首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study in detail the effect of different particle release times from sources on the cosmic ray (CR) spectrum below 1015 eV in the Galaxy. We discuss different possible forms of particle injection such as burst-like injection, continuous injection for a finite time, injection from a stationary source and energy-dependent injection. When applied to the nearby known supernova remnants, we find that the observed CR anisotropy data favour the burst-like particle injection model for the CR diffusion coefficient   D ( E ) ∝ E a   with   a = 0.3 –0.6  in the local region. In this study we have also found that the contribution of the sources G114.3+0.3 and Monogem dominate if the observed anisotropy is a result of the effect of the nearby sources. Further study shows that we should not neglect the contribution of the undetected old sources to the local CR anisotropy.  相似文献   

2.
3.
We present new Planetary Nebula Spectrograph observations of the ordinary elliptical galaxy NGC 4494, resulting in positions and velocities of 255 planetary nebulae out to seven effective radii (25 kpc). We also present new wide-field surface photometry from MMT/Megacam, and long-slit stellar kinematics from VLT/FORS2. The spatial and kinematical distributions of the planetary nebulae agree with the field stars in the region of overlap. The mean rotation is relatively low, with a possible kinematic axis twist outside  1 R e  . The velocity dispersion profile declines with radius, though not very steeply, down to  ∼70 km s−1  at the last data point.
We have constructed spherical dynamical models of the system, including Jeans analyses with multi-component Λ cold dark matter (CDM) motivated galaxies as well as logarithmic potentials. These models include special attention to orbital anisotropy, which we constrain using fourth-order velocity moments. Given several different sets of modelling methods and assumptions, we find consistent results for the mass profile within the radial range constrained by the data. Some dark matter (DM) is required by the data; our best-fitting solution has a radially anisotropic stellar halo, a plausible stellar mass-to-light ratio and a DM halo with an unexpectedly low central density. We find that this result does not substantially change with a flattened axisymmetric model.
Taken together with other results for galaxy halo masses, we find suggestions for a puzzling pattern wherein most intermediate-luminosity galaxies have very low concentration haloes, while some high-mass ellipticals have very high concentrations. We discuss some possible implications of these results for DM and galaxy formation.  相似文献   

4.
Dynamical studies of local elliptical galaxies and the Fundamental Plane point to a strong dependence of the total mass-to-light ratio ( M / L ) on luminosity with a relation of the form   M / L ∝ L γ  . The 'tilt'γ may be caused by various factors, including stellar population properties (metallicity, age and star formation history), initial mass function, rotational support, luminosity profile non-homology and dark matter (DM) fraction. We evaluate the impact of all these factors using a large uniform data set of local early-type galaxies from Prugniel & Simien. We take particular care in estimating the stellar masses, using a general star formation history, and comparing different population synthesis models. We find that the stellar M / L contributes little to the tilt. We estimate the total M / L using simple Jeans dynamical models, and find that adopting accurate luminosity profiles is important but does not remove the need for an additional tilt component, which we ascribe to DM. We survey trends of the DM fraction within one effective radius, finding it to be roughly constant for galaxies fainter than   M B∼−20.5  , and increasing with luminosity for the brighter galaxies; we detect no significant differences between S0s and fast- and slow-rotating ellipticals. We construct simplified cosmological mass models and find general consistency, where the DM transition point is caused by a change in the relation between luminosity and effective radius. A more refined model with varying galaxy star formation efficiency suggests a transition from total mass profiles (including DM) of faint galaxies distributed similarly to the light to near-isothermal profiles for the bright galaxies. These conclusions are sensitive to various systematic uncertainties which we investigate in detail, but are consistent with the results of dynamical studies at larger radii.  相似文献   

5.
We present a detailed statistical study of the observed anisotropy in radio polarizations from distant extragalactic objects. This anisotropy was earlier found by Birch (1982) and reconfirmed by Jain and Ralston (1999) in a larger data set. A very strong signal was seen after imposing the cut , whereRM is the rotation measure and its mean value. In this paper, we show that there are several indications that this anisotropy cannot be attributed to bias in the data. We also find that a generalized statistic shows a very strong signal in the entire data without imposing theRM dependent cut. Finally we argue that an anisotropic background pseudoscalar field can explain the observations.  相似文献   

6.
In this paper we study the relation of radio emission to X-ray spectral and variability properties for a large sample of black hole X-ray binary systems. This is done to test, refine and extend – notably into the timing properties – the previously published 'unified model' for the coupling of accretion and ejection in such sources. In 14 outbursts from 11 different sources we find that in every case the peak radio flux, on occasion directly resolved into discrete relativistic ejections, is associated with the bright hard to soft state transition near the peak of the outburst. We also note the association of the radio flaring with periods of X-ray flaring during this transition in most, but not all, of the systems. In the soft state, radio emission is in nearly all cases either undetectable or optically thin, consistent with the suppression of the core jet in these states and 'relic' radio emission from interactions of previously ejected material and the ambient medium. However, these data cannot rule out an intermittent, optically thin, jet in the soft state. In attempting to associate X-ray timing properties with the ejection events we find a close, but not exact, correspondence between phases of very low integrated X-ray variability and such ejections. In fact the data suggest that there is not a perfect one-to-one correspondence between the radio, X-ray spectral or X-ray timing properties, suggesting that they may be linked simply as symptoms of the underlying state change and not causally to one another. We further study the sparse data on the reactivation of the jet during the transition back to the hard state in decay phase of outbursts, and find marginal evidence for this in one case only. In summary we find no strong evidence against the originally proposed model, confirming and extending some aspects of it with a much larger sample, but note that several aspects remain poorly tested.  相似文献   

7.
Microlensing promises to be a powerful tool for studying distant galaxies and quasars. As the data and models improve, there are systematic effects that need to be explored. Quasar continuum and broad-line regions may respond differently to microlensing due to their different sizes; to understand this effect, we study microlensing of finite sources by a mass function of stars. We find that microlensing is insensitive to the slope of the mass function but does depend on the mass range. For negative-parity images, diluting the stellar population with dark matter increases the magnification dispersion for small sources and decreases it for large sources. This implies that the quasar continuum and broad-line regions may experience very different microlensing in negative-parity lensed images. We confirm earlier conclusions that the surface brightness profile and geometry of the source have little effect on microlensing. Finally, we consider non-circular sources. We show that elliptical sources that are aligned with the direction of shear have larger magnification dispersions than sources with perpendicular alignment, an effect that becomes more prominent as the ellipticity increases. Elongated sources can lead to more rapid variability than circular sources, which raises the prospect of using microlensing to probe source shape.  相似文献   

8.
We present gas temperature, density, entropy and cooling time profiles for the cores of a sample of 15 galaxy groups observed with Chandra . We find that the entropy profiles follow a power-law profile down to very small fractions of R 500. Differences between the gas profiles of groups with radio-loud and radio-quiet brightest group galaxies are only marginally significant, and there is only a small difference in the   L X: T X  relations, for the central regions we study with Chandra , between the radio-loud and radio-quiet objects in our sample, in contrast to the much larger difference found on scales of the whole group in earlier work. However, there is evidence, from splitting the sample based on the mass of the central black holes, that repeated outbursts of active galactic nuclei (AGN) activity may have a long-term cumulative effect on the entropy profiles. We argue that, to first order, energy injection from radio sources does not change the global structure of the gas in the cores of groups, although it can displace gas on a local level. In most systems, it appears that AGN energy injection serves primarily to counter the effects of radiative cooling, rather than being responsible for the similarity breaking between groups and clusters.  相似文献   

9.
The recent results of the Pierre Auger Observatory on the possible correlation of Ultra High Energy Cosmic Rays events and several nearby discrete sources could be the starting point of a new era with charged particles astronomy. In this paper we introduce a simple model to determine the effects of any local distribution of sources on the expected flux. We consider two populations of sources: faraway sources uniformly distributed and local point sources. We study the effects on the expected flux of the local distribution of sources, referring also to the set of astrophysical objects whose correlation with the Auger events is experimentally claimed.  相似文献   

10.
We use cosmic‐ray exposure (CRE) ages of ureilites, combined with magnesium numbers of olivine, and oxygen isotopes, to search for evidence of specific source events initiating exposure for groups of ureilites. This technique can also be used to investigate the heterogeneity of the body from which the samples were derived. There are a total of 39 ureilites included in our work, which represents the largest collection of ureilite CRE age data used to date. Although we find some evidence of possible clusters, it is clear that most ureilites did not originate in one or two events on a homogeneous parent body.  相似文献   

11.
We present an analysis of X-ray variability in a flux-limited sample of quasi-stellar objects (QSOs). Selected from our deep ROSAT survey, these QSOs span a wide range in redshift (0.1< z <3.2) and are typically very faint, so we have developed a method to constrain the amplitude of variability in ensembles of low signal-to-noise ratio light curves. We find evidence for trends in this variability amplitude with both redshift and luminosity. The mean variability amplitude declines sharply with luminosity, as seen in local active galactic nuclei (AGN), but with some suggestion of an upturn for the most powerful sources. We find tentative evidence that this is caused by redshift evolution, since the high-redshift QSOs ( z >0.5) do not show the anticorrelation with luminosity seen in local AGN. We speculate on the implications of these results for physical models of AGN and their evolution. Finally, we find evidence for X-ray variability in an object classified as a narrow-emission-line galaxy, suggesting the presence of an AGN.  相似文献   

12.
We study the evolution of globular clusters with mass spectra under the influence of the steady Galactic tidal field, including the effects of velocity anisotropy. Similarly to single-mass models, velocity anisotropy develops as the cluster evolves, but the degree of anisotropy is much smaller than in isolated clusters. Except for very early epochs of the cluster evolution, the velocity distributions of nearly all mass components become tangentially anisotropic at the outer parts. We examine how the mass function (MF) changes in time. Specifically, we find that the power-law index of the MF decreases monotonically with the total mass of the cluster, in agreement with previous findings based on isotropic models or N -body studies. This is also consistent with the behaviour of the observed slopes of MFs for a limited number of clusters. We attempt to compare our results with multimass King models, although it is almost impossible to fit the entire density profiles for all mass components. When the MF is fixed, the central densities of individual components show significant differences between Fokker–Planck and King models. We obtain 'best-fitting' multimass King models, for which the central density of individual components as well as the total density distribution agrees with the Fokker–Planck models by adjusting the MF. The MFs obtained in this way closely resemble the MF within the half-mass radius of the Fokker–Planck result. Also, we find that the local MFs predicted by Fokker–Planck calculations vary more rapidly with radius than best-fitting multimass King models. The projected velocity profiles for anisotropic models show significant flattening toward the tidal radius compared with the isotropic model. This is caused by the fact that the tangential velocity dispersion becomes dominant at the outer parts. Such a behaviour of velocity profile appears to be consistent with the observed profiles of the collapsed cluster M15.  相似文献   

13.
We use a semi-analytic model of galaxy formation to study signatures of large-scale modulations in the star formation (SF) activity in galaxies. In order to do this, we carefully define local and global estimators of the density around galaxies. The former are computed using a voronoi tessellation technique and the latter are parametrized by the normalized distance to haloes and voids, in terms of the virial and void radii, respectively. As a function of local density, galaxies show a strong modulation in their SF, a result that is in agreement with those from several authors. When taking subsamples of equal local density at different large-scale environments, we find relevant global effects whereby the fraction of red galaxies diminishes for galaxies in equal local density environments farther away from clusters and closer to voids. In general, the semi-analytic simulation is in good agreement with the available observational results, and offers the possibility to disentangle many of the processes responsible for the variation of galaxy properties with the environment; we find that the changes found in samples of galaxies with equal local environment but different distances to haloes or voids come from the variations in the underlying mass function of dark matter (DM) haloes. There is an additional possible effect coming from the host DM halo ages, indicating that halo assembly also plays a small but significant role (1.14σ) in shaping the properties of galaxies, and in particular, hints at a possible spatial correlation in halo/stellar mass ages. An interesting result comes from the analysis of the coherence of flows in different large-scale environments of fixed local densities; the neighbourhoods of massive haloes are characterized by lower coherences than control samples, except for galaxies in filament-like regions, which show highly coherent motions.  相似文献   

14.
We study the individual contribution to secondary lepton production in hadronic interactions of cosmic rays (CRs) including resonances and heavier secondaries. For this purpose we use the same methodology discussed earlier [C.-Y. Huang, S.-E. Park, M. Pohl, C.D. Daniels, Astropart. Phys. 27 (2007) 429], namely the Monte-Carlo particle collision code DPMJET3.04 to determine the multiplicity spectra of various secondary particles with leptons as the final decay states, that result from inelastic collisions of cosmic-ray protons and Helium nuclei with the interstellar medium of standard composition. By combining the simulation results with parametric models for secondary particle (with resonances included) for incident cosmic-ray energies below a few GeV, where DPMJET appears unreliable, we thus derive production matrices for all stable secondary particles in cosmic-ray interactions with energies up to about 10 PeV.

We apply the production matrices to calculate the radio synchrotron radiation of secondary electrons in a young shell-type SNR, RX J1713.7-3946, which is a measure of the age, the spectral index of hadronic cosmic rays, and most importantly the magnetic field strength. We find that the multi-mG fields recently invoked to explain the X-ray flux variations are unlikely to extend over a large fraction of the radio-emitting region, otherwise the spectrum of hadronic cosmic rays in the energy window 0.1–100 GeV must be unusually hard.

We also use the production matrices to calculate the muon event rate in an IceCube-like detector that are induced by muon neutrinos from high-energy γ-ray sources such as RX J1713.7-3946, Vela Jr. and MGRO J2019+37. At muon energies of a few TeV, or in other word, about 10 TeV neutrino energy, an accumulation of data over about 5–10 years would allow testing the hadronic origin of TeV γ-rays.  相似文献   


15.
In an earlier paper, based on simultaneous multifrequency observations with the Giant Metrewave Radio Telescope (GMRT), we reported the variation of pulsar dispersion measures (DMs) with frequency. A few different explanations are possible for such frequency dependence, and a possible candidate is the effect of pulse shape evolution on the DM estimation technique. In this paper we describe extensive simulations we have done to investigate the effect of pulse profile evolution on pulsar DM estimates. We find that it is only for asymmetric pulse shapes that the DM estimate is significantly affected due to profile evolution with frequency. Using multifrequency data sets from our earlier observations, we have carried out systematic analyses of PSR B0329+54 and PSR B1642−03. Both these pulsars have central core-dominated emission which does not show significant asymmetric profile evolution with frequency. Even so, we find that the estimated DM shows significant variation with frequency for these pulsars. We also report results from new, simultaneous multifrequency observations of PSR B1133+16 carried out using the GMRT in phased array mode. This pulsar has an asymmetric pulse profile with significant evolution with frequency. We show that in such a case, amplitude of the observed DM variations can be attributed to profile evolution with frequency. We suggest that genuine DM variations with frequency could arise due to propagation effects through the interstellar medium and/or the pulsar magnetosphere.  相似文献   

16.
We have used optical V and R band observations from the Massive Compact Halo Object(MACHO) project on a sample of 59 quasars behind the Magellanic clouds to study their long term optical flux and colour variations. These quasars, lying in the redshift range of 0.2 z 2.8 and having apparent V band magnitudes between 16.6 and 20.1 mag, have observations ranging from 49 to 1353 epochs spanning over 7.5 yr with frequency of sampling between 2 to 10 days. All the quasars show variability during the observing period. The normalised excess variance(Fvar) in V and R bands are in the range 0.2% FV var 1.6% and 0.1% FR var 1.5% respectively. In a large fraction of the sources, Fvaris larger in the V band compared to the R band. From the z-transformed discrete cross-correlation function analysis, we find that there is no lag between the V and R band variations. Adopting the Markov Chain Monte Carlo(MCMC) approach, and properly taking into account the correlation between the errors in colours and magnitudes, it is found that the majority of sources show a bluer when brighter trend, while a minor fraction of quasars show the opposite behaviour. This is similar to the results obtained from another two independent algorithms, namely the weighted linear least squares fit(FITEXY) and the bivariate correlated errors and intrinsic scatter regression(BCES). However, the ordinary least squares(OLS) fit, normally used in the colour variability studies of quasars, indicates that all the quasars studied here show a bluer when brighter trend. It is therefore very clear that the OLS algorithm cannot be used for the study of colour variability in quasars.  相似文献   

17.
In a recent investigation evidence was presented for a low-level sinusoidal oscillation superimposed on top of the Hubble flow. This oscillation was in V CMB , in a sample of type Ia Supernovae sources with accurate distances, and it was found to have a wavelength close to 40 Mpc. It became easily visible after the removal of several previously identified discrete velocity components. Its amplitude like that of the Hubble velocity showed an increase with distance, as would be expected for a constant-amplitude space oscillation. Here we report that this oscillation is also present in distance clumping in these sources, with the same wavelength, but in phase quadrature. The discrete velocity components do not play a role in detecting the distance clumping wavelength. Assuming that time proceeds from high cosmological redshift to low, the blue-shifted velocity peaks, which represent the contraction stage of the velocity oscillation, then lead the density peaks. With the discrete velocity components removed we also find evidence for at least one other, weaker velocity oscillation. It is found to have a wavelength similar to one reported in density clumping by previous investigators. In those cases the source samples were much larger.  相似文献   

18.
Exoplanetary transit and stellar oscillation surveys require a very high precision photometry. The instrumental noise has therefore to be minimized. First, we perform a semi‐analytical model of different noise sources. We show that the noise due the CCD electrodes can be overcome using a Gaussian PSF (Point Spread Function) of full width half maximum larger than 1.6 pixels. We also find that for a PSF size of a few pixels, the photometric aperture has to be at least 2.5 times larger than the PSF full width half maximum. Then, we compare a front‐ with a back‐illuminated CCD through a Monte‐Carlo simulation. Both cameras give the same results for a PSF full width half maximum larger than 1.5 pixels. All these simulations are applied to the A STEP (Antarctica Search for Transiting Extrasolar Planets) project. As a result, we choose a front‐illuminated camera for A STEP because of its better resolution and lower price, and we will use a PSF larger than 1.6 pixels. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We perform collisionless N -body simulations of 1:1 galaxy mergers, using models which include a galaxy halo, disc and bulge, focusing on the behaviour of the halo component. The galaxy models are constructed without recourse to a Maxwellian approximation. We investigate the effect of varying the galaxies' orientation, their mutual orbit and the initial velocity anisotropy or cusp strength of the haloes upon the remnant halo density profiles and shape, as well as on the kinematics. We observe that the halo density profile (determined as a spherical average, an approximation we find appropriate) is exceptionally robust in mergers, and that the velocity anisotropy of our remnant haloes is nearly independent of the orbits or initial anisotropy of the haloes. The remnants follow the halo anisotropy – local density slope (β–γ) relation suggested by Hansen & Moore in the inner parts of the halo, but β is systematically lower than this relation predicts in the outer parts. Remnant halo axis ratios are strongly dependent on the initial parameters of the haloes and on their orbits. We also find that the remnant haloes are significantly less spherical than those described in studies of simulations which include gas cooling.  相似文献   

20.
We have assembled a catalogue of relative ages, metallicities and abundance ratios for about 150 local galaxies in field, group and cluster environments. The galaxies span morphological types from cD and ellipticals, to late-type spirals. Ages and metallicities were estimated from high-quality published spectral line indices using Worthey & Ottaviani (1997) single stellar population evolutionary models.
The identification of galaxy age as a fourth parameter in the fundamental plane ( Forbes, Ponman & Brown 1998 ) is confirmed by our larger sample of ages. We investigate trends between age and metallicity, and with other physical parameters of the galaxies, such as ellipticity, luminosity and kinematic anisotropy. We demonstrate the existence of a galaxy age–metallicity relation similar to that seen for local galactic disc stars, whereby young galaxies have high metallicity, while old galaxies span a large range in metallicities.
We also investigate the influence of environment and morphology on the galaxy age and metallicity, especially the predictions made by semi-analytic hierarchical clustering models (HCM). We confirm that non-cluster ellipticals are indeed younger on average than cluster ellipticals as predicted by the HCM models. However we also find a trend for the more luminous galaxies to have a higher [Mg/Fe] ratio than the lower luminosity galaxies, which is opposite to the expectation from HCM models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号