首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Upper Carboniferous—Lower Permian(Upper Pennsylvanian-Asselian) Tobra Formation is exposed in the Salt and Trans Indus ranges of Pakistan.The formation exhibits an alluvial plain(alluvial fan-piedmont alluvial plain) facies association in the Salt Range and Khisor Range.In addition,a stream flow facies association is restricted to the eastern Salt Range.The alluvial plain facies association is comprised of clast-supported massive conglomerate(Gmc),diamictite(Dm)facies,and massive sandstone(Sm) Hthofacies whereas the stream flow-dominated alluvial plain facies association includes fine-grained sandstone and siltstone(Fss),fining upwards pebbly sandstone(Sf),and massive mudstone(Fm) Hthofacies.The lack of glacial signatures(particularly glacial grooves and striatums) in the deposits in the Tobra Formation,which are,in contrast,present in their timeequivalent and palaeogeographically nearby strata of the Arabian peninsula,e.g.the AI Khlata Formation of Oman and Unayzah B member of the Saudi Arabia,suggests a pro-to periglacial,i.e.glaciofluvial depositional setting for the Tobra Formation.The sedimentology of the Tobra Formation attests that the Salt Range,Pakistan,occupied a palaeogeographic position just beyond the maximum glacial extent during Upper Pennsylvanian-Asselian time.  相似文献   

2.
During the deposition of the Chang-7 (Ch-7) and Chang-6 (Ch-6) units in the Upper Triassic, gravity flows were developed widely in a deep lake in the southwestern Ordos Basin, China. Based on cores, outcrops, well-logs and well-testing data, this paper documents the sedimentary characteristics of the gravity-flow deposits and constructs a depositional model. Gravity-flow deposits in the study area comprise seven lithofacies types, which are categorised into four groups: slides and slumps, debris-flow-dominated lithofacies, turbidity-current-dominated lithofacies, and deep-water mudstone-dominated lithofacies. The seven lithofacies form two sedimentary entities: sub-lacustrine fan and the slump olistolith, made up of three and two lithofacies associations, respectively. Lithofacies association 1 is a channel–levee complex with fining-/thinning-upward sequences whose main part is characterised by sandy debris flow-dominated, thick-bedded massive sandstones. Lithofacies association 2 represents distributary channelised lobes of sub-lacustrine fans, which can be further subdivided into distributary channel, channel lateral margin and inter-channel. Lithofacies association 3 is marked by non-channelised lobes of sub-lacustrine fans, including sheet-like turbidites and deep-lake mudstones. Lithofacies association 4 is represented by proximal lobes of slump olistolith, consisting of slides and slumps. Lithofacies association 5 is marked by distal lobes of slump olistolith, comprising tongue-shaped debris flow lobes and turbidite lobes. It is characterised by sandy debris flow, muddy debris flow-dominated sandstone and sandstone with classic Bouma sequences. Several factors caused the generation of gravity flows in the Ordos Basin, including sediment supply, terrain slope and external triggers, such as volcanisms, earthquakes and seasonal floods. The sediment supply of sub-lacustrine fan was most likely from seasonal floods with a high net-to-gross and incised channels. Triggered by volcanisms and earthquakes, the slump olistolith is deposited by the slumping and secondary transport of unconsolidated sediments in the delta front or prodelta with a low net-to-gross and no incised channels.  相似文献   

3.
The Dupi Tila Formation is composed of yellow to light brown medium to very fine moderately hard to loose sandstone, siltstone, silty clay, mudstone and shale with some conglomerates with clasts of petrified wood. The lithofacies of matrix supported conglomerate, trough cross bedded conglomerate, massive sandstone, trough cross bedded sandstone, planar cross bedded sandstone, ripple cross laminated sandstone-siltstone, flaser laminated sandstone-shale, lenticular laminated sandstone-siltstone-shale, parallel laminated sandstone-siltstone, wavy laminated shale, parallel laminated blue shale, and mudstone are delineated within this formation. Based on the grain size, sedimentary structures, water depth and genesis of individual facies, facies are grouped into three types of facies associations like (i) coarse-grained conglomerate facies association in relation to tractive current deposits of alluvial fan set up at the base of litho-succession (FAC), (ii) medium to fine-grained sandstone-siltstone-mudstone facies association or facies association in relation to strong tide (FAT) characterizing the middle part of litho-succession, (iii) very fine-grained sandstone-siltstone-mudstone facies association in relation to less frequent weak tide or heterolithic facies association (FAHL) characterizing upper part of litho-succession and shallow marine facies association (FASM) composing the uppermost litho-succession. Presence of gluconite indicates that the depositional environment was shallow to deep marine. The dominant paleoflow direction during the deposition of Dupi Tila Formation was toward southeast to southwestern direction. The rivers were of braided type at the piedmont alluvial depositional set up at the lower part, which later changed to estuarine-tidal flat type environmental set up in the middle part to upper part and paleo-environment was shallow marine in the uppermost part.  相似文献   

4.
The early Permian Karharbari and Barakar formations of East Bokaro basin comprise the following lithofacies:Lithofacies A, consisting of monomictic cobble- and pebble-conglomerate including pebbly sandstone, with faint crossbeds; deposited mainly by high-velocity aqueous currents as channel-lag deposit or longitudinal bars.Lithofacies B, coarse to medium sandstone, profusely crossbedded; interpreted as channel facies formed by downcurrent migration of sand bars in low-sinuosity streams.Lithofacies C, mainly fine sandstone with interbedded siltstone, characterised by small-scale ripple-lamination; formed in a low-energy environment such as swale-fill and/or overbank deposits.Lithofacies D, including carbonaceous shale and coal, with lack-of-current structures, indicating quiet-water deposition; interpreted as backswamp and lacustrine deposits.The overall context of the Karharbari and Barakar assemblage with relative abundance of pebbly coarse sandstone in the former and fine clastics in the latter, the presence of fining-upward cycles, widespread development of tabular and trough crossbedding and sample to sample variation of foreset azimuths, all suggest a generally alluvial environment. Analysis of crossbedding dip azimuth and dimensional fabric suggest that the sediment milieu in either case consisted of streams flowing persistently from the south-southeast to north-northwest direction. It is inferred that the unidirectional system of streams flowing across the East Bokaro basin changes systematically in channel sinuosity through time.  相似文献   

5.
The Sierra Grande Formation (Silurian-Early Devonian) consists of quartz arenites associated with clast supported conglomerates, mudstones, shales and ironstones. Eight sedimentary facies are recognized: cross-stratified and massive sandstone, plane bedded sandstone, ripple laminated sandstone, interstratified sandstone and mudstone, laminated mudstone and shale, oolitic ironstone, massive conglomerate and sheet conglomerate lags. These facies are interpreted as shallow marine deposits, ranging from foreshore to inner platform environments. Facies associations, based on vertical relationships among lithofacies, suggest several depositional zones: (a) beach to upper shoreface, with abundant plane bedded and massive bioturbated sandstones; (b) upper shoreface to breaker zone, characterized by multistorey cross-stratified and massive sandstone bodies interpreted as subtidal longshore-flow induced sand bars; (c) subtidal, nearshore tidal sand bars, consisting of upward fining sandstone sequences; (d) lower shoreface zone, dominated by ripple laminated sandstone, associated with cross-stratified and horizontal laminated sandstone, formed by translatory and oscillatory flows; and (e) transitional nearshore-offshore and inner platform zones, with heterolithic and pelitic successions, and oolitic ironstone horizons. Tidal currents, fair weather waves and storm events interacted during the deposition of the Sierra Grande Formation. However, the relevant features of the siliciclastics suggest that fair weather and storm waves were the most important mechanisms in sediment accumulation. The Silurian-Lower Devonian platform was part of a continental interior sag located between southern South America and southern Africa. The Sierra Grande Formation was deposited during a second order sea level rise, in which a shallow epeiric sea flooded a deeply weathered low relief continent.  相似文献   

6.
The Proterozoic Nagthat Formation of the Krol-belt succession, in the Nainital area, is composed mainly of fine- to coarse-grained quartzarenite with a subordinate amount of purple to grey sandstone, siltstone-shale and conglomerate horizons. The association with spilitic lava flows, variable palaeocurrent trends and the restricted lateral extent of the Nagthat Formation within the Krol-belt succession imply an active role for tectonism in the basin of deposition. In the upward coarsening succession of the Nagthat Formation, six major lithofacies have been identified: medium- to coarse-grained gravelly quartzarenite (Lithofacies A), planar cross-bedded, medium-grained quartzarenite (Lithofacies B), horizontally laminated, fine-grained quartzarenite (Lithofacies D), interbedded sandstone-shale (Lithofacies E) and matrix-supported conglomerate (Lithofacies F). The constituent lithofacies are repetitive in nature, forming upward fining unit cycles and interpreted to reflect deposition as upper shore-face, shoals and bars, barrier-beachface, tidal channels (inlets), intertidal–sandflat–mixedflat environments and, occasionally, in the form of gravity flows in subtidal channels. The general upward coarsening succession of the Nagthat Formation represents deposition in a progradational (regressive) barrier island system. The palaeocurrent pattern in the Nagthat Formation is distinctly polymodal and indicates sediment distribution across the roughly NW–SE trending shoreline, in response to a dominating flood tidal current system. The palaeocurrent pattern shows higher variability in the upper shore-face deposits than in the tidalflat domain. A recycled metasedimentary terrain served as the source for the Nagthat Formation, probably supplying the sediments from E, NE and S directions.  相似文献   

7.
ABSTRACT The middle Miocene sedimentary fill of the Calatayud Basin in north‐eastern Spain consists of proximal to distal alluvial fan‐floodplain and shallow lacustrine deposits. Four main facies groups characteristic of different sedimentary environments are recognized: (1) proximal and medial alluvial fan facies that comprise clast‐supported gravel and subordinate sandstone and mudstone, the latter exhibiting incipient pedogenic features; (2) distal alluvial fan facies, formed mainly of massive mudstone, carbonate‐rich palaeosols and local carbonate pond deposits; (3) lake margin facies, which show two distinct lithofacies associations depending on their distribution relative to the alluvial fan system, i.e. front (lithofacies A), comprising massive siliciclastic mudstone and tabular carbonates, or lateral (lithofacies B) showing laminated and/or massive siliciclastic mudstone alternating with tabular and/or laminated carbonate beds; and (4) mudflat–shallow lake facies showing a remarkable cyclical alternation of green‐grey and/or red siliciclastic mudstone units and white dolomitic carbonate beds. The cyclic mudflat–shallow lake succession, as exposed in the Orera composite section (OCS), is dominantly composed of small‐scale mudstone–carbonate/dolomite cycles. The mudstone intervals of the sedimentary cycles are interpreted as a result of sedimentation from suspension by distal sheet floods, the deposits evolving either under subaerial exposure or water‐saturated conditions, depending on their location on the lacustrine mudflat and on climate. The dolomite intervals accumulated during lake‐level highstands with Mg‐rich waters becoming increasingly concentrated. Lowstand to highstand lake‐level changes indicated by the mudstone/dolomite units of the small‐scale cycles reflect a climate control (from dry to wet conditions) on the sedimentation in the area. The spatial distribution of the different lithofacies implies that deposition of the small‐scale cycles took place in a low‐gradient, shallow lake basin located in an interfan zone. The development of the basin was constrained by gradual alluvial fan aggradation. Additional support for the palaeoenvironmental interpretation is derived from the isotopic compositions of carbonates from the various lithofacies that show a wide range of δ18O and δ13C values varying from ?7·9 to 3·0‰ PDB and from ?9·2 to ?1·7‰ PDB respectively. More negative δ18O and δ13C values are from carbonate‐rich palaeosols and lake‐margin carbonates, which extended in front of the alluvial fan systems, whereas more positive values correspond to dolomite beds deposited in the shallow lacustrine environment. The results show a clear trend of δ18O enrichment in the carbonates from lake margin to the centre of the shallow lake basin, thereby also demonstrating that the lake evolved under hydrologically closed conditions.  相似文献   

8.
ABSTRACT The early Pleistocene Laguna and Turlock Lake Formations and China Hat and Arroyo Seco Gravels along the east side of the San Joaquin Valley, California, were deposited in alluvial fans and marginal lakes. Upward-coarsening sequences of silt-sand-gravel record westward progradation of glacial outwash fans from the Sierra Nevada into proglacial lakes in the San Joaquin Valley. Distinctive sedimentary features delineate lacustrine, prodelta, and delta-front facies within fan-margin deposits and lower, middle, and upper-fan facies within alluvial-fan deposits. The lacustrine facies consists of a few metres of thinly and evenly bedded, rhythmically laminated claystone and clayey siltstone in varved couplets. Draped lamination, sinusoidal lamination, and load and pillar structures occur in some beds. Siltstone and claystone grade upward to slightly thicker wavy beds of siltstone and very fine-grained unconsolidated sand deposited in a prodelta setting. Convolute laminae within deformed steeply dipping foreset beds suggest slumping on the prodelta slope. The prodelta facies grades up to the delta-front facies, which consists of burrowed and bioturbated cross-bedded fine sand. Deltaic deposits are 5–6 m thick. The lower-fan facies forms the base of the fan sequence and consists of several metres of irregularly bedded, laminated, oxidized siltstone and fine sand. The middle-fan facies consists of cross-bedded, medium-grained to gravelly sand-filled channels cut into the lower-fan facies. Interbedded lens-shaped siltstone beds 2 m thick and several metres across were deposited in abandoned channels. The upper-fan facies consists of moderately to strongly weathered clayey gravel and sand containing pebble imbrication and crude stratification. Argillization during post-depositional soil formation has blurred the distinction between mud-supported debris-flow deposits and clast-supported channel deposits, but both are present in this facies. The deposits described here demonstrate the need for additional fan models in order to incorporate the variety of deposits developed in alluvial fan sequences deposited in humid climates. In previous models based on arctic fans, debris flows, abandoned channels, or widespread siltstone beds are not present in fan sequences, nor are marginal lacustrine and deltaic deposits well represented.  相似文献   

9.

The mid‐Silurian Major Mitchell Sandstone of the Grampians Group outcrops at Mt Bepcha, western Victoria, represent a prograding fluviodeltaic sequence comprising four lithofacies and five ichnofacies. The stratigraphically lowest Interbedded Sandstone/Siltstone Facies is characterised by thin sandstone and siltstone beds with soft‐sediment deformation and scours with gravelly lag deposits. This lithofacies contains Thalassinoides, Palaeophycus, Rhizocorallium and intrastratal burrows, together indicative of the Cruziana Ichnofacies, and is interpreted as a shallow‐marine depositional environment on a low‐energy delta front with minor tidal influences. The overlying Massive Sandstone Facies lacks silt, and consists of predominantly massive and some plane‐laminated sandstone, abundant Skolithos linearis , rare Palaeophycus and a single small Cruziana problematica ; the trace‐fossil assemblage is assigned to the Skolithos Ichnofacies. This facies is believed to have been deposited in a marine high‐energy shoreface environment with continuously shifting sands, affected by periodic flooding events from the mouth of a nearby river. Above this is the Trough Cross‐bedded Facies, which contains trough cross‐bedding with gravelly lag deposits, a northwest palaeocurrent direction and large Taenidium barretti burrows (Burrowed Ichnofacies). This facies also contains abundant plane‐laminated sandstone with a northeast‐southwest palaeocurrent direction and ichnofossils of Scoyenia and Daedalus , representing the Scoyenia Ichnofacies. The Trough Cross‐bedded Facies is interpreted to have been deposited in shallow low‐sinuosity channels by overbank‐flooding events, most likely on a delta plain. The uppermost facies, the Plane‐laminated Facies, contains thin beds of current‐lineated, plane‐laminated graded coarse to fine sandstone that preserve arthropod trackways (Arthropod Ichnofacies). This facies was deposited on a periodically sheet‐flooded, subaerially exposed delta plain.  相似文献   

10.
A high-resolution study involving the integration of cores, wireline logs and reflection seismic dataset was used to unravel the facies assemblages, reservoir quality and hydrocarbon potential of E1 and H9 reservoirs in the “PAC” field, Offshore Niger Delta. Facies analysis of the cored PAC-14 well shows six lithofacies: massive mudstone, parallel-laminated mudstones with sideritic bands, fine-grained parallel-laminated sandstone, medium-grained parallel-laminated sandstone, fine-grained ripple laminated sandstone, and coarse massive sandstone. These lithofacies were grouped into five facies associations: channel story axis (CSA), channel story margin (CSM), inter-channel thin beds (ICTB), mud-rich thin beds (MRTB) and injectites (INJ). These facies associations are typical of a confined channel and basin floor fan deposit of a deep-water turbidite depositional environment. Reservoir unit E1 was dominated by the facies association CSA while the H9 reservoir consists mainly of the facies associations MRTB and INJ. The observed sand injectites are suggested to have formed due to overloading of compacted sands leading to upward remobilization of sand into the overlying shale. Seismic horizons and faults were mapped to understand the structures, trend and reflections within the study area. Results from petrophysical volumetrics estimated the net hydrocarbon pore volume for the E1 and H9 reservoirs as 456 MMBBL and 378 MMBBL, respectively. Exploration for deep-water reservoir mainly targets high amplitude and bright seismic reflectors and ignores the low amplitude reflectors (dim loops) which are typically interpreted as non-reservoir units. However, this study shows a low-amplitude reflector containing medium-grained sand injectite unit, which has high porosity (31.7%) and permeability (4472 mD) values, and contains recoverable hydrocarbon.  相似文献   

11.
The late-orogenic Archaean Duparquet, Kirkland and Stormy basins of the Canadian Superior Province are characterized by bounding crustal-scale faults and abundant porphyry stock emplacement. Lava flows and pyroclastic deposits are restricted to the Kirkland and Stormy basins, and coarse clastic detritus characterizes the Duparquet basin. Seven distinct lithofacies are identified: (1) mafic volcanic, (2) felsic volcanic, (3) pyroclastic, (4) volcaniclastic, (5) conglomerate-sandstone, (6) sandstone-argillite  conglomerate), and (7) argillite-sandstone  tuffaceous sandstone). The mafic and felsic volcanic lithofacies represent effusive lava flows, the pyroclastic lithofacies is formed of subaerial surge and airfall deposits and the volcaniclastic lithofacies is composed of reworked volcanic debris. The conglomerate-sandstone lithofacies is interpreted as alluvial fan, fan delta or proximal braided stream deposits, whereas the sandstone-argillite lithofacies is consistent with sandy-dominated flood- or braidplain deposits. A dominantly shallow-water lacustrine setting is inferred for the argillite-sandstone lithofacies. These different lithofacies record the basin history and can be used to identify basin-forming processes. Lithofacies stacking and rapid lateral changes of lithological units in conjunction with interformational unconformities and basin margin faults suggest tectonically induced sedimentation. Volcanism can also influence basin evolution and the delicate balance between erosion, sedimentation, and prevalent transport processes is affected by volcanic input. Catastrophic influx of pyroclastic material facilitated mass-wasting processes and formation of non-confined hyperconcentrated flood flow deposits account for local congestion of alluvial or fluvial dispersal patterns. Confined stream flow processes govern sedimentation during intravolcanic phases or prominent tectonic uplift. In addition, climate which controls the weathering processes, and vegetation which stabilizes unconsolidated material, affects the transport and depositional process. A CO2-rich aggressive weathering, humid Archaean atmosphere favours traction current deposits and an absence of vegetation promotes rapid denudation. Although tectonism is the prevalent long-term controlling factor in restricted basins, the effects of volcanism, climate and lack of vegetation can also be detected.  相似文献   

12.
Although the Permian–Triassic Semanggol Formation is widely distributed in northwestern Peninsula Malaysia and is made of various lithofacies, its sedimentology and possible relation with the Permian–Triassic boundary (PTB) were not considered before. In this study, detailed facies analysis was conducted for two sections of the Semanggol Formation at the Bukit Kukus and Baling areas, South Kedah to clarify its sedimentology and relation to the PTB. Four facies from the Permian part of the Semanggol Formation that were identified at the Bukit Kukus section include laminated black mudstone, interbedded mudstone and sandstone, volcanogenic sediments, and bedded chert. In Baling area, the Triassic part of the formation is classified into three members. The lower member comprises of claystone and bedded chert facies, while the middle member is composed of sandstone and claystone interbeds (rhythmite). On the other hand, the upper member is grouped into two main units. The lower unit is mainly claystone and includes two facies: the varve-like laminated silt and clay and massive black claystone. The upper unit is composed of various sandstone lithofacies ranging from hummocky cross stratified (HCS) sandstone to thinly laminated sandstone to burrowed sandstone facies. The HCS sandstones occur as two units of fine-grained poorly sorted sandstone with clay lenses as flaser structure and are separated by a hard iron crust. They also show coarse grains of lag deposits at their bases. The laminated black mudstone at the lowermost part of the Semanggol Formation represents a reducing and quite conditions, which is most probably below the fairweather wave base in offshore environment that changed upwards into a fining upward sequence of tide environment. Abundance of chert beds in the volcanogenic sediments suggests the deposition of tuffs and volcanic ashes in deep marine setting which continues to form the Permian pelagic bedded chert and claystone. The bedded chert in the lower member of the Triassic section suggests its formation in deep marine conditions. The rhythmic sandstone and claystone interbeds of the middle member are suggestive for its formation as a distal fan of a turbidite sequence. Lithology and primary sedimentary structure of the upper member suggest its deposition in environments range from deep marine represented by the varve-like laminated silt and clay to subtidal environment corresponds to the massive black claystone to coastal environment represented by the hummocky sandstone units and reaches the maximum regression at the hiatus surface. Another cycle of transgression can be indicated from the second hummocky unit with transgressive lag deposits that develops to relatively deeper conditions as indicated from the formation of relatively thick laminated sandstone and bioturbated massive sandstone facies that represent tidal and subtidal environment, respectively. Late Permian lithological variation from the radiolarian chert into early Triassic claystone probably resulted from a decrease in productivity of radiolarians and might represent a PTB in the Semanggol Formation. Volcanogenic sediments in the studied section can be used as an evidence for volcanic activities at the end of the Permian, which is probably connected to the nearby volcanic ash layers in the eastern China, the ultimate cause of the PTB in this area. Black mudstone in the Permian part of the studied section may be interrelated to the Latest Permian Anoxia that started to build in the deep ocean well before the event on shallow shelves.  相似文献   

13.
Ancient stream-dominated (‘wet’) alluvial fan deposits have received far less attention in the literature than their arid/semi-arid counterparts. The Cenozoic basin fills along the Denali fault system of the northwestern Canadian Cordillera provide excellent examples of stream-dominated alluvial fan deposits because they developed during the Eocene-Oligocene temperate climatic regime in an active strike-slip orogen. The Amphitheatre Formation filled several strike-slip basins in Yukon Territory and consists of up to 1200 m of coarse siliciclastic rocks and coal. Detailed facies analysis, conglomerate: sandstone percentages (C:S), maximum particle size (MPS) distribution, and palaeocurrent analysis of the Amphitheatre Formation in two of these strike-slip basins document the transition from proximal, to middle, to distal and fringing environments within ancient stream-dominated alluvial-fan systems. Proximal fan deposits in the Bates Lake Basin are characterized by disorganized, clast-supported, boulder conglomerate and minor matrix(mud)-supported conglomerate. Proximal facies are located along the faulted basin margins in areas where C:S = 80 to 100 and where the average MPS ranges from 30 to 60 cm. Proximal fan deposits grade into middle fan, channelized, well organized cobble conglomerates that form upward fining sequences, with an average thickness of 7 m. Middle fan deposits grade basinward into well-sorted, laterally continuous beds of normally graded sandstone interbedded with trough cross-stratified sandstone. These distal fan deposits are characteristic of areas where C:S = 20 to 40 and where the average MPS ranges from 5 to 15 cm. Fan fringe deposits consist of lacustrine and axial fluvial facies. Palaeogeographic reconstruction of the Bates Lake Basin indicates that alluvial-fan sedimentation was concentrated in three parts of the basin. The largest alluvial-fan system abutted the strike-slip Duke River fault, and prograded westward across the axis of the basin. Two smaller, coarser grained fans prograded syntaxially northward from the normal-faulted southern basin margin. Facies analysis of the Burwash Basin indicates a similar transition from proximal to distal, stream-dominated alluvial fan environments, but with several key differences. Middle-fan deposits in the Burwash Basin define upward coarsening sequences 50 to 60 m thick composed of fine-grained lithofacies and coal in the lower part, trough cross-stratified sandstone in the middle, and conglomerate in the upper part of the sequence. Upward-coarsening sequences, 90–140 m thick, also are common in the fan fringe lacustrine deposits. These sequences coarsen upward from mudstone, through fine grained, ripple-laminated sandstone, to coarse grained trough cross-stratified sandstone. The upward-coarsening sequences are basinwide, facies independent, and probably represent progradation of stream-dominated alluvial-fan depositional systems. Coal distribution in the Amphitheatre Formation is closely coupled with predominant depositional processes on stream-dominated alluvial fans. The thickest coal seams occur in the most proximal part of the basin fill and in marginal lacustrine deposits. Coal development in the intervening middle and distal fan areas was suppressed by the high frequency of unconfined flow events and lateral channel mobility.  相似文献   

14.
The Ural Volcanics are a early Devonian, submarine, felsic lava-sill complex, exposed in the western central Lachlan Orogen, New South Wales. The Ural Volcanics and underlying Upper Silurian, deepwater, basin-fill sedimentary rocks make up the Rast Group. The Ural Range study area, centrally located in the Cargelligo 1:100 000 map sheet area, was mapped at 1:10 000 scale. Seventeen principal volcanic facies were identified in the study area, dominated by felsic coherent facies (rhyolite and dacite) and associated monomictic breccia and siltstone-matrix monomictic breccia facies. Subordinate volcaniclastic facies include the pumice-rich breccia facies association, rhyolite – dacite – siltstone breccia facies and fiamme – siltstone breccia facies. The sedimentary facies association includes mixed-provenance and non-volcanic sandstone to conglomerate, black mudstone, micaceous quartz sandstone and foliated mudstone. The succession was derived from at least two intrabasinal volcanic centres. One, in the north, was largely effusive and intrusive, building a lava – sill complex. Another, in the south, was effusive, intrusive and explosive, generating lavas and moderate-volume (~3 km3) pyroclastic facies. The presence of turbidites, marine fossils, very thick massive to graded volcaniclastic units and black mudstone, and the lack of large-scale cross-beds and erosional scours, provide evidence for deposition in a submarine environment below storm wave-base. The Ural Volcanics have potential for seafloor or sub-seafloor replacement massive sulfide deposits, although no massive sulfide prospects or related altered zones have yet been defined. Sparse, disseminated sulfides occur in sericite-altered, steeply dipping shear zones.  相似文献   

15.
Late Pleistocene morainic sequences around Dundalk Bay, eastern Ireland, were deposited in a variety of shallow, glaciomarine environments at the margins of a grounded ice lobe. The deposits are essentially ice-proximal delta-fan and -apron sequences and are divided into two lithofacies associations. Lithofacies association 1 occurs as a series of morainal banks formed at the southern margin of the ice lobe in a body of water open to influences from the Irish Sea. The morainal banks consist mainly of diamictic muds deposited from turbid plumes and by ice-rafting with minor occurrences of turbidites, cross-bedded gravels (subaqueous outwash) and massive boulder gravels (high-density debris flows). Lithofacies association 2 was deposited in a narrow arm of the sea at the north-eastern margin of the ice lobe. The deposits consist mainly of a series of coalescing, ice-proximal Gilbert-type fan deltas which are interbedded distally with tabular and lens-shaped subaqueous deposits. The latter are mainly ice-rafted diamictons, debris-flow deposits and subaqueous sands and gravels. Both lithofacies associations are draped by diamictons formed by a combination of rain-out, debris flow and traction-current activity. At a few localities the upper parts of the sequence have been sheared by minor oscillations of the ice sheet margin. These sequences form part of an extensive belt of glaciomarine deposits which border the drumlin swarms of east-central Ireland. Lithostratigraphic variability is partially related to the arrival of large volumes of debris at the ice lobe margin when the main lowland ice sheet surged during drumlin formation. Complex depositional continua of this type lack any major erosional breaks and should not be used either as climatic proxies or for stratigraphic correlations.  相似文献   

16.
Gabal Abu Had is an exposure of a volcanosedimentary succession in the North Eastern Desert Basement Complex. This succession includes intercalation of two major rock units, which are Dokhan Volcanics and Hammamat Group with different styles of formation, deposition environments, and genesis. Gabal Abu Had succession (GHS) is a northward dipping, c. 700-m-thick volcanosedimentary succession that rests on metavolcanic and old granitoid rocks with erosion unconformity. The lower part of GHS is dominated by volcaniclastic mass flow deposits and andesitic lava with interbedded gravely sandstone, whereas the upper sequence is composed of pyroclastic flow deposits including welded to no welded ignimbrite intercalated with gravely sandstone and massive clast-support conglomerate toward the top. Facies analysis study of GHS presented eight lithofacies types, which grouped into five lithofacies associations. The GHS basin started with effusive eruption of silica-poor volcanic center, which produced andesitic lava. A part of lava underwent hyaloclastic fragmentation due to the presence of fluvial water in places producing the volcaniclastic mass flow deposits. Later, an explosive silica-rich volcanic center affected the GHS basin and created the pyroclastic plain deposits (ignimbrite and bedded tuff). The fluvial braided river is still in action since the first eruption, producing gravely sandstone, which is intercalated with the volcanic sequence. The upper GHS is characterized by thick, massive, and clast-supported conglomerate (well rounded clasts up to 100 cm) of alluvial fan facies. Several silica-rich and silica-poor subvolcanic intrusions were emplaced in the GHS. The GHS development displays a cycle from low- to high-energy sedimentation under humid climatic conditions, in addition to extension and down faulting of basin shoulders. In comparison with Gabal El Urf, located to the north of GHS and was studied by El-Gameel (2010), the GHS is a lava-rich succession rather than Gabal El Urf succession which is mainly pyroclastic rich.  相似文献   

17.
Glacigenic sediments exposed in coastal cliffs cut through undulatory terrain fronting the Last Glacial Maximum laterofrontal moraine at Waterville on the Iveragh Peninsula, southwest Ireland, comprise three lithofacies. Lithofacies 1 and 2 consist of interdigitated, offlapping and superimposed ice‐proximal subaqueous outwash and stacked sequences of cohesionless and cohesive subaqueous debris flows, winnowed lag gravels and coarse‐grained suspension deposits. These are indicative of sedimentation in and around small grounding line fans that prograded from an oscillating glacier margin into a proglacial, interlobate lake. Lithofacies 3 comprises braided river deposits that have undergone significant syn‐sedimentary soft‐sediment deformation. Deposition was likely related to proglacial outwash activity and records the reduction of accommodation space for subaqueous sedimentation, either through the lowering of proglacial water levels or due to basin infilling. The stratigraphic architecture and sedimentology of the moraine at Waterville highlight the role of ice‐marginal depositional processes in the construction of morphostratigraphically significant ‘end moraine’ complexes in Great Britain and Ireland. Traditional ‘tills’ in these moraines are often crudely stratified diamictons and gravelly clinoforms deposited in ice‐proximal subaqueous and subaerial fans. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The tectono‐sedimentary evolution of the Rotliegend deposits of the northernmost margin of NE German Basin (NEGB) has been analysed on the basis of detailed sedimentary logs of 300 m of core material together with the re‐evaluation of 600 km of seismic lines. Three distinct phases were recognized. During the initial Phase I, basin geometry was largely controlled by normal faulting related to deep‐seated ductile shearing leading to a strong asymmetric shape, with a steep fault‐controlled eastern margin and a gently, dipping western margin. The results of forward modelling along a cross‐section fit the basin geometry in width and depth and reveal a footwall uplift of c. 1000 m. Adjacent to the steep faults, local sedimentation of Lithofacies Type I was confined to non‐cohesive debris flow‐dominated alluvial fans, whereas the gently dipping western margin was dominated by alluvial‐cone sedimentation. During the post‐extensional period (Phase II), cooling of the lithosphere generated additional accommodation space. The sediments of Lithofacies Type II, comprising mainly clast‐supported conglomerates, are interpreted as braided ephemeral stream flow‐surge deposits. Tectonic quiescence and an increase in flood events resulting from wetter climate led to progradation of this facies over the entire region. At the end of this period, the accommodation space was almost completely filled resulting in a level topography. Phase III was controlled by the thermal‐induced subsidence of the southerly located NEGB in post‐Illawarra times. The formerly isolated region tilted towards the SW, thus forming the northern margin of the NEGB during uppermost Havel and Elbe Subgroup times. The sediments of Lithofacies Type III were divided into a marginal sandstone‐dominated environment and a finer‐grained facies towards the SW. The former consists of poorly‐sorted coarse‐grained sandstones of a proximal and medial ephemeral stream floodplain facies. The latter comprise mud flat fines and fine‐grained distal ephemeral stream deposits. The end of the tectono‐sedimentary evolution is marked by the basinwide Zechstein transgression. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
The 400 m of Blomidon redbeds accumulated in a semi-arid rift valley in the subtropics. At St Mary's Bay, these redbeds are 64% sandy mudstone (playa mudflats), 25% graded beds (sandflats at the toes of alluvial fans), 10% fissile claystone (playa lakes), and 1% channel sandstone (stream channels). Flash floods in mountains south of the valley flowed down alluvial fans to spread out to the north-east as sheet flows on sandflats and playa mudflats. Deceleration of the sheet flows deposited graded beds 2–83 cm in thickness on the sandflats and thin layers of mud on the playas. Nine sequences, consisting of arrangements of six lithologies, compose 90% of the graded beds. In order of decreasing abundance, these are: ripple cross-laminated siltstone → horizontally laminated mudstone; fining-upward, ripple cross-laminated siltstone; ripple cross-laminated sandstone → horizontally laminated mudstone; cross-bedded sandstone horizontally laminated mudstone; ripple cross-laminated sandstone → ripple cross-laminated siltstone; rippledrift cross-laminated siltstone horizontally laminated mudstone; fining-upward, ripple-drift cross-laminated siltstone; cross-bedded sandstone → ripple cross-laminated siltstone; and cross-bedded sandstone → ripple cross-laminated siltstone → horizontally laminated mudstone. The sheet flows, perhaps up to 1 m in depth, had a high concentration of suspended load. Deposition was dominantly during lower flow regime conditions and moderate to rapid flow deceleration. There are 32 thinning and fining-up cycles where a sandflat package of graded beds is transitionally followed by a playa package of sandy mudstone. The cycles range in thickness from 1·3 to 13·3 m, averaging 4·6 m. Each cycle is initiated by avulsion to a new active channel network on a fan. Gradual abandonment of the channel network produces the thinning and fining-up cycle. The cycles are grouped in three 60–70 m fining-up megacycles. Upwards within each megacycle, the packages of sandy mudstone compose a progressively larger proportion of the cycles. Each megacycle evidently was initiated by a brief period of tectonic movement on the border faults that produced greater relief of the highlands relative to the valley floor. Subsequent erosion gradually lowered the relief to yield a fining-up megacycle.  相似文献   

20.
Oligocene-Miocene deposits of Bhuban and Boka Bil Formations, Surma Group, Manipur Western Hill consist of well preserved ichnofossil assemblages. These formations are represented by eight lithofacies such as Massive sandstone (Sm), Rippled marked argillaceous sandstone (Sr), Wavy laminated sandstone-siltstone-silty shale (Sw), Laminated shale (Fl), Massive mudstone (Fm), Trough cross-bedded sandstone (St), Lenticular laminated sandstonesiltstonesilty shale (Sll) and Laminated to massive sandstone-siltstone (Ssc). Fifteen ichnospecies were identified, which further categories into Skolithos, Cruziana, and Skolithos/Cruziana ichnofacies. Overall distribution pattern and behavioural nature of the ichnoassemblage and sedimentological attributes suggests that the sediments of Bhuban and Boka Bil Formations were deposited under frequent fluctuating sea level, moderate to strong energy condition, subtidal to lower intertidal environment, rich in organic nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号