Valanginian–Hauterivian and Aptian–lower Albian. The report concludes with some proposals for future work.  相似文献   

11.
We report the first record of Bathonian–Callovian calcareous nannofossils from a marine sedimentary sequence of the eastern Karakoram block, in northern India. The calcareous mudstones and packstones, occasionally bearing red chert nodules, yielded calcareous nanofossils and Middle Jurassic Choffatia furcula ammonoids. Middle to Upper Jurassic nannofossil assemblage is dominated by representatives of the genus Watznaueria. The occurrence of Ansulasphaera helvetica whose range is Upper Bathonian–Upper Callovian, indicates a correlation with nannofossil zones NJ12–13. The occurrence of Cyclagelosphaera wiedmannii further infer an Upper Bathonian–Callovian age. These specimens show affinities with those found in a similar sedimentary formation exposed in north Karakoram. This suggests the existence of a narrow and elongated sedimentary basin, oriented in a NW–SE direction, at a latitude of c. 25°–30°N. At that time, the Karakoram block was situated near the already welded Qiangtang block of Asia. The northern and eastern Karakoram blocks were connected during Middle Jurassic. The activity and dextral offset of the Karakoram fault separated the Jurassic sedimentary formations of the northern and eastern Karakoram blocks by c. 150 km.  相似文献   

12.
Previous studies have suggested a sound chronological correlation between the Hulu Cave record (East Asian monsoon) and Greenland ice-core records, which implies a dominant control of northern hemisphere climate processes on monsoon intensity. We present an objective, straightforward statistical evaluation that challenges this generally accepted paradigm for sub-orbital variability. We propose a more flexible, global interpretation, which takes into account a broad range of variability in the signal structures in the Hulu Cave and polar ice-core records, rather than a limited number of major transitions. Our analysis employs the layer-counted Greenland Ice-Core Chronology 2005 (GICC05), which was developed for Greenland records and has since been applied – via methane synchronisation – to the high-resolution δ18Oice series from EPICA Dronning Maud Land (EDML). The GICC05 chronology allows these ice-core records to be compared to the U–Th dated Hulu Cave record within relatively narrow (~3%) bounds of age uncertainty. Following previous suggestions, our proposed interpretation suggests that the East Asian monsoon is influenced by a combination of northern hemisphere ‘pull’ (which is more intense during boreal warm periods), and southern hemisphere ‘push’ (which is more intense monsoon during austral cold periods). Our analysis strongly suggests a dominant control on millennial-scale monsoon variability by southern hemisphere climate changes during glacial times when the monsoon is weak overall, and control by northern hemisphere climate changes during deglacial and interglacial times when the monsoon is strong. The deduced temporally variable relationship with southern hemisphere climate records offers a statistically more plausible reason for the apparent coincidence of major East Asian monsoon transitions with northern hemisphere (Dansgaard–Oeschger, DO) climate events during glacial times, than the traditional a priori interpretation of strict northern hemisphere control.  相似文献   

13.
The Bathonian ammonite assemblages have been previously poorly recorded in Kutch. The present study has unearthed a rich array of ammonite taxa ranging from the Middle to Upper Bathonian. While Oxycerites Rollier (1909) is a new record from Kutch, the oldest occurrence of Choffatia Siemiradzki (1898) has been found from the Middle Bathonian horizon. Oxycerites cf. orbis (Giebel) is a zonal index of the Late Bathonian in other areas and thus facilitates interprovincial correlation. Besides, palaeobiogeographic and stratigraphic distribution of many species have been modified based on new information. For example, macrocephalitin species, i.e., Kamptokephalites cf. etheridgei Spath (1928), Macrocephalites bifurcatus transient intermedius Spath (1928), M. cf. mantataranus Boehm (1912) were previously known from West Pacific, Indonesia have been now found in Kutch. Gracilisphinctes Buckman (1920) has been previously known to occur during the Middle Bathonian time, the present work extends its stratigraphic distribution up to the definite Upper Bathonian horizon. Procerites hians (Waagen) an endemic species in Kutch previously known from the Upper Bathonian beds, its stratigraphic range has been extended down to the Middle Bathonian.Detail taxonomy of the newly obtained taxa has been done and in many cases sexual dimorphism has been recognized.  相似文献   

14.
U–Th–Pb analyses of zircons from six granites and one metasediment collected in the accretionary Central belt of Taimyr, Arctic Siberia, demonstrate that Neoproterozoic (c. 900 Ma) granites intrude late Mesoproterozoic/early Neoproterozoic amphibolite facies metamorphic rocks. This is the first time in the Mamont–Shrenk region that Neoproterozoic ages have been recognized for these lithologies, previously thought to be Archaean/Palaeoproterozoic in age. The Mamont–Shrenk Terrane (MST) represents a Grenvillian age (micro?) continent intercalated with younger Neoproterozoic ophiolites during thrusting and accreted to the northern margin of the Siberian craton sometime before the late Vendian. Basement to the MST may have been derived from the Grenvillian belt of east Greenland. Viable tectonic reconstructions must allow for an active margin along northern Siberia (modern day coordinates) in the middle Neoproterozoic.  相似文献   

15.
In Russia, the terminal Neoproterozoic formally includes the Vendian of western part of the East European platform and the concurrent Yudoma Group of Siberia. As is shown in this work, the designated subdivisions correspond in the stratotypes only to the upper, Yudomian Series of the Vendian. In the Siberian platform, the Ust-Yudoma and Aim horizons of the Yudomian are tightly interrelated. The lower of them, bearing remains of Ediacaran Fauna, represents the Ediacarian Stage, whereas the upper one containing small-shelled fossils (SSF) corresponds to the Nemakit-Daldynian Stage divided into the trisulcatus and antiqua superregional zones. In more complete sections of the platform periphery, sediments of these subdivisions conformably rest on siliciclastic succession that should be ranked as basal subdivision of the Yudomian. The succession is concurrent to the Laplandian Stage of the East European platform. According to geochronological dates obtained recently, the Yudomian Series spans interval of 600–540 Ma. In the East European platform, the Upper Vendian (Yudomian) begins with the Laplandian basal tillites of synonymous stage. In the west of the platform, tillites are dated at 600 Ma like the Upper Vendian base in Siberia. The next Ediacarian Stage of the East European platform is stratigraphic equivalent of the Redkino Horizon, while summary range of the Kotlin and Rovno horizons is concurrent to that of the Nemakit-Daldynian Stage. The Vendian of Russia is conformably overlain by the Tommotian Stage of the Lower Cambrian. Intense pre-Vendian events constrained distribution areas of the Lower Vendian sediments in Russia. The Lower Vendian deposits of the East European platform are most representative and well studied in the central Urals, where they are attributed to the Serebryanka Group. In Siberia, separate subdivisions representing the Lower Vendian are the Maastakh Formation of the Olenek Uplift, two lower members of the Ushakovka Formation in the Baikal region, and the Taseeva Group of the Yenisei Range. Chronological interval of the Lower Vendian corresponds to 650–600 Ma. The Marinoan Glaciation dated in Australia at 650–635 Ma is concurrent to basal part of the pre-Yudomian interval of the Vendian in Russia, whereas the Laplandian Tillite and Gaskiers Glaciation (600–580 Ma) correspond to onset of the Yudomian Epoch. The new Ediacaran System (Knoll et al., 2004) legalized in the International Neoproterozoic scale is close in range to the entire Vendian (635–544 Ma), although without basal beds (Marinoan Tillite) it deprives the terminal Neoproterozoic of its original sense. Inferiority of the system consists also in its indivisibility into stages. Hence, it is clear that the Vendian System subdivided in detail in Russia should be retained in the rank of terminal system of the Precambrian, one of the basic in general scale of the Neoproterozoic.  相似文献   

16.
Belemnites from the lower Bathonian deposits of the Russian Plate are revised and discussed on the basis of study of the two reference sections—Pletnyovka and Sokur quarries. This is the second part of the investigation dealing with representatives of the family Cylindroteuthididae, and “rostrum-less” belemnites of the family Belemnotheutididae, while members of the family Megateuthididae were discussed in detail in the first part (Ippolitov, 2018). The cylindroteuthidids are found only in the Sokur Quarry and comprise four species all assigned to the genus Pachyteuthis, including a new species, Pachyteuthis mittai sp. nov. For Belemnotheutididae, the presence of a single species Acanthoteuthis foliorostris sp. nov. is recorded, which is the first confirmed record of the genus Acanthoteuthis in the pre-Callovian strata. The study of morphological changes within Cylindroteuthididae across the succession allowed two biohorizons to be recognized and the existing belemnite-based scheme for the lower Bathonian of the Volga Region and its correlation with sections in the Pechora River basin to be updated. As the result of the revision, a complex zonal and infrazonal belemnite-based stratigraphic scheme of the lower Bathonian of the Volga Region is introduced. The presence of an endemic genus deriving from Arctic-Boreal immigrants in the lower Bathonian of the Middle Russian Sea allows the belemnite fauna of this age to be interpreted as the first isolated episode of differentiation of the Boreal-Atlantic Province in belemnites. The study of the development of the cephalopod fauna in the early Bathonian of the Russian Plate indicates a biphase formation of the meridional strait connecting the Middle Russian Sea with the Arctic basins and also supports the hypothesis of a short-term opening of a sublatitudinal Pripyat Strait during the maximum highstand.  相似文献   

17.
Our study presents preliminary biostratigraphic results from the Jurassic siliceous series of northwestern Tunisia. For the first time, radiolarians are extracted from the Jédidi formation and provide a direct age determination. They are the first radiolarian fauna documented from Tunisia. Two age assignments are comprised within the following intervals: (1) Late Bathonian–Early Callovian, (2) Late Bathonian–Early Oxfordian. These ages are compatible with recent stratigraphic synthesis proposed for the Jurassic series of Tunisia. The data suggest the correlation of the Jédidi formation with siliceous series of Middle–Late Jurassic age from the external zone of the Maghrebides belt rather than with true oceanic units from the Maghrebian flyschs or the internal zones of western Tethys. To cite this article: F. Cordey et al., C. R. Geoscience 337 (2005).  相似文献   

18.
New finds and revision of available collections of nonmarine bivalves provided grounds for development of a zonal scale for terrestrial sequences of the Permian System based on species belonging to the genus Palaeomutela Amalitzky, 1891, which are characterized by regular changes in the structure of the shell hinge. The scale includes two parallel zonal successions that are based on the stratigraphic distribution and evolutionary trends of two morphological lineages of the genus. The zonal succession based on development of the P. umbonata group (dwellers of mobile waters and silty-psammitic substrates) includes 11 range zones: stegocephalum, ovatiformis, umbonata, quadriangularis, krotowi, wohrmani, numerosa, ulemensis, keyserlingi, curiosa, golubevi. The zonal succession based on development of the P. castor group (dwellers of calm waters and silty-pelitic substrates) includes eight range zones: larae, castor, olgae, doratioformis, marposadica, fischeri, obunca, amalitzkyi. The proposed zonal units are correlated with scales based on ostracod, fish, and tetrapod fossils. New species Palaeomutela golubevi sp. nov. and P. amalitzkyi sp. nov. are described with the extended diagnosis of the genus Palaeomutela.  相似文献   

19.
The study of new collections from the Urdyuk-Khaya Cape (Nordvik Peninsula) made it possible to specify the taxonomic composition of belemnites from the Volgian and basal Ryazanian in northern East Siberia. Cylindroteuthis knoxvillensis Anderson, 1945, C. cf. newvillensis Anderson, 1945, and Arctoteuthis tehamaensis (Stanton, 1895) known from northern California, as well as the new species C. venusta sp. nov. and A. britanna sp. nov. are first described from the Arctic region. Belemnite stratigraphy of Jurassic-Cretaceous boundary layers is fundamentally revised, allowing a new refined version of their scale to be proposed as a Boreal standard. Two independent successions of biostratigraphic units are defined in the section interval spanning the uppermost Middle Volgian Substage to the basal Ryazanian Stage: (1) Liobelus russiensis Zone, Lagonibelus gustomesovi and Arctoteuthis porrectiformis beds; (2) Lagonibelus napaensis, Arctoteuthis tehamaensis, and Cylindroteuthis knoxvillensis zones.  相似文献   

20.
In European Russia, the most complete succession of Boreal sediments of the terminal Bathonian and lower Callovian is exposed near the Prosek Settlement. After its revision, the infrazonal division of the upper Bathonian and lower Callovian and position of the Bathonian-Callovian boundary are difined more carefully. The Calyx Zone and bodylevskyi Biohorizon are established in the upper Bathonian. The base of the lower Callovian is defined at the first occurrence level of Macrocephalites jacquoti. Based on four successive ammonite assemblages occurring in lower part of the Elatmae Zone, the breve, frearsi, quenstedti, and elatmae biohorizons are identified. The joint occurrence of Boreal, Subboreal, and Tethyan ammonites in the section facilitate its correlation with the other sections of the Panboreal paleobiogeographic superrealm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号