首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Cherenkov radio pulse emitted by hadronic showers of energies in the EeV range in ice is calculated for the first time using full three dimensional simulations of both shower development and the coherent radio pulse emitted as the excess charge develops in the shower. A Monte Carlo, ZHAireS, has been developed for this purpose combining the high energy hadronic interaction capabilities of AIRES, and the dense media propagation capabilities of TIERRAS, with the precise low energy tracking and specific algorithms developed to calculate the radio emission in ZHS. A thinning technique is implemented to allow the simulation of radio pulses induced by showers up to 10 EeV in ice. The code is validated comparing the results for electromagnetic and hadronic showers to those obtained with GEANT4 and ZHS codes. The contribution to the pulse of other shower particles in addition to electrons and positrons, mainly protons, pions and muons, is found to be below 3% for 10 PeV and above proton induced showers. The characteristics of hadronic showers and the corresponding Cherenkov frequency spectra are compared with those from purely electromagnetic showers. The dependence of the spectra on shower energy and high-energy hadronic model is addressed and parameterizations for the radio emission in hadronic showers in ice are given for practical applications.  相似文献   

2.
Coherent electromagnetic erenkov radiation is produced by cosmic ray air showers passing through the atmosphere. This radiation is detected by radio telescopes. We demonstrate here that the effect of random spatial fluctuations in the refractive index of air, about a mean exceeding unity, causes the airshower to emit not only the spontaneous coherent radio emission described elsewhere by Kahn and Lerche, but also an induced radiation field which can exceed the spontaneous field in certain frequency bands. Further the conditions for emission of the coherent radio erenkov radiation are altered by the presence of the refractive index fluctuations. And the Earth's magnetic field gives rise to the dominant term in the far-field radiation, be it spontaneous or induced, since it causes a systematic separation of electrons and positrons in the shower which, for parameters currently acceptable for air showers, is the major factor in determining the far-field radiation pattern. Also we suggest that the coherent 500 Mc/sec radiation seen from occasional showers is probably a reflection of an atmospheric correlation length of order 15 cm at the time the shower passes through the atmosphere.  相似文献   

3.
4.
Radio emission in atmospheric showers is currently interpreted in terms of radiation due to the deviation of the charged particles in the magnetic field of the Earth and to the charge excess (Askaryan effect). Each of these mechanisms has a distinctive polarization. The complex signal patterns can be qualitatively explained as the interference (superposition) of the fields induced by each mechanism. In this work we explicitly and quantitatively test a simple phenomenological model based on this idea. The model is constructed by isolating each of the two components at the simulation level and by making use of approximate symmetries for each of the contributions separately. The results of the model are then checked against full ZHAireS Monte Carlo simulations of the electric field calculated from first principles. We show that the simple model describes radio emission at a few percent level in a wide range of shower-observer geometries and on a shower-by-shower basis. As a consequence, this approach provides a simple method to reduce the computing time needed to accurately predict the electric field of radio pulses emitted from air showers, with many practical applications in experimental situations of interest.  相似文献   

5.
Radio detection of cosmic-ray-induced air showers has come to a flight the last decade. Along with the experimental efforts, several theoretical models were developed. The main radio-emission mechanisms are established to be the geomagnetic emission due to deflection of electrons and positrons in Earth’s magnetic field and the charge-excess emission due to a net electron excess in the air shower front. It was only recently shown that Cherenkov effects play an important role in the radio emission from air showers. In this article we show the importance of these effects to extract quantitatively the position of the shower maximum from the radio signal, which is a sensitive measure for the mass of the initial cosmic ray. We also show that the relative magnitude of the charge-excess and geomagnetic emission changes considerably at small observer distances where Cherenkov effects apply.  相似文献   

6.
Measuring radio emission from air showers provides excellent opportunities to directly measure all air shower properties, including the shower development. To exploit this in large-scale experiments, a simple and analytic parameterization of the distribution of the radio signal at ground level is needed. Data taken with the Low-Frequency Array (LOFAR) show a complex two-dimensional pattern of pulse powers, which is sensitive to the shower geometry. Earlier parameterizations of the lateral signal distribution have proven insufficient to describe these data. In this article, we present a parameterization derived from air-shower simulations. We are able to fit the two-dimensional distribution with a double Gaussian, requiring five fit parameters. All parameters show strong correlations with air shower properties, such as the energy of the shower, the arrival direction, and the shower maximum. We successfully apply the parameterization to data taken with LOFAR and discuss implications for air shower experiments.  相似文献   

7.
The burst of radio emission by an extensive air shower provides a promising alternative for detecting ultra-high energy cosmic rays. We have developed an independent numerical program to simulate these radio signals. Our code is based on a microscopic treatment, with both the geosynchrotron radiation and charge included.Here we give the first presentation of our basic program and its results. When the time-domain signals for different polarizations are computed, we find that the pulses take on a bipolar pattern and the spectrum is suppressed towards the lower frequencies. We investigate how showers at different heights in the atmosphere contribute to the total signal, and examine the signal strength and distribution at sites with different elevations. We also study the signal from showers with different inclination angles and azimuth directions. In all these cases we find the charge excess effect is important.  相似文献   

8.
Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameterization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.  相似文献   

9.
We present the calculation of coherent radio pulses emitted by extensive air showers induced by ultra-high energy cosmic rays accounting for reflection on the Earth’s surface. Results have been obtained with a simulation program that calculates the contributions from shower particles after reflection at a surface plane. The properties of the radiation are discussed in detail emphasizing the effects of reflection. The shape of the frequency spectrum is shown to be closely related to the angle of the observer with respect to shower axis, becoming hardest in the Cherenkov direction. The intensity of the flux at a fixed observation angle is shown to scale with the square of the primary particle energy to very good accuracy indicating the coherent aspect of the emission. The simulation methods of this paper provide the foundations for energy reconstruction of experiments looking at the Earth from balloons and satellites. They can also be used in dedicated studies of existing and future experimental proposals.  相似文献   

10.
Scattering and absorption of sunlight by aerosols are integral to understanding the radiative balance of any planetary atmosphere covered in a haze, such as Titan and possibly the early Earth. One key optical parameter of an aerosol is its refractive index. We have simulated both Titan and early Earth organic haze aerosols in the laboratory and measured the real and imaginary portion of their refractive index at λ = 532 nm using cavity ringdown aerosol extinction spectroscopy. This novel technique allows analysis on freely-floating particles minutes after formation. For our Titan analog particles, we find a real refractive index of n = 1.35 ± 0.01 and an imaginary refractive index k = 0.023 ± 0.007, and for the early Earth analog particles we find n = 1.81 ± 0.02 and k = 0.055 ± 0.020. The Titan analog refractive index has a smaller real and similar imaginary refractive index compared to most previous laboratory measurements of Titan analog films, including values from Khare et al. (Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, T.A., Williams, M.W. [1984]. Icarus 60, 127-137). These newly measured Titan analog values have implications for spacecraft retrievals of aerosol properties on Titan. The early Earth analog has a significantly higher real and imaginary refractive index than Titan analogs reported in the literature. These differences suggest that, for a given amount of aerosol, the early Earth analog would act as a stronger anti-greenhouse agent than the Titan analog.  相似文献   

11.
Coherent synchrotron emission by particles moving along semi-infinite tracks is discussed, with a specific application to radio emission from air showers induced by high-energy cosmic rays. It is shown that in general, radiation from a particle moving along a semi-infinite orbit consists of usual synchrotron emission and modified impulsive bremsstrahlung. The latter component is due to the instantaneous onset of the curved trajectory of the emitting particle at its creation. Inclusion of the bremsstrahlung leads to broadening of the radiation pattern and a slower decay of the spectrum at the cut-off frequency than the conventional synchrotron emission. Possible implications of these features for air shower radio emission are discussed.  相似文献   

12.
13.
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. One of the main topics today focuses on the high energy end of the spectrum and the potential for the production of high-energy neutrinos. Above about 1020 eV cosmic rays from extragalactic sources are expected to be severely attenuated by pion photoproduction interactions with photons of the cosmic microwave background. Investigating the shape of the cosmic ray spectrum near this predicted cut-off will be very important. In addition, a significant high-energy neutrino background is naturally expected as part of the pion decay chain which also contains much information.Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off.  相似文献   

14.
Using the 25m radio telescope of the Urumqi Observatory, the strong single pulses of the pulsar PSR J0034-0721 were observed at 1.54 GHz on 6th Aug. 2007. With the technique of single-pulse detection, 116 single pulses with the signal-to-noise ratios of RSN≥5 were detected from the observed data of 1 h. At 1.54 GHz, the signal-to-noise ratios of the detected single pulses are in the range from 5 to 10.5, and the peak flux densities of these pulses are approximately 14∼29 times that of the average pulse (AP), much less than the ratios between the intensities of typical giant pulses and the intensity of AP. The cumulative distribution of the intensities of these pulses is basically a powerlaw distribution with the spectral index α = −4.3 ± 0.4. The detection rates for the pulses of RSN≥5 and RSN≥10 are 3% and 0.08%, respectively. For these pulses, the half-peak width W50 ranges from 1.6 ms to 8 ms, 3.9 ms in average. The phases of the vast majority of the strong single pulses are concentrated around the peak position of AP, but 2 strong pulses of RSN≥8.5 are detected at the phases about 33 ms earlier than the phase of the AP peak. This implies that there probably exist two emission regions of strong pulses, and this is consistent with the previously observed results at 40 MHz and 111 MHz, except that at 1.54 GHz the profile of AP exhibits only one component.  相似文献   

15.
The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent energy measurement for the air showers measured through their radio signal with the LOFAR antennas. The energy reconstruction is performed using a parameterized relation between the measured shower size and the cosmic-ray energy obtained from air shower simulations. In order to illustrate the capabilities of LORA, the all-particle cosmic-ray energy spectrum has been reconstructed, assuming that cosmic rays are composed only of protons or iron nuclei in the energy range between ∼2 × 1016 and 2 × 1018 eV. The results are compatible with literature values and a changing mass composition in the transition region from a Galactic to an extragalactic origin of cosmic rays.  相似文献   

16.
17.
We describe a method of observation for PeV–EeV τ neutrinos using Cherenkov light from the air showers of decayed τs produced by τ neutrino interactions in the Earth. Aiming for the realization of neutrino astronomy utilizing the Earth-skimming τ neutrino detection technique, highly precise determination of arrival direction is key due to the following issues: (1) clear identification of neutrinos by identifying those vertices originating within the Earth’s surface and (2) identification of very high energy neutrino sources. The Ashra detector uses newly developed light collectors which realize both a 42°-diameter field-of-view and arcminute resolution. Therefore, it has superior angular resolution for imaging Cherenkov air showers. In this paper, we estimate the sensitivity of and cosmic-ray background resulting from application of the Ashra-1 Cherenkov τ shower observation method. Both data from a commissioning run and a long-term observation (with fully equipped trigger system and one light collector) are presented. Our estimates are based on a detailed Monte Carlo simulation which describes all relevant shower processes from neutrino interaction to Cherenkov photon detection produced by τ air showers. In addition, the potential to determine the arrival direction of Cherenkov showers is evaluated by using the maximum likelihood method. We conclude that the Ashra-1 detector is a unique probe into detection of very high energy neutrinos and their accelerators.  相似文献   

18.
A 7 year survey using the Canadian Meteor Orbit Radar (CMOR), a specular backscattering orbital radar, has produced three million individually measured meteoroid orbits for particles with mean mass near 10−7 kg. We apply a 3D wavelet transform to our measured velocity vectors, partitioning them into 1° solar longitude bins while stacking all 7 years of data into a single “virtual” year to search for showers which show annual activity and last for at least 3 days. Our automated stream search algorithm has identified 117 meteor showers. We have recovered 42 of the 45 previously described streams from our first reconnaissance survey (Brown, P., Weryk, R.J., Wong, D.K., Jones, J. [2008]. Icarus 195, 317-339). Removing possible duplicate showers from the automated results leaves 109 total streams. These include 42 identified in survey I and at least 62 newly identified streams. Our large data sample and the enhanced sensitivity of the 3D wavelet search compared to our earlier survey have allowed us to extend the period of activity for several major showers. This includes detection of the Geminid shower from early November to late December and the Quadrantids from early November to mid-January. Among our newly identified streams are the Theta Serpentids which appears to be derived from 2008 KP and the Canum Venaticids which have a similar orbit to C/1975 X1 (Sato). We also find evidence that nearly 60% of all our streams are part of seven major stream complexes, linked via secular invariants.  相似文献   

19.
《Astroparticle Physics》2009,32(2):89-99
Atmospheric parameters, such as pressure (P), temperature (T) and density (ρP/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a 10% seasonal modulation and 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and ρ. The former affects the longitudinal development of air showers while the latter influences the Molière radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.  相似文献   

20.
We present the first clear observations of meteor shower activity from meteor-head echoes detected by a high-power large-aperture radar (HPLAR). Such observations have been performed at the Jicamarca VHF radar using its interferometric capabilities allowing the discrimination of meteor shower echoes from the much more frequent sporadic meteors. Until now, HPLARs were unable to distinguish meteor shower from the much more common sporadic meteor ones. In this work we have been able to detect and characterize the η-Aquariids (ETA) as well as the Perseids (PER) showers. The shower activity is more conspicuous for the ETA than for the PER shower due to the more favorable geometry. Namely, PER meteors come from low elevation angles, experiencing more filtering due to the combined Earth-atmosphere-radar instrument. In both cases, there is an excellent agreement between the measured mean velocity of the shower echoes and their expected velocity, within a fraction of 1 km s−1. Besides the good agreement with expected visual results, HPLARs observe meteors with a variety of particles sizes and masses, not observed by any other technique. Taking into account the different viewing volumes, compare to optical observations Jicamarca observes more than 1000 times more ETA meteors. Our results indicate that Jicamarca and other HPLARs are able to detect the echoes from meteor showers, but without interferometric capabilities such populations are difficult to identify just from their velocity distributions, particularly if their velocity distributions are expected to be similar to the more dominant distributions of sporadic meteors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号