首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
《Quaternary Science Reviews》2007,26(19-21):2674-2683
To improve our understanding of the Late Pleistocene and Holocene carbonate system of the western Arabian Sea a high-resolution sedimentary record off Somalia has been analysed. The 15.26-m-long piston core 905 comprises a complete record of the last 90,000 years. We have measured concentrations of carbonate minerals, i.e., aragonite, calcite, Mg-calcite, and element ratios (Sr/Ca) together with pteropod counts and an estimation of the preservation state of pteropod shells to trace temporal changes in carbonate production and preservation.The Sr/Ca ratio shows strong similarities to the aragonite percentage and the δ18O record of the planktic foraminifer Neogloboquadrina dutertrei. High Sr/Ca ratios together with fragments of corals found in the coarse fraction indicate that most of the aragonite is of shallow water origin (high-Sr aragonite) and pteropods contribute much less than expected. High resuspensional input of shallow-marine aragonite occurs during sea-level highstands (interglacials) and low input during lowstands (glacials).The Mg-calcite concentration record resembles the whole pteropod abundance and pteropod shell preservation records confirming the use of Mg-calcite in combination with pteropod preservation proxies to reconstruct past fluctuations in carbonate dissolution. Preservation of aragonite and Mg-calcite increases during stadials, H-equivalents, YD and late Marine Isotope Stage (MIS) 3. During late MIS 5/early MIS 4 and in the Late Holocene absence of few pteropods as well as low Mg-calcite weight percentages point to strong dissolution of aragonite and Mg-calcite.  相似文献   

2.
The aragonite compensation depth (ACD) fluctuated considerably during the last glacial until the Holocene with a dominant pteropod preservation spike during the deglacial period, which is prominently seen in three well‐dated cores covering the Andaman Sea, northeastern Indian Ocean. The precise time period of the preservation spike of pteropods is not known but this knowledge is crucial for stratigraphical correlation and also for understanding the driving mechanism. Isotopic and foraminiferal proxies were used to decipher the possible mechanism for pteropods preservation in the Andaman Sea. The poor preservation/absence of pteropods during the Holocene in the Andaman Sea may have implications for ocean acidification, driven by enhanced atmospheric CO2 concentration. Strengthening of the summer monsoon and the resultant high biological productivity may also have played a role in the poor preservation of pteropods. The deglacial pteropod spike is characterized by high abundance/preservation of the pteropods between ~19 and 15 cal. ka BP, associated with very low atmospheric CO2 concentration. Isotope data suggest the prevalence of a glacial environment with reduced sea surface temperature, upwelling and enhanced salinity during the pteropod preservation spike. Total planktic foraminifera and Globigerina bulloides abundances are low during this period, implying a weakened summer monsoon and reduced foraminiferal productivity. Based on the preservation record of pteropods, it is inferred that the ACD was probably deepest (>2900 m) at 16.5 cal. ka BP. The synchronous regional occurrence of the pteropod preservation spike in the Andaman Sea and in the northwestern Indian Ocean could potentially be employed as a stratigraphic marker.  相似文献   

3.
This study examines the forcing mechanisms driving long‐term carbonate accumulation and preservation in lacustrine sediments in Lake Iznik (north‐western Turkey) since the last glacial. Currently, carbonates precipitate during summer from the alkaline water column, and the sediments preserve aragonite and calcite. Based on X‐ray diffraction data, carbonate accumulation has changed significantly and striking reversals in the abundance of the two carbonate polymorphs have occurred on a decadal time scale, during the last 31 ka cal bp . Different lines of evidence, such as grain size, organic matter and redox sensitive elements, indicate that reversals in carbonate polymorph abundance arise due to physical changes in the lacustrine setting, for example, water column depth and lake mixing. The aragonite concentrations are remarkably sensitive to climate, and exhibit millennial‐scale oscillations. Extending observations from modern lakes, the Iznik record shows that the aerobic decomposition of organic matter and sulphate reduction are also substantial factors in carbonate preservation over long time periods. Lower lake levels favour aragonite precipitation from supersaturated waters. Prolonged periods of stratification and, consequently, enhanced sulphate reduction favour aragonite preservation. In contrast, prolonged or repeated exposure of the sediment–water interface to oxygen results in in situ aerobic organic matter decomposition, eventually leading to carbonate dissolution. Notably, the Iznik sediment profile raises the hypothesis that different states of lacustrine mixing lead to selective preservation of different carbonate polymorphs. Thus, a change in the entire lake water chemistry is not strictly necessary to favour the preservation of one polymorph over another. Therefore, this investigation is a novel contribution to the carbon cycle in lacustrine systems.  相似文献   

4.
The current issue of global warming and the role of the ocean in global exchange of CO2 increases the interest in solid budgets of marine carbonate production and dissolution. The present study utilizes grain‐size composition of pelagic sediments in order to trace spatial and temporal variability of carbonate sedimentation in the South Atlantic for the Holocene and Last Glacial Maximum (LGM, 19–23 cal kyr BP). A decrease in grain size (e.g. sand content, mean grain size of coarse carbonate silt) indicates increased carbonate dissolution as a result of increased fragmentation of calcareous microfossils. The spatial grain‐size pattern suggests a threshold water depth below which a gradual grain‐size decrease becomes increasingly rapid. This water depth is considered as the sedimentary lysocline. For the Holocene time slice, a constant, gradual decrease of foraminifer carbonate of about 5–10% per 1000 m water depth above the lysocline gives evidence for supra‐lysoclinal dissolution. The water depth of the lysocline for the Holocene is tied to the interface of North Atlantic Deep Water and Antarctic Bottom Water (AABW) (ca 4100 m). Submarine ridges which restrict intrusion of AABW into the Angola Basin cause an asymmetry in carbonate preservation across the Mid‐Atlantic Ridge. The lysocline was reconstructed at ca 3100 m for the LGM. These data suggest that the ca 1000 m rise of the lysocline eradicated the Holocene east–west asymmetry.  相似文献   

5.
 The horizontal and vertical distribution of the phototrophic, calcareous dinoflagellate Thoracosphaera heimii in the upper part of the water column (10–200 m) of the equatorial and tropical Atlantic Ocean has been studied. This first survey has been made to determine which part of the water column is inhabited by T. heimii and is subsequently represented as a signal in the sediment record by this species. The study concentrates on the fossilisable vegetative coccoid life stage of the species and differentiates between T. heimii shells with cell content and empty ones. The highest quantities of T. heimii shells with cell content have been observed in water depths between 50 and 100 m and coincide with relatively lower temperatures and relatively higher salinities than respective surface conditions. We propose that in the tropical equatorial Atlantic the major part of the environmental signal given by T. heimii can be assumed to represent the deeper levels of the upper water column. Received: 9 November 1998 / Accepted: 19 April 1999  相似文献   

6.
 Isotopic (δ13C, δ18O) and elemental (Mg, Sr, Mn, Fe) compositions were analysed in sclerochronological profiles of several shells of late Cretaceous rudist bivalves from Greece, Turkey, Somalia and the Arabian Peninsula. The preservation of original compositions of low-Mg calcite of outer shell layers is indicated by constant and high Sr, generally low Fe and Mn, and the preservation of fibrous-prismatic ultrastructures. Cyclic variations in δ18O and Mg are interpreted to reflect seasonal temperature/salinity cycles and, thus, annual growth increments. In shells of Torreites, amplitudes of correlated δ13C and δ18O cycles cannot be related to reasonable palaeotemperatures or salinity. This isotopic pattern reflects vital fractionations of an extent which is unknown from modern bivalves. In contrast, almost identical ranges and amplitudes of δ18O cycles are observed in 13 shells of five species from Santonian-Campanian localities in central Greece and northern Turkey, suggesting that seasonal variations in environmental conditions were recorded without significant vital fractionations. The effect of seasonal salinity changes on δ18O of the shells is evaluated, and mean palaeotemperatures are constrained within the range of 30–32.5  °C. The annual range of temperature was estimated to be 7  °C, assuming a constant salinity. This agrees with other isotopic proxies of Late Cretaceous palaeotemperatures, and with global circulation models which predict higher low-latitude sea-surface temperatures than the present ones. Received: 12 February 1998 / Accepted: 24 May 1999  相似文献   

7.
 Despite the increasing interest in the South Atlantic Ocean as a key area of the heat exchange between the southern and the northern hemisphere, information about its palaeoceanographic conditions during transitions from glacial to interglacial stages, the so-called Terminations, are not well understood. Herein we attempt to increase this information by studying the calcareous dinoflagellate cysts and the shells of Thoracosphaera heimii (calcareous cysts) of five Late Quaternary South Atlantic Ocean cores. Extremely high accumulation rates of calcareous cysts at the Terminations might be due to a combined effect of increased cyst production and better preservation as result of calm, oligotrophic conditions in the upper water layers. Low relative abundance of Sphaerodinella albatrosiana compared with Sphaerodinella tuberosa in the Cape Basin may be the result of the relatively colder environmental conditions in this region compared with the equatorial Atlantic Ocean with high relative abundance of S. albatrosiana. Furthermore, the predominance of S. tuberosa during glacials and interglacials at the observed site of the western Atlantic Ocean reflects decreased salinity in the upper water layer. Received: 9 November 1998 / Accepted: 26 October 1999  相似文献   

8.
The apparent solubility product (K'sp) of aragonite in a variety of seawater compositions has been determined at pressures from 0 to 1019 atm and a nomogram developed to allow the determination of the K'sp when the apparent ion product (AIP) at one atmosphere and the collection depth of a water sample are known.This nomogram provides a basis from which the onset of aragonite dissolution can be determined for conditions representative of aragonite sedimentation through the changing water masses of the open ocean.  相似文献   

9.
The well‐known Erzberg site represents the largest siderite (FeCO3) deposit in the world. It consists of various carbonates accounting for the formation of prominent CaCO3 (dominantly aragonite) precipitates filling vertical fractures of different width (centimetres to decimetres) and length (tens of metres). These commonly laminated precipitates are known as ‘erzbergite’. This study focuses on the growth dynamics and environmental dependencies of these vein fillings. Samples recovered on‐site and from mineral collections were analyzed, and these analyses were further complemented by modern water analyses from different Erzberg sections. Isotopic signatures support meteoric water infiltration and sulphide oxidation as the principal hydrogeochemical mechanism of (Ca, Mg and Fe) carbonate host rock dissolution, mobilization and vein mineralization. Clumped isotope measurements revealed cool formation temperatures of ca 0 to 10°C for the aragonite, i.e. reflecting the elevated altitude Alpine setting, but unexpectedly low for aragonite nucleation. The 238U–234U–230Th dating yielded ages from 285·1 ± 3·9 to 1·03 ± 0·04 kyr bp and all samples collected on‐site formed after the Last Glacial Maximum. The observed CaCO3 polymorphism is primarily controlled by the high aqueous Mg/Ca ratios resulting from dissolution of Mg‐rich host rocks, with Mg/Ca further evolving during prior CaCO3 precipitation and CO2 outgassing in the fissured aquifer. Aragonite represents the ‘normal’ mode of erzbergite formation and most of the calcite is of diagenetic (replacing aragonite) origin. The characteristic lamination (millimetre‐scale) is an original growth feature and mostly associated with the deposition of stained (Fe‐rich) detrital particle layers. Broader zonations (centimetre‐scale) are commonly of diagenetic origin. Petrographic observations and radiometric dating support an irregular nature for most of the layering. Open fractures resulting from fault tectonics or gravitational mass movements provide water flow routes and fresh chemical reaction surfaces of the host rock carbonates and accessory sulphides. If these prerequisites are considered, including the hydrogeochemical mechanism, modern water compositions, young U‐Th ages and calculated precipitation rates, it seems unlikely that the fractures had stayed open over extended time intervals. Therefore, it is most likely that they are geologically young.  相似文献   

10.
Modern aragonite needles are present all along the modern leeward margin of Great Bahama Bank (ODP Leg 166), while Middle Miocene sediments contain needles only in more distal areas (Sites 1006 and 1007). In contrast to the rimmed, flat-topped platform topography during the Plio-Pleistocene, the Miocene Great Bahama Bank morphology is a carbonate ramp profile. This might imply a different location and precipitation type for Miocene aragonite needles. In this study, aragonite needles in Miocene sediments were isolated using a granulometric separation method. Furthermore, the isolation of the various carbonate components enables the identification of primary versus diagenetic components. The Miocene aragonite needles are concentrated in the finest granulometric sediment fractions (<12 μm). The fraction-specific geochemical analyses (δ13C, δ18O and Sr elemental abundance) represent useful tools to assess the possible sources of the aragonite mud. The geochemical variation of the fractions, rich in pristine aragonite needles, and the characteristics of the needle morphology point to whiting phenomena as the main sediment source and algal fragmentation as a minor component. Both components indicate shallow-water environments as the main sediment source area. Ramp-top-related fine-grained particles now present at distal sites were likely exported as suspended material similar to present-day transport mechanisms. The scarcity of needles at proximal sites is probably linked to hydrodynamic processes but dissolution and recrystallization processes cannot be excluded. The granulometric separation approach applied here enables a better characterization of the finest carbonate particles representing an important step towards the discrimination between primary and diagenetic fine-grained components.  相似文献   

11.
This study investigates the conditions of occurrence and petrographic characteristics of low‐Mg calcite (LMC) from cold seeps of the Gulf of Mexico at a water depth of 2340 m. Such LMC mineral phases should precipitate in calcite seas rather than today's aragonite sea. The 13C‐depleted carbonates formed as a consequence of anaerobic oxidation of hydrocarbons in shallow subsurface cold seep environments. The occurrence of LMC may result from brine fluid flows. Brines are relatively Ca2+‐enriched and Mg2+‐depleted (Mg/Ca mole ratio <0.7) relative to seawater, where the Mg/Ca mole ratio is ~5, which drives high‐Mg calcite and aragonite precipitation. The dissolution of aragonitic mollusk shells, grains and cements was observed. Aerobic oxidation of hydrocarbons and H2S is the most likely mechanism to explain carbonate dissolution. These findings have important implications for understanding the occurrence of LMC in deep water marine settings and consequently their counterparts in the geological record.  相似文献   

12.
To determine oxygen isotope fractionation between aragonite and water, aragonite was slowly precipitated from Ca(HCO3)2 solution at 0 to 50°C in the presence of Mg2+ or SO42−. The phase compositions and morphologies of synthetic minerals were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The effects of aragonite precipitation rate and excess dissolved CO2 gas in the initial Ca(HCO3)2 solution on oxygen isotope fractionation between aragonite and water were investigated. For the CaCO3 minerals slowly precipitated by the CaCO3 or NaHCO3 dissolution method at 0 to 50°C, the XRD and SEM analyses show that the rate of aragonite precipitation increased with temperature. Correspondingly, oxygen isotope fractionations between aragonite and water deviated progressively farther from equilibrium. Additionally, an excess of dissolved CO2 gas in the initial Ca(HCO3)2 solution results in an increase in apparent oxygen isotope fractionations. As a consequence, the experimentally determined oxygen isotope fractionations at 50°C indicate disequilibrium, whereas the relatively lower fractionation values obtained at 0 and 25°C from the solution with less dissolved CO2 gas and low precipitation rates indicate a closer approach to equilibrium. Combining the lower values at 0 and 25°C with previous data derived from a two-step overgrowth technique at 50 and 70°C, a fractionation equation for the aragonite-water system at 0 to 70°C is obtained as follows:
  相似文献   

13.
Calcium concentration and calcite supersaturation (Ω) needed for calcium carbonate nucleation and crystal growth in Pyramid Lake (PL) surface water were determined during August of 1997, 2000, and 2001. PL surface water has Ω values of 10–16. Notwithstanding high Ω, calcium carbonate growth did not occur on aragonite single crystals suspended PL surface water for several months. However, calcium solution addition to PL surface-water samples caused reproducible calcium carbonate mineral nucleation and crystal growth. Mean PL surface-water calcium concentration at nucleation was 2.33 mM (n = 10), a value about nine times higher than the ambient PL surface-water calcium concentration (0.26 mM); mean Ω at nucleation (109 with a standard deviation of 8) is about eight times the PL surface-water Ω. Calcium concentration and Ω regulated the calcium carbonate formation in PL nucleation experiments and surface water. Unfiltered samples nucleated at lower Ω than filtered samples. Calcium concentration and Ω at nucleation for experiments in the presence of added particles were within one standard deviation of the mean for all samples. Calcium carbonate formation rates followed a simple rate expression of the form, rate (mM/min) = A (Ω) + B. The best fit rate equation “Rate (Δ mM/Δ min) = −0.0026 Ω + 0.0175 (r = 0.904, n = 10)” was statistically significant at greater than the 0.01 confidence level and gives, after rearrangement, Ω at zero rate of 6.7. Nucleation in PL surface water and morphology of calcium carbonate particles formed in PL nucleation experiments and in PL surface-water samples suggest crystal growth inhibition by multiple substances present in PL surface water mediates PL calcium carbonate formation, but there is insufficient information to determine the chemical nature of all inhibitors.  相似文献   

14.
At burial depths of 800-1000 m, within the epicontinental Queensland Trough of north-east Australia (ODP Site 823), microcrystalline inter- and intraskeletal mosaics of anhedral (loaf-shaped, rounded) calcite have Sr2+ values ranging from below microprobe detection limits (<150 ppm) to 8100 ppm. Host rocks are well lithified, fine-grained mixed sediment to clayey wackestone and packstone of Middle and Late Miocene age. Petrography demonstrates that calcite precipitation has spanned shallow to deep burial, overlapping formation of framboidal pyrite in the upper 50 m; shallow-burial dolomitization (<300 m); and dedolomitization during sediment consolidation and incipient chemical compaction at greater (>400–500 m) depths. Petrographic observations illustrate that the calcite microfabric formed through coalescing crystal growth resulting from one or a combination of displacive growth in clay, porphyroid neomorphism of aragonite/vaterite, and clay replacement by calcite. Sr2+ mean concentrations in calcite between depths of 800 and 1000 m are similar to an expected equilibrium pore-water concentration, using a Dsr of 0.06, and may indicate active calcite precipitation. However, Sr2+ variation (2000–5000 ppm) within and among crystals, and concentrations that range well above predicted equilibrium values for a given depth, illustrate either variable Sr2+ retention during recrystallization of shelf-derived aragonite (and authigenic local vaterite) or relative uptake of Sr2+ during calcite precipitation with burial. Within the context of calcite formation during burial to 1 km, diagenetic attributes that affect the latter process include increased concentrations of pore-water Sr2+ with depth associated with aragonite recrystallization/dissolution; upward migration of Sr-rich pore water; and increased DSr related to local variation in precipitation/recrystallization rates, differential crystal sector growth rates and/or microvariation in aragonite distribution.  相似文献   

15.
洞穴沉积物—石笋已成为研究岩溶区环境气候变化历史的重要载体。在我国湘西地区,某些洞穴石笋原始沉积多为不稳定的文石矿物,极易发生重结晶,可能使石笋中相关化学元素含量最终偏离原生矿物的特征,限制了文石石笋某些代用指标在古气候研究中的应用。文章以前人研究成果为基础,总结梳理了文石石笋发生重结晶的影响因素及其对石笋记录古气候的影响:(1)石笋剖面特征、XRD结果、显微镜观察和地球化学元素特征等可作为石笋发生重结晶的判别依据;(2)洞穴滴水和石笋孔隙水饱和度、文石晶体缺陷和晶体之间的方解石胶结物以及岩溶水体中Mg2+浓度等均会影响文石石笋的矿物转变;(3)在文石向方解石转变过程中,石笋铀含量会有一定程度的流失,可导致放射性铀系定年的异常或年代倒序;(4)矿物重结晶可导致δ18O、δ13C及石笋微量元素浓度(或比值)等指标发生改变,其变化特征因洞穴而异,从而影响其作为环境指示器的可靠性;(5)湖南龙山惹迷洞石笋(RM2)发生了不均一的矿物重结晶,自顶部至20.3 cm以放射状为主,20.3 cm至底部主要为糖粒状,并结合年代结果发现文石重结晶对石笋铀系定年产生了影响,而重结晶作用对该石笋其他指标的影响还有待进一步研究。   相似文献   

16.
The pressure–temperature conditions of the reactions of the double carbonates CaM(CO3)2, where M = Mg (dolomite), Fe (ankerite) and Mn (kutnohorite), to MCO3 plus CaCO3 (aragonite) have been investigated at 5–8 GPa, 600–1,100°C, using multi-anvil apparatus. The reaction dolomite = magnesite + aragonite is in good agreement with the results of Sato and Katsura (Earth Planet Sci 184:529–534, 2001), but in poor agreement with the results of Luth (Contrib Mineral Petrol 141:222–232, 2001). The dolomite is partially disordered at 620°C, and fully disordered at 1,100°C. All ankerite and kutnohorite samples, including the synthetic starting materials, are disordered. The P–T slopes of the three reactions increase in the order M = Mg, Fe, Mn. The shallower slope for the reaction involving magnesite is due partly to its having a higher compressibility than expected from unit-cell volume considerations. At low pressures there is a preference for partitioning into the double carbonate of Mg > Fe > Mn. At high pressures the partitioning preference is reversed. Using the measured reaction positions, the P–T conditions at which dolomite solid solutions will break down on increasing P and T in subduction zones can be estimated.  相似文献   

17.
Coupled CaCO3 dissolution-otavite (CdCO3) precipitation experiments have been performed to 1) quantify the effect of mineral coatings on dissolution rates, and 2) to explore the possible application of this coupled process to the remediation of polluted waters. All experiments were performed at 25°C in mixed-flow reactors. Various CaCO3 solids were used in the experiments including calcite, aragonite, and ground clam, mussel, and cockle shells. Precipitation was induced by the presence of Cd(NO3)2 in the inlet solution, which combined with aqueous carbonate liberated by CaCO3 dissolution to supersaturate otavite. The precipitation of an otavite layer of less than 0.01 μm in thickness on calcite surfaces decreases its dissolution rate by close to two orders of magnitude. This decrease in calcite dissolution rates lowers aqueous carbonate concentrations in the reactor such that the mixed-flow reactor experiments attain a steady-state where the reactive fluid is approximately in equilibrium with otavite, arresting its precipitation. In contrast, otavite coatings are far less efficient in lowering aragonite, and ground clam, mussel, and cockle shell dissolution rates, which are comprised primarily of aragonite. A steady-state is only attained after the precipitation of an otavite layer of 3-10 μm thick; the steady state CaCO3 dissolution rate is 1-2 orders of magnitude lower than that in the absence of otavite coatings. The difference in behavior is interpreted to stem from the relative crystallographic structures of the dissolving and precipitating minerals. As otavite is isostructural with respect to calcite, it precipitates by epitaxial growth directly on the calcite, efficiently slowing dissolution. In contrast, otavite’s structure is appreciably different from that of aragonite. Thus, it will precipitate by random three dimensional heterogeneous nucleation, leaving some pore space at the otavite-aragonite interface. This pore space allows aragonite dissolution to continue relatively unaffected by thin layers of precipitated otavite. Due to the inefficiency of otavite coatings to slow aragonite and ground aragonite shell dissolution, aragonite appears to be a far better Cd scavenging material for cleaning polluted waste waters.  相似文献   

18.
The chemical composition of water samples was studied from different caves in Slovakia. The water samples were collected from caves of two karst regions: (1) the Demänovský Cave System (DCS), situated in the Low Tatra Mountains (Northern Slovakia), which is mainly formed of limestone and dolomites; and (2) the Slovakian Karst to the Southeast is formed of limestone. A considerable difference between water from the two regions was shown. The waters from the DCS, that were controlled by vadose water percolating through different types of host rocks, contained more Mg ions than those from the Slovakian Karst caves whereas, the concentration of SO4 was controlled by the dissolution of displacive gypsum and/or oxidation of pyrite. The distribution of NO3 in the studied samples was random, hence nitrates probably derived from few pollution sources. The total mineralization of the water was covariant with calcite and aragonite saturation indices. In general, both parameters are higher in the Slovakian Karst caves than in the DCS. It is controlled probably by differences in climatic conditions, soil and plant covers between these two regions. The main goal of this article is to characterize the major-ion water chemistry within the studied caves as well as some microelements. The results have confirmed the dominant role of the bedrock petrography in forming the general chemistry of cave waters.  相似文献   

19.
The purpose of this report is to explain geochemical and stable isotopes trends in the Brazilian unit of the Guarani Aquifer System (Botucatu and Piramboia aquifers) in S?o Paulo State, Brazil. Trends of dissolved species concentrations and geochemical modeling indicated a significant role of cation exchange and dissolution of carbonates in downgradient evolution of groundwater chemistry. Loss of calcium by the exchange for sodium drives dissolution of carbonates and results in Na–HCO3 type of groundwater. The cation-exchange front moves downgradient at probably much slower rate compared to the velocity of groundwater flow and at present is located near to the cities of Sert?ozinho and águas de Santa Barbara (wells PZ-34 and PZ-148, respectively) in a shallow confined area, 50–70 km from the recharge zone. Part of the sodium probably enters the Guarani Aquifer System. together with chloride and sulfate from the underlying Piramboia Formation by diffusion related to the dissolution of evaporates like halite and gypsum. High concentrations of fluorine (up to 13.3 mg/L) can be explained by dissolution of mineral fluoride also driven by cation exchange. However, it is unclear if the dissolution takes place directly in the Guarani Aquifer System or in the overlying basaltic Serra Geral Formation. There is depletion in δ 2H and δ 18O values in groundwater downgradient. Values of δ 13C(DIC) are enriched downgradient, indicating dissolution of calcite under closed system conditions. Values of δ 13C(DIC) in deep geothermal wells are very high (>–6.0‰) and probably indicate isotopic exchange with carbonates with δ 13C about –3.0‰. Future work should be based on evaluation of vertical fluxes and potential for penetration of contamination to the Guarani Aquifer System. Electronic Publication  相似文献   

20.
In the Rocca Busambra area (mid-west Sicily, Italy), from November 1999 to July 2002, 23 water points including wells and springs were sampled and studied for their chemical and isotopic compositions. Two rain gauges were also installed at different altitudes, and rainwater was collected monthly to determine the isotopic composition. The obtained results revealed the Rocca Busambra carbonate complex as being the main recharge area on account of its high permeability value. From a chemical view point, two main groups of water can be distinguished: calcium–magnesium–bicarbonate-type and calcium–magnesium–chloride–sulphate-type waters. The first group reflects the dissolution of the carbonate rocks; the second group probably originates from circulation within flyschoid sediments. Three water wells differ from the other samples due to their relatively high Na and K content, which probably is to be referred to a marked interaction with the “Calcareniti di Corleone” formation, which is rich in glauconite [(K, Na)(Fe3+, Al, Mg)2(Si, Al)4O10(OH)2]. In accordance with WHO guidelines for drinking water (2004), almost all the samples collected can be considered drinkable, with the exception of four of them, whose NO3 , F and Na+ contents exceed the limits. On the contrary, the sampled groundwater studied is basically suitable for irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号