首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

The measurement of radiation fluxes suffers from inaccuracies at low solar elevations and this poses a problem for determining the snow albedo at high latitudes. From the data of Resolute, NWT, three situations were observed: (1) an often‐reported situation when albedo decreases with increasing solar elevation, (2) an inverse situation when albedo increases with increasing solar elevation and (3) no obvious relationship. There were also cases when albedo exceeded 100%. The possible causes for such anomalous conditions or for erroneous albedos include instrument response deviating from the cosine law, instrument tilt, sensing of the sun by the inverted pyranometer and change in the spectral quality of incoming radiation with changing solar height. However, omission of the radiation values measured during the period of low solar elevation will not seriously affect the prediction of snowmelt. In this note, we have identified the anomalies and suggested possible causes; but further investigations are required to verify the causative mechanisms.  相似文献   

2.
Abstract

A three‐component (isotropic, circumsolar and horizon‐brightening) model of the angular distribution of sky (short‐wave) radiance has been tested and validated against a data base of measured sky radiance. The data base encompasses cloud cover 0.0 to 1.0 and solar zenith angles 30 to 80°. Empirical constants have been derived for the model enabling the prediction of sky radiances for any sky condition.  相似文献   

3.
Abstract

Cloudless‐sky solar fluxes calculated by the radiative transfer algorithm used in the Canadian Climate Centre's general circulation climate model are compared with measurements of upwelling radiation at the top of the atmosphere (TOA) and downwelling radiation at the surface. The 12‐layer model partitions the solar spectrum into two broad wavebands (0.25–0.68 and 0.68–4.00 μm). The comparison utilized TOA fluxes estimated from Nimbus‐ 7 measurements and measured downwelling fluxes at the surface for Kalgoorlie, West Australia, and downwelling fluxes at the surface for Woodbridge, Ontario. Model estimates and measurements agreed to within experimental error for most solar zenith angles. Estimates improved, especially at Woodbridge, when aerosol effects were included. The mean bias error was less than 4% for surface irradiance and less than 6% for upwelling TOA irradiance, which produces a TOA albedo error of about 0.01.  相似文献   

4.
Surface solar radiation measurements have been made at many meteorological sites for long periods. These data potentially provide higher temporal resolution cloud amount information than traditional estimations of cloud amount recorded in eighths of the sky obscured (oktas). To utilise existing solar radiation datasets for this, two quantities are derived from the surface measurements of global (G) and diffuse (D) solar irradiance, and top of atmosphere solar irradiance (E) — the Diffuse Fraction (DF = D/G) and the Opaqueness (Op = 1 - G/E). These are compared with subjective cloud observations made at Reading daily during 1997 to 2006. This shows that DF measurements are sensitive to cloud amount, particularly for low and moderate cloud coverage. Complimentary information is available in Op, which is particularly sensitive to cloud amount in moderate to overcast cloud coverage. In overcast conditions, DF = 1, during which Op provides a measure of overcast cloud thickness. As well as cloud amount, the variability in DF and Op provides a basis for discriminating between cumuliform and stratiform cloud: large variability indicates convective cloud whereas only small variability occurs under stratiform cloud.  相似文献   

5.
Abstract

The sensitivity of the annual cycle of ice cover in Baffin Bay to short‐wave radiation is investigated. The Princeton Ocean Model (POM) is used and is coupled with a multi‐category, dynamic‐thermodynamic sea‐ice model in which the surface energy balance governs the growth rates of ice of varying thickness. During spring and summer the short‐wave radiation flux dominates other surface heat fluxes and thus has the greatest effect on the ice melt. The sensitivity of model results to short‐wave radiation is tested using several, commonly used, shortwave parameterizations under climatological, as well as short‐term, atmospheric forcing. The focus of this paper is short‐term and annual variability. It is shown that simulated ice cover is sensitive to the short‐wave radiation formulation during the melting phase. For the Baffin Bay simulation, the differences in the resulting ice area and volume, integrated from May to November, can be as large as 45% and 70%, respectively. The parameterization of the effect of cloud cover on the short‐wave radiation can result in the sea‐ice area and volume changes reaching 20% and 30%, respectively. The variation of the cloud amount represents cloud data error, and has a relatively small effect (less then ±4%) on the simulated ice conditions. This is due to the fact that the effect of cloud cover on the short‐wave radiation flux is largely compensated for by its effect on the net near‐surface long‐wave radiation flux.  相似文献   

6.
Abstract

Short‐ and long‐wave sky radiances measured with an all‐sky automatic recording radiometer are used to infer the sky cloud‐cover conditions at 10‐min intervals (night) and 20‐min intervals (day). During the day a simple net short‐wave detector provides supplementary data and can be employed as a clear‐sky indicator. This system of cloud detection is controlled by a PET microcomputer and provides a basis for the automatic computer programmed estimation of cloud cover.  相似文献   

7.
Abstract

This study reports on tower measurements from the intertidal zone taken during the ice‐free period between August 1 and September 20, 1985. Sea and air temperatures showed ranges of 8 and 14°C, respectively, and both were colder during onshore than during offshore winds. Onshore winds were associated with a nearly saturated atmosphere whereas offshore ones were quite dry. Surface albedo was twice as great for low tide as for high tide. The ratio net/solar radiation was 13% less at low tide owing to both the larger albedo and the stronger long‐wave radiation loss. Heat fluxes into the bottom sediments were small with net gains in August and net losses in September. During the day, heat storage in the water was large and positive. This occurred even with the tide out, when the ponded water continued to warm. At night the water gave up heat, both for low and high tide, and especially late in the season. The latent heat flux was always positive and was largest by day during low tide and by night during high tide. The sensible heat flux was positive for onshore winds and often negative for offshore winds. Under all wind directions heat storage constituted 60% of net radiation, the latent heat flux 35% and the remainder was proportioned equally between the sensible heat flux and the flux into the bottom sediments.  相似文献   

8.
Measurements of broadband global solar and ultraviolet radiation (UV-KZ) by a Kipp & Zonen radiometer from 2005 to 2011 at three sites in the background region over Northeast China were used to investigate the characteristics of the temporal variability of UV-KZ radiation in Northeast China. The highest annual mean daily values of UV-KZ (0.53 MJ m?2 d?1) were observed at Sanjiang and Changbai Mountain. The lowest value (0.49 MJ m?2 d?1) was measured at Hailun due to the high aerosol burden and the long path of solar radiation. The diurnal variation in UV-KZ radiation on four clear days near the equinoxes and solstices exhibited bell-shaped curves, with a maximum at approximately noon. There was little difference in UV-KZ radiation between representative spring and autumn days except that the amount of UV-KZ radiation during the spring was higher than that during the autumn. The relationship between the maximum values of UV-KZ radiation and clearness index can be accurately demonstrated with three polynomial equations. An empirical estimation model suited for all weather conditions was developed using measurements collected at Hailun. The slope of the linear regression between the measured and modeled UV-KZ radiation was approximately 1, the intercept of the linear regression equation was near zero, and the relative error of the equation was less than 8.5 %. These validation results suggest that this model can accurately estimate the UV-KZ radiation based on more conventional measured radiation data. The empirical estimation model can also serve as a valuable method for the study of ecological processes in other regions.  相似文献   

9.
Abstract

Climatological characteristics of the low‐level tropospheric temperature inversion in the Canadian Arctic are examined using 10–40 year records of upper‐air meteorological data. Inversions at the northern sites are primarily surface‐based in winter, and elevated from mid‐spring through summer. At the southern sites, a bimodal pattern is observed with surface‐based inversions occurring during late summer, as well as during winter. From comparisons of our results with other published climatologies, it appears that this bimodal pattern reflects interactions between short‐ and long‐wave radiation, synoptic activity and snowmelt. Maxima in inversion depth and temperature difference across the inversion layer occur in February and March; minima occur in August and September. The annual progression of inversion characteristics closely follows the annual pattern of clear‐sky percentages, reflecting the controlling influence of cloud and clear‐sky radiative forcings on the inversion layer.  相似文献   

10.
天津太阳总辐射资料的均一性分析   总被引:3,自引:1,他引:2  
采用天津地区1959~2012年太阳总辐射年、月总量资料、日照百分率及其台站元数据,通过惩罚最大t检验和顺序算法对太阳总辐射资料的均一性进行了检验。结果表明:辐射观测仪器的变更造成了太阳总辐射序列产生不连续,突变年代主要发生在1968年、1972年、1990年3次仪器变更年份或其附近年份,而迁站没有造成显著影响。同时,顺序算法检验发现,天津地区太阳总辐射序列在20世纪80年代初(1983年前后)出现了趋势减少的渐变,并且在月总量序列的检验中,仪器变更的非均一性影响也体现在其中。因此,在太阳辐射的研究工作中,尊重原始观测数据的同时,还要充分考虑数据的均一性,剔除非均一性因素,以此确保气候变化分析结果的相对真实。  相似文献   

11.
Abstract

Global precipitation estimates using satellite data are derived using difference fields of outgoing long‐wave radiation (OLR). The difference fields consist of clear OLR minus cloudy OLR, which is a measure of long‐wave cloud radiative forcing at the top of the earth‐atmosphere system; and clear daytime OLR minus clear night‐time OLR, which is a measure of the diurnal variation of surface heating. All geophysical parameters used to compute OLR are derived from an analysis of the HIRS2/MSU sounding data. The derived global precipitation estimates show good agreement with collocated raingauge data over land. The correlation coefficient between the precipitation estimates derived using difference fields of OLR and raingauge data over land is about 0.65 for the FGGEyear. The correlation coefficient between precipitation estimates derived using difference fields of OLR and the GOES Precipitation Index (GPI) fraction is about 0.914 from 30°S to 30°N for July 1983, and between the precipitation estimates derived using difference fields of OLR and the difference field of atmospheric reflectance is about 0.86.

Using one set of coefficients, global precipitation fields are derived for each 10‐day period and each month of the FGGE year (from December 1978 to November 1979). These fields contain rich information on seasonal variations.  相似文献   

12.
Abstract

Half‐hourly measurements of soil surface heat flux density (G0 ), solar irradiance (S), and the surface energy balance components were made at Agassiz, b.c., in the spring and early summer of 1978 at two adjacent bare‐soil sites, one of which was culti‐packed while the other was disc‐harrowed. G0 was calculated using the null‐alignment procedure from half‐hourly measurements of soil temperature at 30 depths down to 1 m, and volumetric soil heat capacity calculated from measurements of bulk density, organic matter fraction, and moisture content. The latent and sensible heat flux densities were measured using the energy balance/Bowen ratio technique.

It was found that both the daily averages and diurnal variations of Go at each site were not affected as the soil surface dried, despite reductions in evaporation rate of as much as 50% at the culti‐packed site and 75% at the disc‐harrowed site on the clear dry‐soil days. Diurnal variations of G0 at the disc‐harrowed site were about 25% less than at the culti‐packed site, although daily averages were similar at both sites. Daily and daytime averages of G0 at each site were linear functions of S alone, or functions of net radiation and some measure of near‐surface soil water content. Night‐time averages of G0 at each site were linear functions of a cloudiness ratio equal to the fraction received of the clear‐day S.  相似文献   

13.
Abstract

Temporal variations of the transmission coefficient and aerosol optical depth of the atmosphere are considered using multi‐year observations at the Soviet polar stations in the Arctic. The contribution of atmospheric aerosol to the total extinction of solar radiation is estimated. A decreasing trend of atmospheric transparency due to the increase of aerosol contributing to the extinction of solar radiation during the last 25–30 years is noted. Estimates of the atmospheric aerosol influence on the incoming solar radiation indicate that a further systematic decrease of the transmission coefficient may lead to climatic changes of direct and total radiation in most polluted areas of the Arctic.  相似文献   

14.
Abstract

The first substantial radiative effects of the El Chichón volcanic cloud were observed in Fairbanks in the winter of 1982/83. Winter is the time when stratospheric temperatures can vary widely owing to sudden stratospheric warmings, and interannual variations are large. Mean monthly temperatures of the stratosphere were analysed for the 50‐, 40‐, 30‐, 25‐, 20‐, 15‐, and 10‐mb levels, with the greatest density of the volcanic cloud expected to be around the 20‐mb level. For the four winter months, December 1982 to March 1983, an increase in temperature was observed. This increase was not only observed in Fairbanks, but also for two other stations (McGrath and Anchorage) close by, for which we also analysed the stratospheric temperatures.

Further, the interdiurnal variation of temperature (the radiosonde ascents are made at 0200 and 1400 local time) showed marked and significant increases for all three stations. This can be explained by the fact that during daytime the volcanic cloud is warmed by absorption of solar radiation, while at night no substantial temperature effect for this layer was detected.  相似文献   

15.
山东禹城紫外辐射变化特征及其估测方程的建立   总被引:1,自引:0,他引:1  
刘慧  胡波  王跃思  王式功 《大气科学》2015,39(3):503-512
本文对2005~2011年山东禹城地区观测得到的紫外辐射的时间变化特征及紫外辐射与总辐射比值的变化特征进行了分析, 并结合气温、降水和露点温度资料建立了禹城地区的紫外辐射估测方程。结果表明:紫外辐射日累计值的变化范围为0.10~1.20 MJ m-2 d-1, 年平均值为0.468 MJ m-2 d-1;紫外辐射日、季节变化规律与总辐射一致, 季节变化都表现为冬季小夏季大, 最小值出现在1月, 最大值出现在6月, 日变化则呈现早晚小中午大的特征;紫外辐射与总辐射的比值范围为0.023~0.046, 其季节变化特征也是冬季小夏季大, 该比值随晴空指数的增大而减小, 而在晴空指数大于0.5时比较稳定。利用温度日较差(日最高气温与最低气温的差值)建立了紫外辐射估测方程, 决定系数R2达0.80, 平均相对误差为0.19, 估测紫外线等级与实测紫外线等级相差不大于1的数据占95%, 该方法可以较好地进行紫外辐射等级的估测。  相似文献   

16.
A simple form of solar radiation model was analysed for cloudless days for Goose, Nfld., Port Hardy, B.C., and Edmonton, Alta. Performance for daily values of total solar radiation was satisfactory; however, data for Goose indicated that the model over‐and under‐estimated the direct and diffuse components of solar radiation, respectively. Modifications, including solving for an aerosol parameter k and substituting 0.6 forward scattering instead of the more commonly used 0.5, improved model performance for direct and diffuse radiation.  相似文献   

17.
A correlation of solar radiation i n tropical countries has been established based on parameters more usually measured than solar radiation itself. The following empirical relationships between solar radiation Q, ratio of hours of bright sunshine to twelve hours, S, and relative humidity of the environment, R, have been obtained by statistical methods applied to the available data:

Q = 490S0.357R‐0.262

Q = 460e0.607(S‐R)

Q = 464 + 265S ‐ 248R

with limits on R and S as defined in the text. It is found that these equations give better estimates of solar radiation than the single‐parameter relationship like

Q = a + bS

where a and b are statistical coefficients.  相似文献   

18.
Abstract

Measurement of net radiation at sea is very difficult whereas, the measurement of global solar radiation or total downward radiation is much less complicated. Hence the dependencies of net radiation on global solar radiation and total downward radiation are studied from hourly Canadian GATE data.

Results show that net radiation can be estimated from measurements of incoming solar radiation or total downward radiation by empirical formulae to an accuracy comparable to that of measurement. However, these formulae must be established from measurements.  相似文献   

19.
Abstract

Irradiance data obtained over a long period at Vancouver and Toronto, Canada, and covering a range of slope orientations are used to validate four models that estimate either the direct or diffuse solar irradiances for inclined surfaces. Evaluations are initially performed for daily and hourly time integrals. A simple parametrization of the diffuse sky radiance dramatically improves estimates of the diffuse irradiance. Both of the direct irradiance models have difficulty accommodating the diurnal characteristics of the irradiance, and consequently modelling errors are substantial for slopes not directly facing the equator. For equator‐facing slopes a saving in data requirements and computational effort through the use of daily integrals can be achieved with little additional error. A substantial portion of the differences between the measured and estimated irradiances is non‐systematic in nature and is therefore reduced through temporal averaging.  相似文献   

20.
In this study,the clear sky hourly global and net solar irradiances at the surface determined using SUNFLUX,a simple parameterization scheme,for three stations(Gaize,Naqu,and Lhasa) on the Tibetan Plateau were evaluated against observation data.Our modeled results agree well with observations.The correlation coefficients between modeled and observed values were > 0.99 for all three stations.The relative error of modeled results,in average was < 7%,and the root-mean-square variance was < 27 W m 2.The solar irradiances in the radiation model were slightly overestimated compared with observation data;there were at least two likely causes.First,the radiative effects of aerosols were not included in the radiation model.Second,solar irradiances determined by thermopile pyranometers include a thermal offset error that causes solar radiation to be slightly underestimated.The solar radiation absorbed by the ozone and water vapor was estimated.The results show that monthly mean solar radiation absorbed by the ozone is < 2% of the global solar radiation(< 14 W m 2).Solar radiation absorbed by water vapor is stronger in summer than in winter.The maximum amount of monthly mean solar radiation absorbed by water vapor can be up to 13% of the global solar radiation(95 W m 2).This indicates that water vapor measurements with high precision are very important for precise determination of solar radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号