首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geological investigations were performed on the Roccamonfina extint volcano with the purpose to recognize the nature of the main volcanic formations (with particular regard to pyroclastic deposits) and to ascertain their true order of succession. The volcanic history may be sketched as follows:
  1. 1)
    Successive eruptions of mostly leucitic lavas and tuffs build up a normal stratovolcano, about 1700 m high. Several adventive cones, sometimes formed of trachytic lava, rise on its flanks.  相似文献   

2.
Nearly all eruptions in stratovolcanoes (composite volcanoes, central volcanoes) are supplied with magma through fractures. Consequently, a primary physical condition for an eruption to occur in a stratovolcano is that a magma-driven fracture is able to propagate to the surface. Magma-filled fractures, frozen or fluid, are referred to as sheet intrusions. More specifically, they are named dykes when subvertical, and inclined (or cone) sheets when inclined. Field observations indicate that most sheet intrusions do not reach the surface to feed eruptions but rather become arrested at various crustal depths. For this reason periods of volcanic unrest with sheet injections are much more common than volcanic eruptions. Whether a sheet intrusion becomes arrested or, alternatively, propagates to the surface depends primarily on the stress field in the stratovolcano. A stratovolcano normally consists of layers of contrasting mechanical properties, such as soft (low Youngs modulus) pyroclastic units and stiff (high Youngs modulus) lava flows. We present numerical models indicating that volcanoes composed of such layers commonly develop stress fields encouraging sheet and dyke arrest. The models indicate that a necessary condition for a sheet intrusion to reach the surface and feed a volcanic eruption is that the stress field along the sheet pathway becomes homogenised. We propose that much of the activity in a stratovolcano during a volcanic cycle encourages stress-field homogenisation. Field studies show that the sheet intrusions in individual stratovolcanoes have various dips: some are vertical dykes, others inclined sheets, and still others horizontal sills. Analytical models indicate that the dip of a sheet reaching the surface can have great effects on the magma transport during an eruption. This effect is normally greater for a flat volcano such as a collapse caldera than for a stratovolcano that forms a topographic high. We conclude that the shallower the dip of a sheet intrusion, the less will be its volumetric magma transport to the surface of a stratovolcano.Editorial responsibility: D Dingwell  相似文献   

3.
Volcan Pico de Orizaba, which marks the eastern end of the Trans-Mexican Volcanic Belt, is one of the largest andesitic composite volcanoes in America. It is located above a series of crustal distensive faults making the boundary of the Coast Plains of the Gulf of Mexico from theAltiplano. For this reason, the volcano shows an asymmetry: from the west, its elevation is about 3,000 m whereas on the eastern side it reaches 4,000 to 4,500 m from its base. The Pico de Orizaba is composed of a primitive stratovolcano raised by a recent summit cone. It has been built by three very distinct volcanic and magmatic phases.
  1. The first one, probably discontinuous effusive activity, lasted more than one million years. It is mainly composed of two pyroxenes-andesites with scarce associated basaltic and dacitic lava-flows. Amphibole is an accessory mineral in most differentiated lavas. On the eastern flank, numerous massive and autobrecciated lava-flows pass outward into thick conglomeratic formations. This effusive phase has built a primitive central volcano and a parasitic cone: the Sierra Negra.
  2. The second phase is of short duration — about 100,000 years or less — in comparison with the first period. It seems that this period began with the formation of a caldera followed by the extrusion of amphibole dacite domes and the overflow of viscous silica-rich (andesite to dacite) lava flows on the northern flank. An intense explosive activity develops:pelean nuées ardentes are associated with extrusion of the domes; numerous plinian eruptions leading to widespread dacitic pumiceous air-falls are produced by both the central and the adventive volcanoes. This sequence of events is interpreted as the progressive emptying of a superficial chamber containing differenciated magma. A rhyolite flow erupted during this phase.
  3. The age of the recent phase is better defined. It started 13,000 years B.P. with the eruption of a dacitic ash-flow containing pumice and scoria-bombs. This was such an intense event that products were found 30 km S.E. of the summit, erasing the top of the former volcano and creating a large crater (4–5 km wide). The present cone, of 1,400–1,500 m elevation, grew in this crater. During a period of 7,000 to 8,000 years, the new stratovolcano experienced various important pyroclastic eruptions with a cycle of the order of 1,000 to 1,500 years. The pyroclastic flows (ash, pumice, and bombs) associated with air-fall deposits are of Saint-Vincent type. They present an heterogeneous dacitic and andesitic magma. The dacitic component is similar to previous differenciated materials. On the other hand, the andesitic magma appears somewhat similar to lava-flows from morphologically young cones erupted outside the central vent system. This eruptive cycle can be interpreted as the result of reoccurring injections of deep basic magma within the crustal chamber. For the last 5,000 years the activity of the modern Pico de Orizaba has again been essentially effusive (andesites) with periodic plinian eruptions.
  相似文献   

4.
Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40–50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very shallow magma body or heating and expansion of a confined aquifier.  相似文献   

5.
The simultaneous eruption of Mt. Pelée, Martinique and Soufrière, St. Vincent are regarded as the first recognized examples of Pelean-type and St. Vincent-type pyroclastic eruptions. Both produced nuées ardentes, the former usually laterally directed because of the presence of a dome and the latter vertically directed from an open crater. Both volcanoes have subsequently erupted for a second time this century. The 1902–05 and 1929–32 eruptions of Mt. Pelée produced andesite lava of almost identical composition and mineralogy. Both contain two generations of plagioclase, orthopyroxene, Fe-Ti oxide, corroded brown amphibole and olivine rimmed by pyroxene. In contrast, the Soufrière material is more basic in composition varying from basaltic andesite to basalt in 1902–03 and basaltic andesite in 1971–72. The Soufrière material contains two generations of plagioclase (with those of 1971–72 having additional zones of labradorite), clinopyroxene, orthopyroxene, olivine and Fe-Ti oxide. The pyroclastic deposits are strikingly different, those from the Pelean-type eruption are termed «block and ash deposits» being characterised by poorly vesicular lava blocks up to 7 m in diameter, while the St. Vincent-type eruption produced «scoria and ash deposits» containing vesicular ropey blocks or bombs no larger than 1 m in diameter. The differences in styles of eruption are attributed to differences in viscosity and mechanism of eruption of the magmas. Stratigraphic studies of Mt. Pelée reveal that the volcano has produced basaltic andesite scoria and ash deposits from St. Vincent-type eruptions. It is concluded that the recent eruptions of Pelée tapped a deep level magma during both eruptions releasing magma of similar composition, while the 1971 Soufrière magma is thought to be a remnant of the 1903 basaltic magma which remained at a high level within the volcano where it underwent enrichment in plagioclase and loss of olivine and oxide.  相似文献   

6.
Four volcanic units have been distinguished on the islanf of Fayal. In order of decreasing age, these are:
  • the eastern rift, and products of the activity preceding the collapse of the caldera visible at the summit of the stratovolcano, characterized by an alkaline series: basalt-hawaiite-mugearite-trachyte;
  • the products of the explosive and postcaldera activity where only evolved lavas occur (benmoreites and trachytes);
  • the recent basaltic activity of the Horta region;
  • the western fissural activity — recent and historical.
  • The two last units are characterized by exclusively basaltic, frequently picritic, eruptions. The lava groups cannot be distinguished by chemical criteria and have thus been treated as a single suite. Ninety samples have been analysed by X-ray fluorescence, and the mineralogy of 6 representative specimens has been determined by microprobe. The data were used to work out the evolution of the lava. The series is shown to have been produced by crystal fractionation under moderate water pressure from an alkali basalt. Moderate fractionation of amphibole during the last stages allow the liquids to remain weakly undersaturated from initial basalts until final trachytes. Mineralogical and chemical diversity between the most evolved lavas, benmoreites and trachytes, is an evidence of the strong influence ofpH2O and/orfO2 on the composition of such residua.  相似文献   

    7.
    In the great January 1835 eruption of Cosigüina volcano, Nicaragua, andesitic magma and lithic material were erupted over a period of at least three days. Proximal facies consist of clastogenic lava, scoria-fall, and lithic ash-fall produced by phreatomagmatic to vulcanian or plinian activity, together with surge deposits and lithic block-falls. Pyroclastic flow deposits covered some flanks of the volcano and entered the sea in the Gulf of Fonseca. Little record exists of the distal ash-fall, thus the total bulk volume erupted can only be roughly constrained to 2.9–5.6 km3. Furthermore, the amount of juvenile material is thought to be small. A recent study of volatiles in 1835 scoria suggests sulfur release from the magma was negligible. This reappraisal indicates that the Cosigüina eruption probably had little global climatic impact. Despite its violent nature, the magnitude of the eruption was modest. The eruption occurred too late to initiate the Northern Hemisphere cooling trend form 1828–1836. Dry fogs and other atmospheric optical phenomena usually observed after eruptions that contribute significantly to the stratospheric aerosol burden were not recorded after 1835.  相似文献   

    8.
    The active andesitic Zhupanovsky Volcano consists of four coalesced stratovolcano cones. The historical explosive eruptions of 1940, 1957, and 2014?2016 discharged material from the Priemysh Cone. The recent Zhupanovsky eruptions were studied using satellite data supplied by the Monitoring of Active Volcanoes in Kamchatka and on the Kuril Islands information system (VolSatView), as well as based on video and visual observations of the volcano. The first eruption started on October 22 and lasted until October 24, 2013. Fumaroles situated on the Priemysh western slope were the centers that discharged gas plumes charged with some amount of ash. The next eruption started on June 6, 2014 and lasted until November 20, 2016. The explosive activity of Zhupanovsky was not uniform in 2014–2016, with the ash plumes being detected on satellite images for an approximate total duration of 112 days spread over 17 months. The most vigorous activity was observed between June and October, and in November 2014, with a bright thermal anomaly being nearly constantly seen on satellite images around Priemysh between January and April 2015 and in January–February 2016. The 2014–2016 eruption culminated in explosive events and collapse of parts of the Priemysh Cone on July 12 and 14, November 30, 2015, and on February 12 and November 20, 2016.  相似文献   

    9.
    The active Karthala volcano is found on Grande Comore, the most westerly of four volcanic islands comprising the Comores Archipelago, between northern Madagascar and Mozambique. The caldera, roughly elliptical in outline, is 4 km long and 3 km wide, with outer walls around 100 m high. It is dominated by a large central pit crater, Chahale, which is 1300 m long, 800 m wide, and 300 m deep. A smaller cylindrical pit crater 250 m in diameter and 30 m deep, Changomeni, is found one km north of Chahale. The vertical walls of both pit craters show excellent sections of the ponded flows which form the caldera floor, and the minor faults and intrusions which affected these flows. The youngest lava on the island was produced on July 12th, 1965, as single aa basalt flow emitted from a fissure halfway between the two pit craters. Small fumaroles are still active on this flow, as well as in the pit craters and at several small cinder cones in the caldera. Alignment of pyroclastic cones and fissure eruptions forms a radial pattern centering on Chahale pit crater, suggesting that these radial fissures are locally controlled. Location of the caldera at the intersection of two regional fissure systems implies that its location is controlled by regional stresses. The present size and form of the caldera is a result of the coalescence of at least four smaller calderas. Although the visible walls of these smaller calderas do not show any outward dip, the theoretical considerations ofRobson andBarr (1964), if applicable, require that at depth these are outward-dipping ring dyke type of fractures.  相似文献   

    10.
    Nisyros is a totally volcanic island located at the eastern limit of the quaternary calc-alkaline island arc system of the South Aegean Sea. Its age is rather young since K/Ar dating has given an age of 0.2 m.y. B.P. for one of the oldest outcropping products of this volcano. The volcanological evolution of Nisyros has tentatively been reconstructed as follows:
    1. after a period (from 3.0? to 0.2 m.y. B.P.) of submarine activity, evidenced by the presence of pillow-lavas and hyaloclastites, the volcano grew above sea level;
    2. effusive and explosive subaerial activity from different vents built up a complex stratovolcano, probably around 0.2 m.y. B. P.;
    3. at the end of an intense explosive activity (between 0.2 m.y. B.P. and Present) the top of the volcano collapsed forming a caldera which is still perfectly preserved. A post-caldera activity with eruptions of huge and viscous domes and lava flows of uniform composition, both inside and outside the caldera, concluded this stage of the volcano evolution;
    4. in historical times, spectacular phreatic explosion craters formed on the caldera floor;
    5. presently, a large area of the caldera floor is affected by a considerable hydrothermal activity. The hypothesis is formed that Nisyros volcano is not yet extinct.
    Four small volcanic islets — Yali, Stronjili, Pakia and Perigusa — located a few miles on the North and West of Nisyros, although volcanologically independent of one another, are composed of products which are attributable, from the petrologic point of view, to the Nisyros magma. The volcanic rocks of Nisyros and of its neighbouring minor islands as well as the volcanics of the coeval volcanoes of the South Aegean Sea arc (Aegina, Milos, Santorini, etc.) belong to a typical orogenic calc-alkaline series (from basic andesites through andesites-dacites-rhyodacites to strongly silicic rhyolites) with normal K2O contents. The potassium contents of these rocks are compatible with the depth of 150 km (as inferred from geophysical data) for the inclined seismic zone underneath the active volcanic arc. The existence of a top-caldera as well as the occurrence of a huge amount of xenoliths (hornblende-rich cumulates and contact-metamorphic calcareous rock derivatives) suggest the presence of a magma chamber at a relatively shallow depth beneath the volcano. The rhyolitic obsidians of Yali can be considered as residual liquids from the Nisyros rhyodacites, thus representing the end-members of a fractionation process. Volcanological and petrological arguments are in favour of fractional crystallization as the most probable genetic process for the calc-alkaline differentiation series of Nisyros and of its neighbouring minor islands. However, the lack of any rock with a high alumina basalt composition makes it difficult to define exactly the nature of the parent magma. According to recent geophysical data, continental collision is already in progress at the Hellenic trench. Therefore, Nisyros and the other active volcanoes of the South Aegean Sea arc are approaching the senile stage. What would follow could be a transition to shoshonitic magmatism as a consequence of the deepening of the lithospheric slab under the Aegean microplate. The limited extension and the relatively short-lived calc-alkaline activity of the South Aegean Sea arc could be related to the particular geodynamic pattern of the Mediterranean area which is characterized by a microplates mosaic between the two converging African and Eurasian major plates.  相似文献   

    11.
    Rapid decompression experiments on natural volcanic rocks mimick explosive eruptions. Fragment size distributions (FSD) of such experimentally generated pyroclasts are investigated using fractal geometry. The fractal dimension of fragmentation, D, of FSD is measured for samples from Unzen (Japan) and Popocatépetl (Mexico) volcanoes.Results show that: (i) FSD are fractal and can be quantified by measuring D values; (ii) D increases linearly with potential energy for fragmentation (PEF) and, thus, with increasing applied pressure; (iii) the rate of increase of D with PEF depends on open porosity: the higher the open porosity, the lower the increase of D with PEF; (iv) at comparable open porosity, samples display a similar behavior for any rock composition.The method proposed here has the potential to become a standard routine to estimate eruptive energy of past and recent eruptions using values of D and open porosity, providing an important step towards volcanic hazard assessment.  相似文献   

    12.
    Ceboruco is a major composite volcano at the western end of the Mexican Volcanic Belt, near the junction between the North American and Pacific plates. The volcano is built from successive eruptions of andesite lavas and pyroclastic rocks, and major eruptions during its history have resulted in the formation of two concentric calderas. The youngest volcanic activity has included the extrusion of dacites within the inner caldera and a voluminous flank eruption of andesite during 1870–72. Fumarolic activity persists to the present day. Chemical analyses show that the lavas are of cale-alkaline type and rangs from andesite (SiO2=58–61%) to acid dacite (SiO2=68%) in composition. The rate of increase of K2O relative to SiO is greater than that in volcanic rocks from the Mexican Volcanic Belt as a whole. This indicates that simple models based on the application of such relationships may not be adequate to explain the petrogenesis of calc-alkaline lavas.  相似文献   

    13.
    Crystallization paths of basaltic (1763 eruption) and hawaiitic (1865 and 1329 eruptions) scoria from Etna were deduced from mineralogy and melt inclusion chemistry. The volatile behaviour was investigated through the study of melt inclusions trapped in the phenocrysts and those of the whole rocks and the matrix glasses. The results from the 1763 eruption point to the early crystallization of olivine Fo 81.7 from a water-rich alkaline basalt, with high Cl (1750–2000 ppm) and S (2100–2400 ppm) concentrations. The hawaiitic melt inclusions trapped in olivine Fo 74, salite and plagioclase are characterized by a decrease in Cl/K2O and S/K2O ratios. In each investigated system there is good correlation between K2O and P2O5. In the whole rocks, Cl ranges from 980 to 1680 ppm, from basaltic to hawaiitic lavas, whereas S (110–136 ppm) remains low. Cl and S behaviour in the 1763 magma suggests an early degassing stage of Cl and S, with CO2 and a water-rich gaseous phase for a pressure close to 100 MPa, consistent with a permanent outgassing at the summit craters of Etna. During the eruption, the sulphur remaining in the hawaiitic liquid is lost, and the degassing of chlorine is limited. Such a degassing model can be extended to the 1865 and 1329a.d. eruptions.  相似文献   

    14.
    Thermodynamics of gas and steam-blast eruptions   总被引:1,自引:1,他引:0  
    Eruptions of gas or steam and non-juvenile debris are common in volcanic and hydrothermal areas. From reports of non-juvenile eruptions or eruptive sequences world-wide, at least three types (or end-members) can be identified: (1) those involving rock and liquid water initially at boiling-point temperatures (boiling-point eruptions); (2) those powered by gas (primarily water vapor) at initial temperatures approaching magmatic (gas eruptions); and (3) those caused by rapid mixing of hot rock and ground- or surface water (mixing eruptions). For these eruption types, the mechanical energy released, final temperatures, liquid water contents and maximum theoretical velocities are compared by assuming that the erupting mixtures of rock and fluid thermally equilibrate, then decompress isentropically from initial, near-surface pressure (10 MPa) to atmospheric pressure. Maximum mechanical energy release is by far greatest for gas eruptions (1.3 MJ/kg of fluid-rock mixture)-about one-half that of an equivalent mass of gunpowder and one-fourth that of TNT. It is somewhat less for mixing eruptions (0.4 MJ/kg), and least for boiling-point eruptions (0.25 MJ/kg). The final water contents of crupted boiling-point mixtures are usually high, producing wet, sloppy deposits. Final erupted mixtures from gas eruptions are nearly always dry, whereas those from mixing eruptions vary from wet to dry. If all the enthalpy released in the eruptions were converted to kinetic energy, the final velocity (v max) of these mixtures could range up to 670 m/s for boiling-point eruptions and 1820 m/s for gas eruptions (highest for high initial pressure and mass fractions of rock (m r) near zero). For mixing eruptions, v max ranges up to 1150 m/s. All observed eruption velocities are less than 400 m/s, largely because (1) most solid material is expelled when m r is high, hence v max is low; (2) observations are made of large blocks the velocities of which may be less than the average for the mixture; (3) heat from solid particles is not efficiently transferred to the fluid during the eruptions; and (4) maximum velocities are reduced by choked flow or friction in the conduit.  相似文献   

    15.
    Analysis of the historical records of Etnas eruptive activity for the past three centuries shows that, after the large 1669 eruption, a period of about 60 years of low-level activity followed. Starting from 1727, explosive activity (strombolian, lava fountaining and subplinian) at the summit crater increased exponentially to the present day. Since 1763, the frequency of flank eruptions also increased and this value remained high until 1960; afterward it further increased sharply. In fact, the number of summit and flank eruptions between 1961 and 2003 was four times greater than that of the pre-1960 period. This long-term trend of escalating activity rules out a pattern of cyclic behaviour of the volcano. We propose instead that the 1670–2003 period most likely characterises a single eruptive cycle which began after the large 1669 eruption and which is still continuing.On the basis of the eruptive style, two distinct types of flank eruptions are recognised: Class A and Class B. Class A eruptions are mostly effusive with associated weak strombolian activity; Class B eruptions are characterised by effusive activity accompanied by intense, long-lasting, strombolian and lava fountaining activity that produces copious tephra fallouts, as during the 2001 and 2002–2003 eruptions. Over the past three centuries, seven Class B eruptions have taken place with vents located mainly on the south-eastern flank, indicating that this sector of the volcano is a preferential zone for the intrusion of volatile-rich magma rising from the deeper region of the Etna plumbing system.Electronic Supplementary Material Supplementary material is available for this article at Editorial responsibility: M. Carroll  相似文献   

    16.
    The monthly values of the southern atmospheric oscillation indices (SOI), the corresponding values of the Nino-3.4 index, the data on the onsets of intense volcanic eruptions from 1870 to 2002, the daily values of the Ap and AE indices and the IMF B z component, and the data on cloudiness and wind characteristics at 14 Antarctic stations have been considered. The beginning of the warm El Nino current is observed after an increase in the amplitude of the Ap magnetic indices, which continues for more than five months. The beginning of the cold period of the La Nina southern atmospheric oscillation is as a rule related to a decrease in Ap. A change in atmospheric transparency caused by volcanic eruptions is often followed by the beginning of the cold period of the southern atmospheric oscillation (ENSO). A change in the wind system in the Antarctic Regions, related to a change in the temperature balance caused by variations in the solar wind parameters in the winter season, promotes a short-term disturbance of the circumpolar vortex and the beginning of the El Nino warm period.  相似文献   

    17.
    In autumn of 1966 on the northern slope of Kliuchevskoy volcano a chain of new adventive craters broke out at the height of about 2200 m. Eighty-four hours before the beginning of the eruption a swarm of preliminary volcanic earthquakes had appeared. The number of preliminary shocks was 457 with total energy of 4 × 1017 erg. With the beginning of the lava flow the earthquakes stopped and a continuous volcanic tremor appeared. The total energy of volcanic tremor amounts to 1016 erg. During the eruption numerous explosive earthquakes with the energy of 1015–1016 erg were recorded and besides the microbarograph of the Volcanostation recorded 393 explosions with an energy more than 1013 erg and their total energy was equal to 1017 erg. All together it has been formed 8 explosive craters and the lowest 9th crater was effusive. The slag cone was formed round this effusive crater, the lava effusion of basaltic-andesite composition (52,5% SiO2) tooke place from the lava boccas at the cone base and from the crater. The lava flow covered a distance of 10 km along the valley of the Sopochnoy river and descended to a height of about 800 m. The lava flow velocity at the outflow reached 800 m/hr, the lava temperature was 1050°C. The effused lava volume amounts to 0.1 km3. The eruption stopped on December 25–26, 1966.  相似文献   

    18.
    The concept of a time-depth correlation between tectonic earthquakes at depth beneath some volcanoes, and their eruptions, developed by the author since 1962, has been confirmed by new observations and successful prediction of renewed volcanic activity in New Zealand.Regular earthquake migrations are observed along the Benioff zone, and volcanic eruptions are found to be related to these seismic migrations beneath the volcanoes, as follows:
    Therefore, in island arcs and continental margins, volcanic activity is the result of two processes occurring beneath the volcanoes: (1) a “tectonic process”, a migration of strain release along the downgoing lithosphere, of which the earthquakes are the manifestation; (2) a “magmatic process”, a relatively fast vertical ascent of magmatic material from the deep root of the volcano, where the observed shocks may be the starting signal from this level.The rate of migration of tectonic earthquakes increases with depth in the upper mantle.An empirical time relationship between the earthquakes occurring at depth beneath a volcano and its eruptions, has been successfully tested for renewed activity at White Island in New Zealand, over the period 1977–1978.  相似文献   

    19.
    Agrigan is the tallest (965 m a.s.l.) and largest (44 km2) of the volcanoes of the northern Mariana Islands. Its slopes are asymmetric to the east; a small caldera (4 km2) dominates the interior. The volcanic edifice has been disrupted along three sets of faults: 1) exterior slump faults, 2) radial faults, and 3) interior faults related to caldera-collapse. The rocks of the volcano are characterized by porphyritic clinopyroxene-olivine-plagioclase basalts and subordinate andesites. Cumulate xenoliths composed of Fo81, An95 and diopside are common in the basalts. Development of the volcano began with 3–4 km of submarine growth. The earliest recognizable flows are the result of fissural Hawaiian- and Strombolian-type eruptions. These were followed by the eruption of more viscous lavas from above the present summit. Flank eruptions of basalt and andesite preceded voluminous outpourings of andesitic pyroclastics contemporaneous with caldera-collapse. Subsequent magmatic resurgence is localized along a N10E rift zone. Violent ejection of lapilli and ash occurred in 1917.  相似文献   

    20.
    The size and frequency of the largest explosive eruptions on Earth   总被引:4,自引:2,他引:2  
    A compilation and analysis of the size and frequency of the largest known explosive eruptions on Earth are presented. The largest explosive events are defined to be those eruptions yielding greater than 1015 kg of products (>150 times the mass of the 1991 eruption of Mt. Pinatubo). This includes all known eruptions with a volcanic explosivity index (VEI) of 8. A total of 47 such events, ranging in age from Ordovician to Pleistocene, are identified, of which 42 eruptions are known from the past 36 Ma. A logarithmic magnitude scale of eruption size is applied, based on erupted mass, to these events. On this scale, 46 eruptions >1015 kg are defined to be of magnitude M8. There is one M9 event known so far, the Fish Canyon Tuff, with an erupted mass of >1016 kg and a magnitude of 9.2. Analysis of this dataset indicates that eruptions of size M8 and larger have occurred with a minimum frequency of 1.4 events/Ma in two pulses over the past 36 Ma. On the basis of the activity during the past 13.5 Ma, there is at least a 75% probability of a M8 eruption (>1015 kg) occurring within the next 1 Ma. There is a 1% chance of an eruption of this scale in the next 460–7,200 years. While the effect of any individual M8 or larger eruption is considerable, the time-averaged impact (i.e., erupted mass×frequency) of the very largest eruptions is small, due to their rarity. The long-term, time-averaged erupted mass flux from magnitude 8 and 9 eruptions is ~10–100 times less than for M7 eruptions; the time-averaged mass eruption rate from M7 eruptions is 9,500 kg s–1, whereas for M8 and M9 eruptions it is ~70–1,000 kg s–1. Comparison of the energy release by volcanic eruptions with that due to asteroid impacts suggests that on timescales of <100,000 years, explosive volcanic eruptions are considerably more frequent than impacts of similar energy yield. This has important implications for understanding the risk of extreme events.Editorial responsibility: R. Cioni  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号