首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.  相似文献   

2.
We present predictions for the radio pulses emitted by extensive air showers using ZHAireS, an AIRES-based Monte Carlo code that takes into account the full complexity of ultra-high energy cosmic-ray induced shower development in the atmosphere, and allows the calculation of the electric field in both the time and frequency domains. We do not presuppose any emission mechanism and our results are compatible with a superposition of geomagnetic and charge excess radio emission effects. We investigate the polarization of the electric field as well as the effects of the refractive index n and shower geometry on the radio pulses. We show that geometry, coupled to the relativistic effects that appear when using a realistic refractive index n > 1, play a prominent role on the radio emission of air showers.  相似文献   

3.
《Astroparticle Physics》2012,35(6):354-361
We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or ‘multiplets’) which exhibit a correlation between arrival direction and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cosmic rays. We describe the largest multiplets found and compute the probability that they appeared by chance from an isotropic distribution. We find no statistically significant evidence for the presence of multiplets arising from magnetic deflections in the present data.  相似文献   

4.
Radio emission in atmospheric showers is currently interpreted in terms of radiation due to the deviation of the charged particles in the magnetic field of the Earth and to the charge excess (Askaryan effect). Each of these mechanisms has a distinctive polarization. The complex signal patterns can be qualitatively explained as the interference (superposition) of the fields induced by each mechanism. In this work we explicitly and quantitatively test a simple phenomenological model based on this idea. The model is constructed by isolating each of the two components at the simulation level and by making use of approximate symmetries for each of the contributions separately. The results of the model are then checked against full ZHAireS Monte Carlo simulations of the electric field calculated from first principles. We show that the simple model describes radio emission at a few percent level in a wide range of shower-observer geometries and on a shower-by-shower basis. As a consequence, this approach provides a simple method to reduce the computing time needed to accurately predict the electric field of radio pulses emitted from air showers, with many practical applications in experimental situations of interest.  相似文献   

5.
We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.  相似文献   

6.
The Cherenkov radio pulse emitted by hadronic showers of energies in the EeV range in ice is calculated for the first time using full three dimensional simulations of both shower development and the coherent radio pulse emitted as the excess charge develops in the shower. A Monte Carlo, ZHAireS, has been developed for this purpose combining the high energy hadronic interaction capabilities of AIRES, and the dense media propagation capabilities of TIERRAS, with the precise low energy tracking and specific algorithms developed to calculate the radio emission in ZHS. A thinning technique is implemented to allow the simulation of radio pulses induced by showers up to 10 EeV in ice. The code is validated comparing the results for electromagnetic and hadronic showers to those obtained with GEANT4 and ZHS codes. The contribution to the pulse of other shower particles in addition to electrons and positrons, mainly protons, pions and muons, is found to be below 3% for 10 PeV and above proton induced showers. The characteristics of hadronic showers and the corresponding Cherenkov frequency spectra are compared with those from purely electromagnetic showers. The dependence of the spectra on shower energy and high-energy hadronic model is addressed and parameterizations for the radio emission in hadronic showers in ice are given for practical applications.  相似文献   

7.
Results will be shown from the Astroneu array developed and operated in the outskirts of Patras, Greece. An array of 9 scintillator detectors and 3 antennas were deployed to study Extensive Air Showers (EAS) as a tool for calibrating an underwater neutrino telescope, possible other applications in muon tomography, education purposes, and last but not least, for the detection of air showers via their electromagnetic signature. In this work we concentrate to the electromagnetic detection of air showers presenting the operation of the RF system, as well as the analysis of the radio signals captured in coincidence with the scintillator detectors. We demonstrate the adequacy of the method to detect cosmic events even in the presence of high urban electromagnetic background, using noise filters, timing and signal polarization. The results are compared with well understood event reconstruction using the scintillator detectors and are indicating that cosmic showers were detected, proving that such small scale hybrid arrays can operate in strong background noise environments.  相似文献   

8.
9.
10.
The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly’s Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.  相似文献   

11.
We present the observations of cosmic gamma-ray bursts (GRBs) with the main detector of the SIGMA telescope onboard the Granat Observatory from January 1990 through September 1994. The observations were carried out in the energy range 35–1300 keV. We detected 36 GRBs and 31 high-energy solar flares during this period. No GRB fell within the main field of view; they were all recorded by the “secondary optics” of the telescope. The SIGMA telescope recorded relatively bright bursts with peak fluxes of 10?6–10?4 erg s?1 cm?2 in the 100–500-keV energy band. Stable detector background allows the long-term variability of GRB sources on a time scale of ~1000 s to be studied. The results of our search for early afterglows of GRBs are presented. The flux averaged over all bursts in the interval 100–800 s after the main event is 0.36±0.14 counts s?(35–300 keV), suggesting that there is soft gamma-ray emission on this time scale after a considerable number of GRBs.  相似文献   

12.
Unexpected chaotic features are found in time series of arrival time intervals of successive air showers with (E > 3 × 1014 eV). Over 99 % of air shower arrival time intervals obey the Poisson distribution law representing stochastic behaviors, but occasionally there are air showers showing real chaotic behaviors as distinguished from both random and colored noises. With two systems of the Kinki university installations, we found 13 cases showing chaotic time series in 3.36 yr with the system-1 and the 1.37 yr with the system-2. Five out of 10 chaotic air showers of the Kinki installation are detected during the same time zone also by the Osaka City university installation which is at 115 km distance from the Kinki one. In a remarkable example of September 19, 1991, the correlation dimension was observed to have dropped from about 4 to the minimum of 1.3 and recovered smoothly in about 38 h. The chaos structure in this case is detected in nearly the same time zone at the Ohya station of the Institute for Cosmic Ray Research, University of Tokyo, which is separated from the Kinki one by 460 km. Formation of chaos structure due to energetic cosmic ray dust particles is suggested. Progress of cosmic ray physics may be expected with the study of air showers marked with chaos.  相似文献   

13.
We study the influence of the regular component of the Galactic magnetic field (GMF) on the arrival directions of ultra-high energy cosmic rays (UHECRs). We find that, if the angular resolution of current experiments has to be fully exploited, deflections in the GMF cannot be neglected even for E = 1020 eV protons, especially for trajectories along the Galactic plane or crossing the Galactic center region. On the other hand, the GMF could be used as a spectrograph to discriminate among different source models and/or primaries of UHECRs, if its structure would be known with sufficient precision. We compare several GMF models introduced in the literature and discuss for the example of the AGASA data set how the significance of small-scale clustering or correlations with given astrophysical sources are affected by the GMF. We point out that the non-uniform exposure to the extragalactic sky induced by the GMF should be taken into account estimating the significance of potential (auto-) correlation signals.  相似文献   

14.
CODALEMA is one of the pioneer experiments dedicated to the radio detection of ultra high energy cosmic rays (UHECR), located at the radio observatory of Nançay (France). The CODALEMA experiment uses both a particle detector array and a radio antenna array. Data from both detection systems have been used to determine the ground coordinates of the core of extensive air showers (EAS). We discuss the observed systematic shift of the core positions determined with these two detection techniques. We show that this shift is due to the charge-excess contribution to the total radio emission of air showers, using the simulation code SELFAS. The dependences of the radio core shift to the primary cosmic ray characteristics are studied in details. The observation of this systematic shift can be considered as an experimental signature of the charge excess contribution.  相似文献   

15.
The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent energy measurement for the air showers measured through their radio signal with the LOFAR antennas. The energy reconstruction is performed using a parameterized relation between the measured shower size and the cosmic-ray energy obtained from air shower simulations. In order to illustrate the capabilities of LORA, the all-particle cosmic-ray energy spectrum has been reconstructed, assuming that cosmic rays are composed only of protons or iron nuclei in the energy range between ∼2 × 1016 and 2 × 1018 eV. The results are compatible with literature values and a changing mass composition in the transition region from a Galactic to an extragalactic origin of cosmic rays.  相似文献   

16.
We describe a new fractal and wavelet based framework for analysing atmospheric Cerenkov images of extensive air showers. The methodology developed using simulated data has been tested with the data collected from Mrk421 and Crab nebula directions during 10 October 2009–16 May 2010 by the TACTIC telescope. The telescope detected flaring activity in TeV gamma-rays from Mrk421 during 15th-17th February 2010. Hillas parameter analysis of Cerenkov images showed presence of TeV γ-ray signal with statistical significance of 12.5 σ beyond 1TeV energy for the 265 hours data set. Based on a Monte-Carlo simulated database of Cerenkov images recorded by the TACTIC telescope, the wavelet dimension B6 can be exploited as a useful parameter to segregate gamma-ray initiated events from hadron initiated events with better efficiency. We derive a preliminary value of the relevant significance for gamma initiated events using wavelet parameter B6 for the 265 hours long observation spell of Mrk421 including the flaring episode during 15th–17th February 2010 and 66 hours data of observations on Crab nebula. Wavelet analysis approach has also been tested on Crab OFF- source data of 27 hours. Application of wavelet parameter B6 on the recorded Cerenkov images of the TACTIC telescope reveals better results in terms of segregation efficiency and enhancement of the determined value of statistical significance as compared to the Hillas parameters approach.  相似文献   

17.
Cherenkov telescopes have the capability of detecting high energy tau neutrinos in the energy range of 1–1000 PeV by searching for very inclined showers. If a tau lepton, produced by a tau neutrino, escapes from the Earth or a mountain, it will decay and initiate a shower in the air which can be detected by an air shower fluorescence or Cherenkov telescope. In this paper, we present detailed Monte Carlo simulations of corresponding event rates for the VERITAS and two proposed Cherenkov Telescope Array sites: Meteor Crater and Yavapai Ranch, which use representative AGN neutrino flux models and take into account topographic conditions of the detector sites. The calculated neutrino sensitivities depend on the observation time and the shape of the energy spectrum, but in some cases are comparable or even better than corresponding neutrino sensitivities of the IceCube detector. For VERITAS and the considered Cherenkov Telescope Array sites the expected neutrino sensitivities are up to factor 3 higher than for the MAGIC site because of the presence of surrounding mountains.  相似文献   

18.
We describe a method of observation for PeV–EeV τ neutrinos using Cherenkov light from the air showers of decayed τs produced by τ neutrino interactions in the Earth. Aiming for the realization of neutrino astronomy utilizing the Earth-skimming τ neutrino detection technique, highly precise determination of arrival direction is key due to the following issues: (1) clear identification of neutrinos by identifying those vertices originating within the Earth’s surface and (2) identification of very high energy neutrino sources. The Ashra detector uses newly developed light collectors which realize both a 42°-diameter field-of-view and arcminute resolution. Therefore, it has superior angular resolution for imaging Cherenkov air showers. In this paper, we estimate the sensitivity of and cosmic-ray background resulting from application of the Ashra-1 Cherenkov τ shower observation method. Both data from a commissioning run and a long-term observation (with fully equipped trigger system and one light collector) are presented. Our estimates are based on a detailed Monte Carlo simulation which describes all relevant shower processes from neutrino interaction to Cherenkov photon detection produced by τ air showers. In addition, the potential to determine the arrival direction of Cherenkov showers is evaluated by using the maximum likelihood method. We conclude that the Ashra-1 detector is a unique probe into detection of very high energy neutrinos and their accelerators.  相似文献   

19.
20.
Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameterization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号