首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On 19 March 2013, a tremor shook the surface of Polkowice town where the Rudna Mine is located. This event, of ML = 4.2, was the third most powerful seismic event recorded in the Legnica G?ogów Copper District (LGCD). Inhabitants of the area reported that the felt tremor was bigger and lasted longer than any other ones felt in the last couple of years. Analysis of spectral parameters of the records from in-mine seismic system and surface LUMINEOS network along with broadband station KSP record were carried out. The location of the event was close to the Rudna G?ówna Fault zone; the nodal planes orientations determined with two different approaches were almost parallel to the strike of the fault. The mechanism solutions were also obtained as Full Moment Tensor from P-wave amplitude pulses of underground records and waveform inversion of surface network seismograms. The results from the seismic analysis along with macroseismic survey and observed effects from the destroyed part of the mining panel indicate that the mechanism of the event was complex rupture initiated as thrust faulting on an inactive tectonic normal fault zone. The results confirm that the fault zones are the areas of higher risk, even in case of carefully taken mining operations.  相似文献   

2.
On October 27, 2004, a moderate size earthquake occurred in the Vrancea seismogenic region (Romania). The Vrancea seismic zone is an area of concentrated seismicity at intermediate depths beneath the bending area of the southeastern Carpathians. The 2004 M w?=?6 Vrancea subcrustal earthquake is the largest seismic event recorded in Romania since the 1990 earthquakes. With a maximum macroseismic intensity of VII Medvedev–Sponheuer–Kárník (MSK-64) scale, the seismic event was felt to a distance of 600 km from the epicentre. This earthquake caused no serious damage and human injuries. The main purpose of this paper is to present the macroseismic map of the earthquake based on the MSK-64 intensity scale. After the evaluation of the macroseismic effects of this earthquake, an intensity dataset has been obtained for 475 sites in the Romanian territory. Also, the maximum horizontal accelerations recorded in the area by the K2 network are compared to the intensity values.  相似文献   

3.
A sequence of 98 teleseismically recorded earthquakes occurred off the east coast of Kamchatka at depths between 10-90 km around latitude 52.5°N and longitude 160°E on May 16–23, 2013. The swarm occurred along the northern limit of the rupture area of the 1952 Mw 9.0 great Kamchatka earthquake, the fifth largest earthquake in the history of seismic observations. On May 24, 2013 the strongest deep earthquake ever recorded of Mw 8.3 occurred beneath the Sea of Okhotsk at a depth of 610 km in the Pacific slab of the Kamchatka subduction zone, becoming the northernmost deep earthquake in the region. The deep Mw 8.3 earthquake occurred down-dip of the shallow swarm in a transition zone between the southern deep and northern shallow segments of the Pacific slab. Several deep aftershocks followed, covering a large, laterally elongated part of the slab. We suppose that the two described earthquake sequences, the May 16–23 shallow earthquake swarm and the May 24–28 deep mainshock-aftershock series, represent a single tectonic event in the Pacific slab having distinct properties at different depth levels. A low-angle underthrusting of the shallow part of the slab recorded by the shallow earthquake swarm activated the deep part; this process induced the deep mainshock-aftershock series only three days after the swarm. The domain of the subducting slab activated by the May 2013 earthquake occurrence was extraordinarily large both down-dip and along-strike.  相似文献   

4.
A disastrous earthquake with a magnitude M S = 8.0 (M W = 7.9), in China called “the 5.12 Wenchuan earthquake,” occurred on May 12, 2008, in Sichuan province on the border between the Sino-Tibetan Mountains and the Sichuan depression. The instrumental epicenter was registered in the southeastern part of Wenchuan county, and the hypocenter depth was 14 km. As the strongest and most destructive earthquake within mainland China, it caused numerous human losses and destruction of buildings and infrastructure. The seismic effect from the main shock and aftershocks was felt in many counties, towns, and villages, though Sichuan province suffered the most. The maximum intensity of the shocks was estimated at 11 degrees, according to the Chinese macroseismic scale. In the process of source opening, from the southern part of Wenchuan county to the vicinities of Quingchuan, a seismic fault system with a total length up to 240 km out-cropped on the earth’s surface, confined to the Longmenshan fault belt. The seismic fault system disturbed the original ground, resulting in the collapse or damage to various constructions, such as buildings, homes, bridges, roads, etc. Fault offsets had a dextral strike-slip and thrust kinematic combination. The earthquake generated several tens of thousands of landslides, rockfalls, and debris flows. Many dammed ponds appeared in the epicentral zone due to the activation of landslides. Thus, the geological effects turned out to be the most destructive factor in this case. At the same time, the seismic intensity of surface shaking was abnormally low even in direct proximity to the seismic fault system. Usually it was no more than 7–8 degrees. This macroseismic phenomenon may turn out to be rather typical for many major earthquakes.  相似文献   

5.
This study analyses the performance of residential buildings in the town of Hveragerði in South Iceland during the 29 May 2008 Mw 6.3 Ölfus Earthquake. The earthquake occurred very close to the town, approximately 3–4 km from it. Ground shaking caused by the earthquake was recorded by a dense strong-motion array in the town. The array provided high-quality three-component ground acceleration data which is used to quantify a hazard scenario. In addition, surveys conducted in the town in the aftermath of the earthquake have provided information on macroseismic intensity at various locations in the town. Detailed information regarding the building stock in the town is collected, and their seismic vulnerability models are created by using building damage data obtained from the June 2000 South Iceland earthquakes. Damage to buildings are then simulated by using the scenario hazard and vulnerability models. Damage estimates were also obtained by conducting a survey. Simulated damage based on the scenario macroseismic intensity is found to be similar to damage estimated from survey data. The buildings performed very well during the earthquake—damage suffered was only 5 % of the insured value on the average. Correlation between actual damage and recorded ground-motion parameters is found to be statistically insignificant. No significant correlation of damage was observed, even with macroseismic intensity. Whereas significant correlation was observed between peak ground velocity and macroseismic intensity, neither of them appear to be good indicators of damage to buildings in the study area. This lack of correlation is partly due to good seismic capacity of buildings and partly due to the ordinal nature of macroseismic intensity scale. Consistent with experience from many past earthquakes, the survey results indicate that seismic risk in South Iceland is not so much due to collapse of buildings but rather due to damage to non-structural components and building contents.  相似文献   

6.
7.
In many countries such as Spain earthquake databases still mainly comprise macroseismic data from felt effects. The full exploit of this information is of basic importance for seismic risk assessment and emergency planning, given the strict link between macroseismic intensity and damage. A probabilistic procedure specifically developed to handle macroseismic data, mostly relying on site information and seismogenic-source free, has been applied to evaluate seismic hazard in SE-Spain (Alicante-Murcia region). Present seismicity is moderate-low with largest magnitudes slightly over Mw5.0. The historical record includes very destructive earthquakes, maximum EMS98 intensities reaching IX–X and X in the nineteenth century (e.g., Torrevieja 1829 earthquake). Very recently, two events in the area on 11 May 2011 (Mw4.5, Mw5.2) killed nine people, injured 300, and produced important damage in the city of Lorca. Regional hazard maps for the area together with specific hazard curves at selected localities are obtained. Results are compared with the maximum observed intensities in the period 1300–2012, and with the values in the seismic hazard map from the Spanish Building Code in force. In general, the maximum felt intensity values are closer to the hazard values calculated for 2 % probability of exceedance in 50 years, using felt and expected intensity. The intensity-based probabilistic hazard maps obtained through the applied approach reduce the inherent smoothing of those based on standard probabilistic seismic hazard assessment approaches for the region, allowing identifying possible over- or sub-estimates of site hazard values, providing very valuable information for risk reduction strategies or for future updates of the building code hazard maps.  相似文献   

8.
By monitoring the variations in the subsoil radon concentration in one of the geodynamically active zones of the Moscow syneclise, the effects are detected of changes in the stress-strain state of the Earth’s crust which predetermined the development of the processes that caused the deep-focus earthquake in the Sea of Okhotsk on May 24, 2013. The joint analysis of subsoil radon variations and neutrino flow variations measured in the same structural–geodynamical conditions support the previous data on the global character of the processes contributing to the preparation of strong and catastrophic earthquakes.  相似文献   

9.
The densely populated city of Thessaloniki (Northern Greece) is situated in~the vicinity of active seismic faults, capable of producing moderate to strong earthquakes. The city has been severely affected by such events several times during the last 15 centuries. The most recent event occurred on 20 June 1978 (M6.5) in the Mygdonian graben, with an epicentral distance of about 30 km, causing extended damage in the city, with macroseismic intensities between MSK V+ and VIII+. The majority of buildings affected by the earthquake were of reinforced-concrete typology, typical to many southern European metropolitan areas. The source properties of the normal-faulting causative event and the source-to-city propagation path are well known from previous studies. The soil structure under the metropolitan area of Thessaloniki is assigned NEHRP categories B, C, D on the basis of geotechnical and geologic information and single-station ambient-noise measurements. A finite source model and various rupture scenarios of the June 1978 earthquake are used to perform forward stochastic modeling of strong ground motion in terms of peak ground and spectral acceleration. Rock motion is assessed under the city and it is transferred to the surface in accordance with the respective soil category. A GIS tool is employed to compare the estimated strong-motion parameters with the observed detailed damage pattern induced by the 1978 earthquake. For selected natural periods, a satisfactory correlation is established between macroseismic intensity and peak ground and spectral acceleration, thus encouraging the application of stochastic modeling for generating realistic ground-shaking scenarios in metropolitan areas.  相似文献   

10.
The year 2017 marks the 350th anniversary of the great 6 April 1667 Dubrovnik earthquake that caused extensive damage in a wide area around this old Dalmatian town (today in Croatia). This article presents the effects of the 1667 earthquake and examines the first few weeks following the catastrophe. Macroseismic data are reanalysed, for the first time available data are collected of the damage on the territory of Bosnia and Herzegovina (the territory which was in the 17th century under the Ottoman reign) and a new map of macroseismic intensities is presented. This map is in good agreement with the macroseismic field modelled using the SAF (Strong Attenuation at Fault Zones) model. We highlight some problems in the collection of macroseismic information, which are mainly a consequence of the complex political situation in the areas affected by the earthquake. The 1667 earthquake heavily impacted Dubrovnik and the Dalmatian coast. This event is thought to be the biggest one in the history of Dalmatia and practically defines seismic hazard in the coastal area of Croatia. For this reason, the main goals in this article are the improvement of the epicenter location and the determination of the moment magnitude.  相似文献   

11.
Algiers city is located in a seismogenic zone. To reduce the impact of seismic risk in this Capital city, a realistic modelling of the seismic ground motion (SGM) is conducted by using the hybrid method that combines the finite differences method and the modal summation. For this purpose, a complete database of geological, geophysical and earthquake data is constructed. A critical re-appraisal of the seismicity of the zone [2.25°E–3.50°E, 36.50°N–37.00°N] is performed and an earthquake list, for the period 1359–2002, is compiled. The analysis of existing and newly retrieved macroseismic information allowed the definition of earthquake parameters of macroseismic events for which a degree of reliability is assigned. Geological cross sections have been built up to model the SGM in the city, caused by the 1989 Mont-Chenoua and the 1924 Douéra earthquakes. Synthetic seismograms and response spectral ratio is produced for Algiers, and they show that the soft sediments in Algiers centre are responsible of the noticed amplification of the SGM.  相似文献   

12.
A deep-focus (H = 609 km) earthquake with M w = 8.3 occurred in the Sea of Okhotsk on May 24, 2013. This earthquake was felt in Moscow at a distance of about 6500 km from the epicenter but barely felt on the western coast of Kamchatka, which is located within 200 km of the source. In this paper, an attempt is made to discover the probable causes of this phenomenon in the instrumental records of the earthquake. It is most probable that the anomalously high amplitudes in the group of SSS phases, which are observed in the vertical component, appear as the result of their superimposition on the surface waves. Different mechanisms can be suggested to interpret the formation of the observed wave pattern.  相似文献   

13.
14.
发生在孕震区周边地块上的临震预滑和震颤现象,对破坏性地震预测有一定前兆意义,是值得地震学界关注的问题。选取2008年5月12日汶川M_W 7.9地震发生前,临夏和湟源地震台分量应变仪记录与临夏、恩施和西安地震台数字地震仪记录以及临夏和周至地震台深井水位仪记录,分析发现,在临震前数天至数小时,上述各地震台不同学科观测仪器均记录到一些"跃变"和"震颤"震相。文中试图以颗粒物理原理,来认识不同距离、不同台站、不同学科的观测仪器在临震前相近时间段内记录的低频和高频震相,可能是不同地块在临震前发生预滑错动后激发的预滑震相Xp和地下气体在裂隙内流动激发的震颤震相Tp。观测结果表明:2008年5月8日03时至主震发生,各地震台所处地块在相近时段内逐次发生次数不等的预滑错动,其中1—2次较大错动可在噪声背景中被识别;各地震台预滑错动方向指向或背向主震震中。据此认为:汶川M_W7.9地震前,上述各地震台所处地块在不同大小、不同方向的力链驱动下,发生指向或背向主震震中的临震预滑现象。  相似文献   

15.
发生在孕震区周边地块上的临震预滑和震颤现象,对破坏性地震预测有一定前兆意义,是值得地震学界关注的问题。选取2008年5月12日汶川MW 7.9地震发生前,临夏和湟源地震台分量应变仪记录与临夏、恩施和西安地震台数字地震仪记录以及临夏和周至地震台深井水位仪记录,分析发现,在临震前数天至数小时,上述各地震台不同学科观测仪器均记录到一些"跃变"和"震颤"震相。文中试图以颗粒物理原理,来认识不同距离、不同台站、不同学科的观测仪器在临震前相近时间段内记录的低频和高频震相,可能是不同地块在临震前发生预滑错动后激发的预滑震相Xp和地下气体在裂隙内流动激发的震颤震相Tp。观测结果表明:2008年5月8日03时至主震发生,各地震台所处地块在相近时段内逐次发生次数不等的预滑错动,其中1-2次较大错动可在噪声背景中被识别;各地震台预滑错动方向指向或背向主震震中。据此认为:汶川MW 7.9地震前,上述各地震台所处地块在不同大小、不同方向的力链驱动下,发生指向或背向主震震中的临震预滑现象。  相似文献   

16.
An MS 6.4 earthquake occurred in Yangbi, Yunnan province, on May 21, 2021. According to related investigations, the macro-epicenter of the earthquake is 6 km northwest of Yangbi County, and the seismogenic structure is the NW-trending Weixi-Qiaohou fault. The earthquake area is located in the hinterland of the Hengduan Mountains in the northwest of Yunnan province, a region dominated by high and medium-high mountains, with deep canyons and tectonic basins in between. Various geomorphic features are derived from drastic topographic changes and huge geological differences in the earthquake area. There are a variety of buildings in the earthquake-affected zone, including civil and brick-wood structures ones with weak seismic performance, as well as brick-concrete and frame ones with better seismic performance. This paper summarizes and analyzes different characteristics of the earthquake in different geomorphic units through field investigations of different buildings and geological disasters in the affected area. The results show that under the same earthquake intensity, the damage to most buildings (located in slope areas or rooted in weak strata) is amplified by the earthquake. The earthquake has exerted an obvious propagation effect along the direction of the seismogenic structure. Moreover, local ground fissures will aggravate the damage to the buildings even without surface dislocation. Thus, we suggest that attention should be paid to the ground fissures caused by the slope effect. The fissure areas may also be the disaster spot of collapses and landslides in case of a high-magnitude earthquake.  相似文献   

17.
In this work, the macroseismic effects of the Kultuk earthquake (M W = 6.3), which took place on August 27, 2008 in the southwestern closure of the Baikal Lake, are under consideration. The intensity of shocks in inhabited localities located in the epicentral zone reached 7–8 points on the MSK-64 scale. The earthquake was named after the local settlement of Kultuk, which was the mostly damaged area by the earthquake. The considered seismic event caused significant material damage (about 250 million rubles according to preliminary estimates). In inhabited localities of Southern Pribaikalie thousands of cases of damaged ovens and chimneys were registered. Some buildings were highly damaged and, accordingly, they are unfit for further use. The earthquake was the cause of numerous rockslides, rockfalls, and landslides on steep natural and artificial slopes. A macroseismic survey allowed us to establish the asymmetrical distribution of the intensity of shocks relative to the epicenter.  相似文献   

18.
城市建筑群中砖混结构建筑数量众多,抗震性能较弱,在地震中的破损率较高,逐一进行抗震性能测定难度巨大。本文提出基于常时微动观测的城市砖混结构建筑群抗震性能快速评价方法,提供初步的决策参考建议,适用于在大范围城市建筑群中快捷地筛选易损建筑。选取呼和浩特市区331栋砖混结构建筑物进行振动特性分析,分别建立适用于研究区域建筑物长轴和短轴平均共振周期与建筑物楼层数的回归关系,作为衡量研究区砖混结构建筑群抗震能力的快速判断标准。筛选出82栋抗震能力较弱的易损建筑,其中24栋为重点关注对象,主要分布于人口较为密集的老旧城区,多为4层(含)以上住宅类型,建筑年代较为久远,具有面临潜在地震危害的风险,为下一步有针对性地进行抗震加固和防震减灾工作提供参考依据。  相似文献   

19.
This paper presents a reassessment of the seismic intensity estimated for the 2011 Lorca (southeastern Spain) earthquake based on detailed vulnerability data and its comparison with the observed damage. Building and urban data are gathered in selected areas during a field campaign and are completed with office work. The significance of vulnerability modifiers in the final vulnerability distribution is analyzed, and their relation with observed damage trends is explored. A direct application of the vulnerability modifiers is not capable of reproducing the observed damage patterns. A significant increase of vulnerability related to the performance of buildings presenting soft story is required to reach a damage distribution consistent with intensity estimates in the study areas. Accordingly, an intensity increase in certain study zones (as compared to other areas of the city of Lorca) is suggested. Although the approach followed in this study is applied in a city of Spain, it can be extrapolated to other areas where detailed vulnerability assessment is feasible and damage data are available.  相似文献   

20.
On Oct. 4th, 1983 the area of Phlegraean Fields, near Naples (Southern Italy) was shaked by an earthquake of magnitude (M L) 4.0 that caused some damage in the town of Pozzuoli and its surroundings. This seismic event was the largest one recorded during the recent (1982–84) inflation episode occurred in the Phlegraean volcanic area, and a detailed macroseismic reconstruction of the event was carried out.Failing macroseismic data on other earthquakes occurred in Phlegraean Fields, the attenuation law of the intensity as a function of the distance as obtained for the Oct. 4th earthquake was compared with those obtained for other volcanic areas in central Italy —i.e., Tolfa, Monte Amiata — in order to check the reliability of the results obtained for Phlegraean Fields.The Blake's model of the earthquake of Oct. 4th, 1983 does not agree with the experimental data because isoseismals contain areas larger than those shown by the model. This result has been interpreted as an effect of energy focusing due to a reflecting layer 6–8 km deep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号