首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Phragmites australis (common reed) has been increasing in brackish tidal wetlands of the eastern United States coast over the last century. Whereas several researchers have documented changes in community structure, this research explores the effects of Phragmites expansion on aboveground biomass and soil properties. We used historical aerial photography and a global positioning system (GPS) to identify and age Phragmites patches within a high marsh dominated by shortgrasses (Spartina patens and Distichlis spicata). Plots along transects were established within the vegetation types to represent a gradient of species dominance and a variety of ages of the Phragmites plots. In comparison to neighboring shortgrass communities, Phragmites communities were found to have nearly 10 times the live aboveground biomass. They also had lower soil salinity at the surface, a lower water level, less pronounced microtopographic relief, and higher redox potentials. These soil factors were correlated with the age and biomass of Phragmites communities, were increasingly different with increasing Phragmites dominance along the transects, and were increasingly altered by the ages of Phragmites communities until the factors stabilized in plots of 8 yr to 15 yr of age. We propose that Phragmites expansion plays an important role in altering these soil properties and suggest a variety of mechanisms to explain these alterations.  相似文献   

2.
Salt marsh ecosystems provide many critical ecological functions, yet they are subject to considerable disturbance ranging from direct human alteration to increased inundation due to climate change. We assessed emergent salt marsh plant characteristics in the Tuckerton Peninsula, a large expanse (~ 2000 ha) of highly inundated habitat along the southern New Jersey coast, USA. Key salt marsh plant parameters were monitored in the heavily grid-ditched northern segment, Open Marsh Water Management (OMWM) altered central segment, and the shoreline altered southern segment of the peninsula in the summer months of 2011 and 2013. Plant species composition and three metrics of abundance and structure (maximum canopy height, percent areal cover, and shoot density) were examined among marsh segments, along transects within segments, seasonally by month and between years. Despite seasonal or annual variability, the northern segment of the marsh differed in plant species composition from the central and southern segments. This difference was partly due to greater percent areal cover in the northern segment of upper marsh species such as Spartina patens and Distichlis spicata. S. patens also exhibited higher shoot densities in the northern segment than the central segment. Despite the higher abundance of upper marsh species, marsh surface elevations were lower in the northern segment than in the central or southern segments, suggesting the influence of altered hydrology due to human activities. Understanding current variation in the emergent salt marsh vegetation along the peninsula will help inform future habitat change in other coastal wetlands of New Jersey and the mid-Atlantic region subject to natural and anthropogenic drivers.  相似文献   

3.
Prescribed fire management generally stimulates plant biomass production in coastal marsh systems. This study was conducted to understand the interactive effects of the mechanisms of fire on vegetation production. The effects of canopy removal and ash deposition on biomass production were investigated in two manipulative experiments at the Blackwater National Wildlife Refuge, Dorchester County, MD. On non-burned sites, canopy removal increased biomass production above and belowground (40 and 260?%, respectively), while ash deposition showed no effect on production. On burned sites, post-burn canopy replacement decreased biomass production above and belowground (41 and 40?%, respectively). Production increased more in response to canopy removal at sites dominated by Schoenoplectus americanus than at sites dominated by Spartina patens and Distichlis spicata. Canopy removal was the dominant mechanism through which fire affected biomass production in this study. If increased biomass production is a desirable outcome, prescribed fire programs may benefit by maximizing canopy removal.  相似文献   

4.
Nitrogen inputs restructure ecosystems and can interact with other agents of ecological change and potentially intensify them. To examine the effects of nitrogen combined with those of elevation and competition, in 2005 we mapped vegetation and elevation within experimental plots that have been fertilized since 1970 in Great Sippewissett salt marsh, Cape Cod, MA, USA and compared the resulting effects on marsh vegetation. Decadal-scale chronic nutrient enrichment forced changes in cover and spatial distribution of different species. With increasing enrichment, there was a shift in species cover primarily involving loss of Spartina alterniflora and an increase in Distichlis spicata. Percent cover of near monocultures increased with nitrogen fertilization, owing mainly to the proliferation of D. spicata. The experimental fertilization prompted a shift from the short form of S. alterniflora to taller forms, hence increasing above-ground biomass, where this species managed to remain. Chronic enrichment increased upper and lower limits of the elevation range within which certain species occurred. The shift to increased cover of D. spicata was also associated with faster accretion of the marsh surface where this species was dominant, but not where S. alterniflora was dominant. Interactions among nutrient supply, elevation, and competition altered the direction of competitive success among different species of marsh plants, and forced changes in the spatial distribution and composition of the salt marsh plant communities. The results imply that there will be parallel changes in New England salt marshes owing to the widespread eutrophication of coastal waters and the increasing sea level rise. Knowing the mechanisms structuring marsh vegetative cover, and their role in modification of salt marsh accretion, may provide background with which to manage maintenance of affected coastal wetlands.  相似文献   

5.
In the salt marshes of Tomales Bay, California, where grazing by cattle increases the input of nitrogen to the marsh (either directly or indirectly as runoff from within the salt marsh watershed), high salt marsh vegetation is dominated byDistichlis spicata and is less diverse than marshes without excess nutrients. Using a field experiment, I investigated the role of soil fertility on the plant community of the high salt marsh. I hypothesized that when soil fertility is increased by nitrogen addition plant productivity will increase, as indicated by height, biomass, and cover, and competitive exclusion, byD. spicata, will lead to a reduction in species richness and evenness, especially where the initial density ofDistichlis is high (from transplanting). After two growing seasons, biweekly nitrogen addition to the high salt marsh led to increased plant biomass and cover. Diversity was not reduced, and space preemption byDistichlis-transplants did not confer a competitive advantage. Although the dominant species thrived (e.g.,Salicornia virginica, D. spicata, Triglochin concinna) they did not displace subdominant species and decrease diversity. The vegetation response in this high salt marsh system does not support the hypothesis that as biomass and cover (indicators of productivity) increase in response to increased nitrogen, competitive exclusion will occur and diversity will decrease.  相似文献   

6.
The rapid proliferation of Phragmites australis in North America has challenged resource managers to curb its expansion and reduce the loss of functional tidal marsh. We investigated whether native plant competition could reduce the ability of Phragmites to invade a tidal marsh, and if plant diversity (species richness, evenness, and composition) altered the competitive outcome. Immature Phragmites shoots and four native halophytes were transplanted to small but dense field plots (~1,200 shoots m−2) comprising three community structure types (Phragmites alone, Phragmites + 1 native species, and Phragmites + 4 native species). Interspecific competition significantly reduced Phragmites aboveground biomass, shoot length production, density, and survival by approximately 60%. Additionally, plots planted with greater native diversity contained Phragmites with the lowest growth and survival, potentially indicating diversity-enhanced resource competition. Competition consistently reduced the growth of Phragmites even under favorable conditions: lack of strong tidal flooding stresses as well as elevated nutrient pools.  相似文献   

7.
In light of widespread coastal eutrophication, identifying which nutrients limit vegetation and the community consequences when limitation is relaxed is critical to maintaining the health of estuarine marshes. Studies in temperate salt marshes have generally identified nitrogen (N) as the primary limiting nutrient for marsh vegetation, but the limiting nutrient in low salinity tidal marshes is unknown. I use a 3-yr nutrient addition experiment in mid elevation,Spartina patens dominated marshes that vary in salinity along two estuaries in southern Maine to examine variation in nutrient effects. Nutrient limitation shifted across estuarine salinity gradients; salt and brackish marsh vegetation was N limited, while oligohaline marsh vegetation was co-limited by N and phosphorus (P). Plant tissue analysis ofS. patens showed plants in the highest salinity marshes had the greatest percent N, despite N limitation, suggesting that N limitation in salt marshes is partially driven by a high demand for N to aid in salinity tolerance. Fertilization had little effect on species composition in monospecificS. patents stands of salt and brackish marshes, but N+P treatments in species-rich oligohaline marshes significantly altered community composition, favoring dominance by high aboveground producing plants. Eutrophication by both N and P has the potential to greatly reduce the characteristic high diversity of oligohaline marshes. Inputs of both nutrients in coastal watersheds must be managed to protect the diversity and functioning of the full range of estuarine marshes.  相似文献   

8.
In southern New England, salt marshes are exceptionally vulnerable to the impacts of accelerated sea level rise. Regional rates of sea level rise have been as much as 50 % greater than the global average over past decades, a more than fourfold increase over late Holocene background values. In addition, coastal development blocks many potential marsh migration routes, and compensatory mechanisms relying on positive feedbacks between inundation and sediment deposition are insufficient to counter inundation increases in extreme low-turbidity tidal waters. Accordingly, multiple lines of evidence suggest that marsh submergence is occurring in southern New England. A combination of monitoring data, field re-surveys, radiometric dating, and analysis of peat composition have established that, beginning in the early and mid-twentieth century, the dominant low-marsh plant, Spartina alterniflora, has encroached upward in tidal marshes, and typical high-marsh plants, including Juncus gerardii and Spartina patens, have declined, providing strong evidence that vegetation changes are being driven, at least in part, by higher water levels. Additionally, aerial and satellite imagery show shoreline retreat, widening and headward extension of channels, and new and expanded interior depressions. Papers in this special section highlight changes in marsh-building processes, patterns of vegetation loss, and shifts in species composition. The final papers turn to strategies for minimizing and coping with marsh loss by managing adaptively and planning for landward marsh migration. It is hoped that this collection offers lessons that will be of use to researchers and managers on coasts where relative sea level is not yet rising as fast as in southern New England.  相似文献   

9.
We studied interactions between animal disturbance (geese, carp, and muskrat) and elevation in a field experiment in tidal freshwater marshes of the Patuxent River, Maryland, United States. Vegetation changes were recorded in fenced and unfenced plots in high and low marsh community types for 2 yr using measurements of areal cover and within-plot frequency (which were averaged to create a dominance index), Leaf Area Index (LAI), and aboveground biomass. We related light environment to differences in vegetation using below-canopy measurements of Photosynthetically Active Radiation (PAR). In the low marsh, total cover of all species, cover of annual species, biomass, and LAI were significantly higher in plots fenced to exclude animals (exclosures) than in unfenced plots (fenced/unfenced total cover=76/40%, annual cover=45/10%, biomass=936/352 g m?2, LAI=3.3/1.4). PAR was significantly lower in fenced than unfenced plots (fenced/unfenced=115/442 μmol s-1 m?2). Despite the strong effect of fencing on biomass, species richness per plot (i.e., the number of species per plot, or species density) was not affected significantly by fencing in the low marsh. Most of the observed differences in cover, biomass, LAI, and PAR were due to variation in the abundance of the herbaceous annual speciesBidens laevis (dominance index fenced/unfenced=45/10%) andZizania aquatica (30/12%). In the high marsh community, fencing had only minor effects on plant community composition and did not significantly affect species richness, cover, biomass, PAR, or LAI. Our results show that animals can dramatically affect low marsh vegetation, primarily via physical disturbance or herbivory of shallowly rooted seedlings of annual species.  相似文献   

10.
The potential for marsh plants to be vectors in the transport of mercury species was studied in the natural, mature, tidal China Camp salt marsh on San Pablo Bay. The fluxes of organic matter, mercury (THg), and monomethylmercury (MeHg) were studied in natural stands of Spartina foliosa and Salicornia virginica. Seasonal fluxes from the sediment into aboveground biomass of live plants and subsequent transfer into the dead plant community by mortality were measured. Loss of THg and MeHg from the dead plant community through fragmentation, leaching, and excretion were calculated and were similar to net uptake. Seasonal data were added up to calculate annual mass balances. In S. foliosa, annual net production was 1,757 g DW m?2, and the annual net uptakes in the aboveground biomass were 305 μg THg m?2 and 5.720 μg MeHg m?2. In S. virginica, annual net production was 2,117 g DW m?2, and the annual net uptakes in aboveground biomass were 99.120 μg THg m?2 and 1.990 μg MeHg m?2. Of both plant species studied, S. foliosa had a slightly lower production rate but greater mercury species uptake and loss rates than S. virginica, and, consequently, it is to be expected that S. foliosa matter may affect the local and possibly the regional food web relatively more than S. virginica. However, the actual effects of the input of mercury-species-containing plant-derived particulate matter into the food webs would depend on trophic level, food preference, seasonal cycle of the consumer, total sediment surface area vegetated, location of the vegetation in the marsh landscape, and estuary bay landscape. Since the levels of mercury species in dead plant material greatly exceed those in live plant material (on a dry weight basis), detritivores would ingest greater mercury species concentrations than herbivores, and consumers of S. foliosa would ingest more than consumers of S. virginica. The greatest THg and MeHg losses of both plant species due to mortality and to fragmentation–leaching–excretion occurred in late spring and early autumn, which corresponds to peak MeHg levels observed in sediments of coastal systems of previous studies, suggesting enhanced THg–MeHg export from the marsh to the nearshore sediment.  相似文献   

11.
Seasonal changes in aboveground plant biomass, cover, and frequency were monitored in Sweet Hall Marsh, a tidal freshwater marsh located on the Pamunkey River, Virginia, during the 1974 growing season.Peltandra virginica accumulated the most biomass, 423.40 g per m2, followed byLeersia oryzoides at 67.75 g per m2. Annual net community production was estimated to be 775.74 g per m2 by using a multiple-harvest technique. Comparisons with other studies revealed that production was somewhat low for tidal freshwater marshes but mostly higher than production in Virginia brackish and saline wetlands. Measurements revealed an annual succession of plant species from spring to fall. The pattern observed was early dominance byPeltandra followed by a rise in importance ofPolygonum spp.,Impatients capensis andLeersia.  相似文献   

12.
Salt marsh fucoid algae are a conspicuous component of north temperate marshes, yet comparatively little research has been conducted to examine their ecological effects. We examined the influence of salt marsh fucoids on physical conditions and the biotic community in a manipulative experiment conducted in a southern Maine back-barrier salt marsh. The biomass of salt marsh fucoids was higher than that of aboveground Spartina alterniflora in the zone where we conducted the experiment. Average daytime temperatures at the sediment surface were significantly reduced by the presence of salt marsh fucoids. Density and biomass of standing-dead S. alterniflora was significantly higher when salt marsh fucoids were removed. In contrast, the abundance of various species of epifauna and infauna were significantly enhanced by the presence of salt marsh fucoids. A regional survey indicated that results from the study site may be conservative because the biomass of salt marsh fucoids was lowest among other back-barrier marshes. Salt marsh fucoids are little studied ecosystem engineers whose presence affects the microclimate and biotic community, especially the animals that constitute the basal components of the salt marsh trophic relay.  相似文献   

13.
Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time.  相似文献   

14.
The ecological importance of Plantago maritima within a salt marsh on the Bay of Fundy is documented through measurements of cover, density, and biomass. During late August 1993, peak standing crops of Plantago were as high as 532 g m?2, and composed as much as 96% of the biomass of a stand of vegetation. Plantago is a dominant component of the marsh vegetation at an elevation just above the Spartina alterniflora-dominated low marsh, and is found as a dominant when growing in association with a number of plant species characteristic of the high marsh. We hypothesize that the existence of this community is dependent upon regular ice-shearing of Spartina patens, which would otherwise competitively exclude Plantago. This hypothesis is supported by the elevational limits of Plantago dominance and the geographical limitation of Plantago communities to portions of the northwestern Atlantic subjected to winter temperatures which average below 0°C.  相似文献   

15.
Patterns of seed dispersal and seed bank accumulation need to be known to predict the species that will recruit into restoration sites versus those that must be introduced. We assessed the temporal and spatial patterns of seed availability and seed accumulation on the salt marsh plain of an 8-ha resforation site, based on seedlings that emerged from tidal material, wrack, rabbit pellets, and soil samples (in controlled experiments). We compared results from the first 3 yr of restoration (2000–2002) with results from a 5-yr-old restoration and an extant marsh, all within Tijuana Estuary, California. Seed dispersal was limited for most marsh plain species. Tidal dispersal occurred mainly in winter; seedling density and richness were highest with high spring tides and after fruiting of the dominant species,Sarcocornia pacifica (>90% of emergent seedlings).S. pacifica was also common in the seedlings that emerged from soil seed banks (up to 63%) and wrack (60%), while other species common in the vegetation were present at much lower densities. Seed bank accumulation in restored sites was low and few species were abundant. Seedlings that emerged from soil samples from the youngest restoration were mostly invasive exotics (64%), those of the 5-yr restoration were mostlyS. pacifica (63%), and those from the nearby extant marsh were mostlyTriglochin concinna (70%), despite more diverse vegetation. No salt marsh seedlings emerged from rabbit pellets; all were invasives (Mesembryanthemum crystallimum andCarpobrotus edulis). Emerging seedlings were much sparser in soil from the younger restoration than from the 5-yr restoration and the extant site (32.9±5.7<4642.2±1131.5 and 4689.3±359.3 seedlings m−2, respectively). Because dispersal is limited for most species, restoring diverse vegetation will require seeding or planting. Natural recruitment could be facilitated by completing restoration by early winter, when seeds of native plants have maximum tidal dispersal.  相似文献   

16.
Net primary production was measured in three characteristic salt marshes of the Ebre delta: anArthrocnemum macrostachyum salt marsh,A. macrostachyum-Sarcocornia fruticosa mixed salt marsh andS. fruticosa salt marsh. Above-ground and belowground biomass were harvested every 3 mo for 1 yr. Surface litter was also collected from each plot. Aboveground biomass was estimated from an indirect non-destructive method, based on the relationship between standing biomass and height of the vegetation. Decomposition of aboveground and belowground components was studied by the disappearance of plant material from litter bags in theS. fruticosa plot. Net primary production (aboveground and belowground) was calculated using the Smalley method. Standing biomass, litter, and primary production increased as soil salinity decreased. The annual average total aboveground plus belowground biomass was 872 g m−2 in theA. macrostachyum marsh, 1,198 g m−2 in theA. macrostachyum-S. fruticosa mixed marsh, and 3,766 g m−2 in theS. fruticosa biomass (aboveground plus belowground) was 226, 445, and 1,094 g m−2, respectively. Total aboveground plus below-ground net primary production was 240, 1,172, and 1,531 g m−2 yr−1. There was an exponential loss of weight during decomposition. Woody stems and roots, the most recalcitrant material, had 70% and 83% of the original material remaining after one year. Only 20–22% of leafy stem weight remained after one year. When results from the Mediterranean are compared to other salt marshes dominated by shrubbyChenopodiaceae in Mediterranean-type climates, a number of similarities emerge. There are similar zonation patterns, with elevation and maximum aboveground biomass and primary production occurring in the middle marsh. This is probably because of stress produced by waterlogging in the low marsh and by hypersalinity in the upper marsh.  相似文献   

17.
Coastal systems serve many human uses and as a result are susceptible to anthropogenic activities such as nutrient loading and overfishing. In soft sediments, infauna frequently serve as key indicators of such activities. To use infauna effectively as bioindicators, it is important to understand how infaunal abundances and community patterns vary naturally within ecosystems. We examined the spatial and temporal dynamics of infaunal annelids in four tidal creeks of the Plum Island Estuary, Massachusetts, USA, from June to October 2003, sampling along a tidal inundation gradient that crossed five distinct habitats from creek bottoms to the vegetated high marsh platform. Annelids comprised 97% of the total number of macroinfauna. Highest densities were found in creek wall habitats (33,418–65,535 individuals m−2), and lowest densities (2,421–10,668 individuals m−2) were found inSpartina patens habitats. Five numerically abundant species comprised 87% of the annelid assemblage and three species,Manayunkia aestuarina (Polychaeta),Paranais litoralis (Oligochaeta), andCernosvitoviella immota (Oligochaeta), were broadly distributed across the marsh landscape.Streblospio benedicti (Polychaeta) andFabricia sabella (Polychaeta) were abundant only in mudflat and creek wall habitats, respectively.P. litoralis experienced a summer decline in all habitats, whereasM. aestuarina abundance increased 4–5 fold, in October relative to June in creek wall and tall-formSpartina alterniflora habitats. Hierarchical spatial, analysis revealed that >90% of the variability in annelid abundances was found at the mesospatial scale (<50 m). Variation among the four creeks, (>1 km) was relatively small.  相似文献   

18.
Salt marsh zonation patterns generate different abiotic and biotic conditions that can accentuate species inherent differences in primary production and biomass. In South West Atlantic marshes, there are two Spartina species: Spartina alterniflora in the low intertidal and Spartina densiflora in the high intertidal. These two species are generally found in all marshes but with different dominance: In some marshes, the S. densiflora zone occupies higher extents, and in others, the S. alterniflora zone is the one that prevails. We found through field sampling that, in six studied marshes, there is greater S. densiflora live and total (i.e., dead+live) aboveground biomass (g m?2) in the marshes dominated by S. densiflora than in the ones dominated by S. alterniflora. Spartina alterniflora had similar aboveground biomass in the six marshes, regardless of the dominance of each species. When comparing the two Spartina species within each marsh, S. densiflora had greater live and total biomass in the marshes it dominates. In the marshes dominated by S. alterniflora, both species had similar live and total biomass. In all marshes, there was greater dead S. densiflora biomass. A multivariate analysis using selected abiotic factors (i.e., salinity, latitude, and tidal amplitude) showed that S. alterniflora aboveground biomass patterns are mainly correlated with salinity, while S. densiflora live biomass is mainly correlated with salinity and latitude, dead biomass with salinity and tidal amplitude, and total biomass with salinity alone. We conclude that in S. densiflora dominated marshes, the main processes of that species zone (i.e., nutrient accumulation) will be accentuated because of its higher biomass. We also conclude that climatic conditions, in combination with specific Spartina biotic and ambient abiotic parameters, can affect marsh ecological functions.  相似文献   

19.
Tidal freshwater marshes around the world face an uncertain future with increasing water levels, salinity intrusion, and temperature and precipitation shifts associated with climate change. Due to the characteristic abundance of both annual and perennial species in these habitats, even small increases in early growing season water levels may reduce seed germination, seedling establishment, and late-season plant cover, decreasing overall species abundance and productivity. This study looks at the distribution of tidal freshwater marsh plant species at Jug Bay, Patuxent River (Chesapeake Bay, USA), with respect to intertidal elevation, and the relationship between inundation early in the growing season and peak plant cover to better understand the potential impacts and marsh responses to increased inundation. Results show that 62% of marsh plant species are distributed at elevations around mean high water and are characterized by narrow elevation ranges in contrast with species growing at lower elevations. In addition, the frequency and duration of inundation and water depth to which the marsh was exposed to, prior to the growing season (March 15–May 15), negatively affected peak plant cover (measured in end-June to mid-July) after a threshold value was reached. For example, 36 and 55% decreases in peak plant cover were observed after duration of inundation threshold values of 25 and 36% was reached for annual and perennial species, respectively. Overall, this study suggests that plant communities of tidal freshwater marshes are sensitive to even small systematic changes in inundation, which may affect species abundance and richness as well as overall wetland resiliency to climate change.  相似文献   

20.
The primary objective of this research was to determine if vesicular-arbuscular (VA) mycorrhizal fungi are associated with the roots of common plant species found in North Carolina salt marshes. Root samples of Spartina alterniflora, S. patents, S. cynosuroides, Distichlis spicata, and Juncus roemerianus were collected from eight salt marsh sites. With the exception of S. alterniflora, all plant species were mycorrhizal. A greenhouse experiment was conducted to determine whether unfavorable soil conditions or inherent resistance by the plant inhibited development of mycorrhizal infection in field-collected S. alterniflora. Spartina alterniflora and S. patens were grown from seeds in soil collected from a pure stand of S. alterniflora (soil A) or a mixed stand of S. patens and D. spicata (soil P). Seedlings were harvested weekly for 8 wk, and roots were evaluated for infection by mycorrhizal fungi. Seedlings of S. patens were infected when grown for 2 wk in either soil A or soil P, indicating that soil collected from stands of S. alterniflora did not inhibit mycorrhizal infection in a susceptible host. Percent root length infected in S. patens was always greater in soil P than in soil A. Seedlings of S. alterniflora were not infected by mycorrhizal fungi in either soil A or soil P. Results of the greenhouse study indicate that S. alterniflora may be resistant to infection by vesicular-arbuscular mycorrhizal fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号