首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 314 毫秒
1.
2.
We have investigated the statistical clustering properties of galaxies by calculating the two-point galaxy correlation function from the optically selected Durham/UKST Galaxy Redshift Survey. This survey is magnitude-limited to b J∼17, contains ∼2500 galaxies sampled at a rate of one-in-three and surveys a ∼4×106 ( h −1 Mpc)3 volume of space. We have empirically determined the optimal method of estimating the two-point correlation function from just such a magnitude-limited survey. Applying our methods to this survey, we find that our redshift-space results agree well with those from previous optical surveys. In particular, we confirm the previously claimed detections of large-scale power out to ∼40 h −1 Mpc scales. We compare with two common models of cosmological structure formation and find that our two-point correlation function has power significantly in excess of the standard cold dark matter model in the 10–30 h −1 Mpc region. We therefore support the observational results of the APM galaxy survey. Given that only the redshift-space clustering can be measured directly, we use standard modelling methods and indirectly estimate the real-space two-point correlation function from the projected two-point correlation function. We then invert this projected correlation function to obtain an estimate of the spatial two-point correlation function in real space. This correlation function in real space has a lower amplitude than that in redshift space, but a steeper slope.  相似文献   

3.
We present a measurement of the cluster X-ray luminosity–temperature ( L – T ) relation out to high redshift ( z ∼0.8). Combined ROSAT PSPC spectra of 91 galaxy clusters detected in the Wide Angle ROSAT Pointed Survey (WARPS) are simultaneously fitted in redshift and luminosity bins. The resulting temperature and luminosity measurements of these bins, which occupy a region of the high-redshift L – T relation not previously sampled, are compared with existing measurements at low redshift in order to constrain the evolution of the L – T relation. We find the best fit to low-redshift ( z <0.2) cluster data, at T >1 keV, to be L ∝ T 3.15±0.06. Our data are consistent with no evolution in the normalization of the L – T relation up to z ∼0.8. Combining our results with ASCA measurements taken from the literature, we find η =0.19±0.38 (for Ω0=1, with 1 σ errors) where L Bol∝(1+ z ) η T 3.15, or η =0.60±0.38 for Ω0=0.3. This lack of evolution is considered in terms of the entropy-driven evolution of clusters. Further implications for cosmological constraints are also discussed.  相似文献   

4.
This is the second paper of a series where we study the clustering of luminous red galaxies (LRG) in the recent spectroscopic Sloan Digital Sky Survey (SDSS) data release, DR6, which has 75 000 LRG covering over  1 Gpc3  h −3  for  0.15 < z < 0.47  . Here, we focus on modelling redshift-space distortions in  ξ(σ, π)  , the two-point correlation in separate line-of-sight and perpendicular directions, at small scales and in the line-of-sight. We show that a simple Kaiser model for the anisotropic two-point correlation function in redshift space, convolved with a distribution of random peculiar velocities with an exponential form, can describe well the correlation of LRG on all scales. We show that to describe with accuracy the so-called 'fingers-of-God' (FOG) elongations in the radial direction, it is necessary to model the scale dependence of both bias b and the pairwise rms peculiar velocity σ12 with the distance. We show how both quantities can be inferred from the  ξ(σ, π)  data. From   r ≃ 10 Mpc  h −1  to   r ≃ 1 Mpc  h −1  , both the bias and σ12 are shown to increase by a factor of 2: from   b = 2  to 4 and from  σ12= 400  to  800 km s−1  . The latter is in good agreement, within a 5 per cent accuracy in the recovered velocities, with direct velocity measurements in dark matter simulations with  Ωm= 0.25  and  σ8= 0.85  .  相似文献   

5.
We present the radial velocities and blue, optical magnitudes for all of the galaxies within the Durham/UKST Galaxy Redshift Survey. This catalogue consists of ∼2500 galaxy redshifts to a limiting apparent magnitude of B J⋍17 mag, covering a ∼1500-deg2 area around the South Galactic Pole. The galaxies in this survey were selected from the Edinburgh/Durham Southern Galaxy Catalogue and were sampled, in order of apparent magnitude, at a rate of one galaxy in every three. The spectroscopy was performed at the 1.2-m UK Schmidt Telescope in Australia using the FLAIR multi-object spectrograph. We show that our radial velocity measurements made with this instrument have an empirical accuracy of ±150 km s−1. The observational techniques and data reduction procedures used in the construction of this survey are also discussed. This survey demonstrates that the UKST can be used to make a three-dimensional map of the large-scale galaxy distribution, via a redshift survey to b J⋍17 mag, over a wide area of the sky.  相似文献   

6.
Redshifts of several galaxies thought to be associated with NGC 326 are determined. The results confirm the presence of a cluster and find a mean redshift of     and a line-of-sight velocity dispersion σ z =599 (+230,−110) km s−1. The velocity dispersion and previously measured X-ray gas temperature of kT ≃1.9 keV are consistent with the cluster σ z kT relation, and NGC 326 is seen to be a slowly moving member of the cluster.  相似文献   

7.
8.
We attempt to put constraints on different cosmological and biasing models by combining the recent clustering results of X-ray sources in the local ( z ≤0.1) and distant Universe ( z ∼1) . To this end we compare the measured angular correlation function for bright (Akylas et al.) and faint (Vikhlinin & Forman) ROSAT X-ray sources respectively with those expected in three spatially flat cosmological models. Taking into account the different functional forms of the bias evolution, we find that there are two cosmological models which match the data well. In particular, low-Ω cosmological models (ΩΛ=1−Ω=0.7) that contain either (i) high σ 8mass=1.13 value with galaxy merging bias, b ( z )∝(1+ z )1.8 or (ii) low σ 8mass=0.9 with non-bias, b ( z ) ≡ 1 best reproduce the AGN clustering results, while τ CDM models with different bias behaviour are ruled out at a high significance level.  相似文献   

9.
The evolution of the abundance of galaxy clusters depends sensitively on the value of the cosmological density parameter, Ω0. Recent ASCA data are used to quantify this evolution as measured by the cluster X-ray temperature function. A χ2 minimization fit to the cumulative temperature function, as well as a maximum-likelihood estimate (which requires additional assumptions about cluster luminosities), leads to the estimate Ω0 ≈ 0.45 ± 0.25 (1σ statistical error). Various systematic uncertainties are considered, none of which significantly enhances the probability that Ω0 = 1. These conclusions hold for models with or without a cosmological constant, i.e., with Λ0 = 0 or Λ0 = 1 − Ω0. The statistical uncertainties are at least as large as any of the individual systematic errors that have been considered here, suggesting that additional temperature measurements of distant clusters will allow an improvement in this estimate. An alternative method that uses the highest redshift clusters to place an upper limit on Ω0 is also presented and tentatively applied, with the result that Ω0  1 can be ruled out at the 98 per cent confidence level. Whilst this method does not require a well-defined statistical sample of distant clusters, there are still modelling uncertainties that preclude a firmer conclusion at this time.  相似文献   

10.
The bright type 1 Seyfert galaxy H1419+480  ( z ∼ 0.072)  , whose X-ray colours from earlier HEAO-1 and ROSAT missions suggested a complex X-ray spectrum, has been observed with XMM–Newton . The EPIC spectrum above 2 keV is well fitted by a power law with photon index  Γ= 1.84 ± 0.01  and an Fe Kα line of equivalent width ∼250 eV. At softer energies, a decrement with respect to this model extending from 0.5 to 1 keV is clearly detected. After trying a number of models, we find that the best fit corresponds to O vii absorption at the emission redshift, plus a 2σ detection of O viii absorption. A photoionized gas model fit yields  log ξ∼ 1.15–1.30  (ξ in erg cm s−1) with   N H∼ 5 × 1021 cm−2  for solar abundances. We find that the ionized absorber was weaker or absent in an earlier ROSAT observation. An International Ultraviolet Explorer spectrum of this source obtained two decades before shows a variable (within a year) C iv absorber outflowing with a velocity ∼1800 km s−1. We show that both X-ray and ultraviolet absorptions are consistent with arising in the same gas, with varying ionization.  相似文献   

11.
We constrain the velocity power spectrum shape parameter Γ in linear theory using the nine bulk flow and shear moments estimated from four recent peculiar velocity surveys. For each survey, a likelihood function for Γ was found after marginalizing over the power spectrum amplitude  σ8Ω0.6m  using constraints obtained from comparisons between redshift surveys and peculiar velocity data. In order to maximize the accuracy of our analyses, the velocity noise σ* was estimated directly for each survey. A statistical analysis of the differences between the values of the moments estimated from different surveys showed consistency with theoretical predictions, suggesting that all the surveys investigated reflect the same large-scale flows. The peculiar velocity surveys were combined into a composite survey yielding the constraint  Γ= 0.13+0.09−0.05  . This value is lower than, but consistent with, values obtained using redshift surveys and cosmic microwave background data.  相似文献   

12.
We find the nine bulk flow and shear moments from the SFI++ survey, as well as for subsamples of group and field galaxies. We constrain the velocity power spectrum shape parameter Γ in linear theory using these moments. A likelihood function for Γ was found after marginalizing over the power spectrum amplitude  σ8Ω0.6m  using constraints obtained from comparisons between redshift surveys and peculiar velocity data. We have estimated the velocity noise  σ*  from the data since without it our results may be biased. We also performed a statistical analysis of the difference between the field and group catalogues and found that the results from each reflect the same underlying large-scale flows. We found that we can constrain the power spectrum shape parameter to be  Γ= 0.15+0.18−0.08  for the groups catalogue and  Γ= 0.09+0.04−0.04  for the field galaxy catalogue in fair agreement with the value from Wilkinson Microwave Anisotropy Probe .  相似文献   

13.
We present the largest publicly available catalogue of compact groups (CGs) of galaxies identified using the original selection criteria of Hickson, selected from the Sixth Data Release of the Sloan Digital Sky Survey (SDSS DR6). We identify 2297 CGs down to a limiting magnitude of   r = 18 (∼0.24 groups  deg−2), and 74 791 CGs down to a limiting magnitude of   r = 21 (∼6.7 groups  deg−2). This represents 0.9 per cent of all galaxies in the SDSS DR6 at these magnitude levels. Contamination due to gross photometric errors has been removed from the bright sample of groups, and we estimate it is present in the large sample at the 14 per cent level. Spectroscopic information is available for 4131 galaxies in the bright catalogue (43 per cent completeness), and we find that the median redshift of these groups is   z med= 0.09  . The median line-of-sight (LOS) velocity dispersion within the CGs from the bright catalogue is  σLOS≃ 230 km s−1  , and their typical intergalactic separations are of the order of 50–100 kpc. We show that the fraction of groups with interloping galaxies identified as members is in good agreement with the predictions from our previous study of a mock galaxy catalogue, and we demonstrate how to select CGs such that the interloper fraction is well defined and minimized. This observational data set is ideal for large statistical studies of CGs, the role of environment on galaxy evolution and the effect of galaxy interactions in determining galaxy morphology.  相似文献   

14.
The Millennium Galaxy Catalogue (MGC) is a 37.5 deg2, medium-deep, B -band imaging survey along the celestial equator, taken with the Wide Field Camera on the Isaac Newton Telescope. The survey region is contained within the regions of both the Two Degree Field Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky Survey Early Data Release (SDSS-EDR). The survey has a uniform isophotal detection limit of 26 mag arcsec−2 and it provides a robust, well-defined catalogue of stars and galaxies in the range  16 ≤ B MGC < 24 mag  .
Here we describe the survey strategy, the photometric and astrometric calibration, source detection and analysis, and present the galaxy number counts that connect the bright and faint galaxy populations within a single survey. We argue that these counts represent the state of the art and use them to constrain the normalizations (φ*) of a number of recent estimates of the local galaxy luminosity function. We find that the 2dFGRS, SDSS Commissioning Data (CD), ESO Slice Project, Century Survey, Durham/UKST, Mt Stromlo/APM, SSRS2 and NOG luminosity functions require a revision of their published φ* values by factors of  1.05 ± 0.05, 0.76 ± 0.10, 1.02 ± 0.22, 1.02 ± 0.16, 1.16 ± 0.28, 1.75 ± 0.37, 1.40 ± 0.26  and  1.01 ± 0.39  , respectively. After renormalizing the galaxy luminosity functions we find a mean local b J luminosity density of     . 1  相似文献   

15.
We use a high-resolution ΛCDM numerical simulation to calculate the mass function of dark matter haloes down to the scale of dwarf galaxies, back to a redshift of 15, in a  50 h −1 Mpc  volume containing 80 million particles. Our low-redshift results allow us to probe low-σ density fluctuations significantly beyond the range of previous cosmological simulations. The Sheth & Tormen mass function provides an excellent match to all of our data except for redshifts of 10 and higher, where it overpredicts halo numbers increasingly with redshift, reaching roughly 50 per cent for the  1010–1011 M  haloes sampled at redshift 15. Our results confirm previous findings that the simulated halo mass function can be described solely by the variance of the mass distribution, and thus has no explicit redshift dependence. We provide an empirical fit to our data that corrects for the overprediction of extremely rare objects by the Sheth & Tormen mass function. This overprediction has implications for studies that use the number densities of similarly rare objects as cosmological probes. For example, the number density of high-redshift  ( z ≃ 6) QSOs  , which are thought to be hosted by haloes at 5σ peaks in the fluctuation field, are likely to be overpredicted by at least a factor of 50 per cent. We test the sensitivity of our results to force accuracy, starting redshift and halo-finding algorithm.  相似文献   

16.
We measure the power spectrum of the galaxy distribution in the ESO Slice Project (ESP) galaxy redshift survey. We develop a technique to describe the survey window function analytically, and then deconvolve it from the measured power spectrum using a variant of the Lucy method. We test the whole deconvolution procedure on ESP mock catalogues drawn from large N -body simulations, and find that it is reliable for recovering the correct amplitude and shape of P ( k ) at k >0.065  h  Mpc−1. In general, the technique is applicable to any survey composed of a collection of circular fields with an arbitrary pattern on the sky, as typical of surveys based on fibre spectrographs. The estimated power spectrum has a well-defined power-law shape k n with n ≃−2.2 for k ≥0.2  h  Mpc−1, and a smooth bend to a flatter shape ( n ≃−1.6) for smaller k . The smallest wavenumber where a meaningful reconstruction can be performed ( k ∼0.06  h  Mpc−1) does not allow us to explore the range of scales where other power spectra seem to show a flattening and hint at a turnover. We also find, by a direct comparison of the Fourier transforms, that the estimate of the two-point correlation function ξ ( s ) is much less sensitive to the effect of a problematic window function, such as that of the ESP, than the power spectrum. Comparison with other surveys shows an excellent agreement with estimates from blue-selected surveys. In particular, the ESP power spectrum is virtually indistinguishable from that of the Durham–UKST survey over the common range of k , an indirect confirmation of the quality of the deconvolution technique applied.  相似文献   

17.
We determine the companion galaxy luminosity function (LF) for regions around isolated spiral galaxies. If we assume that any excess in the galaxy number counts in the vicinity of a spiral galaxy is due to galaxies at the same distance, then a system LF can be determined from the variation of excess numbers with apparent magnitude. By studying the excess over many field 'centre' galaxies, a good statistical accuracy can be obtained for the companion galaxy LF. Since redshift information is not required for the faint galaxies, it is possible to sample further down the LF as compared with redshift surveys. For 23 primary galaxies of known redshift, we find a dwarf satellite Schechter LF with a characteristic magnitude M V *( D )≃−19 and a faint-end slope α=−1.7, down to MV =−14 ( H 0=50 km s−1 Mpc−1).  相似文献   

18.
Large-scale polarization of the cosmic microwave background measured by the WMAP satellite requires a mean optical depth to Thomson scattering,  τe∼ 0.17  . The reionization of the Universe must therefore have begun at relatively high redshift. We have studied the reionization process using supercomputer simulations of a large and representative region of a universe which has cosmological parameters consistent with the WMAP results (  Ωm= 0.3, ΩΛ= 0.7, h = 0.7, Ωb= 0.04, n = 1  and  σ8= 0.9  ). Our simulations follow both the radiative transfer of ionizing photons and the formation and evolution of the galaxy population which produces them. A previously published model with ionizing photon production as expected for zero-metallicity stars distributed according to a standard stellar initial mass function (IMF) (1061 photons per unit solar mass of formed stars) and with a moderate photon escape fraction from galaxies (5 per cent), produces  τe= 0.104  , which is within 1.0 to  1.5σ  of the 'best' WMAP value. Values of up to 0.16 can be produced by taking larger escape fractions or a top-heavy IMF. The data do not require a separate populations of 'miniquasars' or of stars forming in objects with total masses below  109 M  . Reconciling such early reionization with the observed Gunn–Peterson troughs in   z > 6  quasars may be challenging. Possible resolutions of this problem are discussed.  相似文献   

19.
The universal baryonic mass fraction  (Ωbm)  can be sensitively constrained using X-ray observations of galaxy clusters. In this paper, we compare the baryonic mass fraction inferred from measurements of the cosmic microwave background with the gas mass fractions ( f gas) of a large sample of clusters taken from the recent literature. In systems cooler than 4 keV, f gas declines as the system temperature decreases. However, in higher temperature systems, f gas( r 500) converges to  ≈(0.12 ± 0.02)( h /0.72)−1.5  , where the uncertainty reflects the systematic variations between clusters at r 500. This is significantly lower than the maximum-likelihood value of the baryon fraction from the recently released Wilkinson Microwave Anisotropy Probe ( WMAP ) 3-yr results. We investigate possible reasons for this discrepancy, including the effects of radiative cooling and non-gravitational heating, and conclude that the most likely solution is that Ωm is higher than the best-fitting WMAP value (we find  Ωm= 0.36+0.11−0.08  ), but consistent at the 2σ level. Degeneracies within the WMAP data require that σ8 must also be greater than the maximum likelihood value for consistency between the data sets.  相似文献   

20.
We study the peculiar velocity field inferred from the Mark III spirals using a new method of analysis. We estimate optimal values of Tully–Fisher scatter and zero-point offset, and we derive the three-dimensional rms peculiar velocity ( σ v ) of the galaxies in the samples analysed. We check our statistical analysis using mock catalogues derived from numerical simulations of cold dark matter (CDM) models considering measurement uncertainties and sampling variations. Our best determination for the observations is σ v =(660±50) km s−1. We use the linear theory relation between σ v , the density parameter Ω, and the galaxy correlation function ξ ( r ) to infer the quantity     , where b is the linear bias parameter of optical galaxies and the uncertainties correspond to bootstrap resampling and an estimated cosmic variance added in quadrature. Our findings are consistent with the results of cluster abundances and redshift-space distortion of the two-point correlation function. These statistical measurements suggest a low value of the density parameter Ω∼0.4 if optical galaxies are not strongly biased tracers of mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号