首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New U–Pb zircon ages and Sr–Nd isotopic data for Triassic igneous and metamorphic rocks from northern New Guinea help constrain models of the evolution of Australia's northern and eastern margin. These data provide further evidence for an Early to Late Triassic volcanic arc in northern New Guinea, interpreted to have been part of a continuous magmatic belt along the Gondwana margin, through South America, Antarctica, New Zealand, the New England Fold Belt, New Guinea and into southeast Asia. The Early to Late Triassic volcanic arc in northern New Guinea intrudes high‐grade metamorphic rocks probably resulting from Late Permian to Early Triassic (ca 260–240 Ma) orogenesis, as recorded in the New England Fold Belt. Late Triassic magmatism in New Guinea (ca 220 Ma) is related to coeval extension and rifting as a precursor to Jurassic breakup of the Gondwana margin. In general, mantle‐like Sr–Nd isotopic compositions of mafic Palaeozoic to Tertiary granitoids appear to rule out the presence of a North Australian‐type Proterozoic basement under the New Guinea Mobile Belt. Parts of northern New Guinea may have a continental or transitional basement whereas adjacent areas are underlain by oceanic crust. It is proposed that the post‐breakup margin comprised promontories of extended Proterozoic‐Palaeozoic continental crust separated by embayments of oceanic crust, analogous to Australia's North West Shelf. Inferred movement to the south of an accretionary prism through the Triassic is consistent with subduction to the south‐southwest beneath northeast Australia generating arc‐related magmatism in New Guinea and the New England Fold Belt.  相似文献   

2.
The northern part of the Tasman Fold Belt System in Queensland comprises three segments, the Thomson, Hodgkinson- Broken River, and New England Fold Belts. The evolution of each fold belt can be traced through pre-cratonic (orogenic), transitional, and cratonic stages. The different timing of these stages within each fold belt indicates differing tectonic histories, although connecting links can be recognised between them from Late Devonian time onward. In general, orogenesis became younger from west to east towards the present continental margin. The most recent folding, confined to the New England Fold Belt, was of Early to mid-Cretaceous age. It is considered that this eastward migration of orogenic activity may reflect progressive continental accretion, although the total amount of accretion since the inception of the Tasman Fold Belt System in Cambrian time is uncertain.The Thomson Fold Belt is largely concealed beneath late Palaeozoic and Mesozoic intracratonic basin sediments. In addition, the age of the more highly deformed and metamorphosed rocks exposed in the northeast is unknown, being either Precambrian or early Palaeozoic. Therefore, the tectonic evolution of this fold belt must remain very speculative. In its early stages (Precambrian or early Palaeozoic), the Thomson Fold Belt was probably a rifted continental margin adjacent to the Early to Middle Proterozoic craton to the west and north. The presence of calc-alkaline volcanics of Late Cambrian Early Ordovician and Early-Middle Devonian age suggests that the fold belt evolved to a convergent Pacific-type continental margin. The tectonic setting of the pre-cratonic (orogenic) stage of the Hodgkinson—Broken River Fold Belt is also uncertain. Most of this fold belt consists of strongly deformed, flysch-type sediments of Silurian-Devonian age. Forearc, back-arc and rifted margin settings have all been proposed for these deposits. The transitional stage of the Hodgkinson—Broken River Fold Belt was characterised by eruption of extensive silicic continental volcanics, mainly ignimbrites, and intrusion of comagmatic granitoids in Late Carboniferous Early Permian time. An Andean-type continental margin model, with calc-alkaline volcanics erupted above a west-dipping subduction zone, has been suggested for this period. The tectonic history of the New England Fold Belt is believed to be relatively well understood. It was the site of extensive and repeated eruption of calc-alkaline volcanics from Late Silurian to Early Cretaceous time. The oldest rocks may have formed in a volcanic island arc. From the Late Devonian, the fold belt was a convergent continental margin above a west-dipping subduction zone. For Late Devonian- Early Carboniferous time, parallel belts representing continental margin volcanic arc, forearc basin, and subduction complex can be recognised.A great variety of mineral deposits, ranging in age from Late Cambrian-Early Ordovician and possibly even Precambrian to Early Cretaceous, is present in the exposed rocks of the Tasman Fold Belt System in Queensland. Volcanogenic massive sulphides and slate belt-type gold-bearing quartz veins are the most important deposits formed in the pre-cratonic (orogenic) stage of all three fold belts. The voicanogenic massive sulphides include classic Kuroko-type orebodies associated with silicic volcanics, such as those at Thalanga (Late Cambrian-Early Ordovician. Thomson Fold Belt) and at Mount Chalmers (Early Permian New England Fold Belt), and Kieslager or Besshi-type deposits related to submarine mafic volcanics, such as Peak Downs (Precambrian or early Palaeozoic, Thomson Fold Belt) and Dianne. OK and Mount Molloy (Silurian—Devonian, Hodgkinson Broken River Fold Belt). The major gold—copper orebody at Mount Morgan (Middle Devonian, New England Fold Belt), is considered to be of volcanic or subvolcanic origin, but is not a typical volcanogenic massive sulphide.The most numerous ore deposits are associated with calc-alkaline volcanics and granitoid intrusives of the transitional tectonic stage of the three fold belts, particularly the Late Carboniferous Early Perman of the Hodgkinson—Broken River Fold Belt and the Late Permian—Middle Triassic of the southeast Queensland part of the New England Fold Belt. In general, these deposits are small but rich. They include tin, tungsten, molybdenum and bismuth in granites and adjacent metasediments, base metals in contact meta somatic skarns, gold in volcanic breccia pipes, gold-bearing quartz veins within granitoid intrusives and in volcanic contact rocks, and low-grade disseminated porphyry-type copper and molybdenum deposits. The porphyry-type deposits occur in distinct belts related to intrusives of different ages: Devonian (Thomson Fold Belt), Late Carboniferous—Early Permian (Hodgkinson—Broken River Fold Belt). Late Permian Middle Triassic (southeast Queensland part of the New England Fold Belt), and Early Cretaceous (northern New England Fold Belt). All are too low grade to be of economic importance at present.Tertiary deep weathering events were responsible for the formation of lateritic nickel deposits on ultramafics and surficial manganese concentrations from disseminated mineralisation in cherts and jaspers.  相似文献   

3.
The northwestern corner of New South Wales consists of the paratectonic Late Proterozoic to Early Cambrian Adelaide Fold Belt and older rocks, which represent basement inliers in this fold belt. The rest of the state is built by the composite Late Proterozoic to Triassic Tasman Fold Belt System or Tasmanides.In New South Wales the Tasman Fold Belt System includes three fold belts: (1) the Late Proterozoic to Early Palaeozoic Kanmantoo Fold Belt; (2) the Early to Middle Palaeozoic Lachlan Fold Belt; and (3) the Early Palaeozoic to Triassic New England Fold Belt. The Late Palaeozoic to Triassic Sydney—Bowen Basin represents the foredeep of the New England Fold Belt.The Tasmanides developed in an active plate margin setting through the interaction of East Gondwanaland with the Ur-(Precambrian) and Palaeo-Pacific plates. The Tasmanides are characterized by a polyphase terrane accretion history: during the Late Proterozoic to Triassic the Tasmanides experienced three major episodes of terrane dispersal (Late Proterozoic—Cambrian, Silurian—Devonian, and Late Carboniferous—Permian) and six terrane accretionary events (Cambrian—Ordovician, Late Ordovician—Early Silurian, Middle Devonian, Carboniferous, Middle-Late Permian, and Triassic). The individual fold belts resulted from one or more accretionary events.The Kanmantoo Fold Belt has a very restricted range of mineralization and is characterized by stratabound copper deposits, whereas the Lachlan and New England Fold Belts have a great variety of metallogenic environments associated with both accretionary and dispersive tectonic episodes.The earliest deposits in the Lachlan Fold Belt are stratabound Cu and Mn deposits of Cambro-Ordovician age. In the Ordovician Cu deposits were formed in a volcanic are. In the Silurian porphyry Cu---Au deposits were formed during the late stages of development of the same volcanic are. Post-accretionary porphyry Cu---Au deposits were emplaced in the Early Devonian on the sites of the accreted volcanic arc. In the Middle to Late Silurian and Early Devonian a large number of base metal deposits originated as a result of rifting and felsic volcanism. In the Silurian and Early Devonian numerous Sn---W, Mo and base metal—Au granitoid related deposits were formed. A younger group of Mo---W and Sn deposits resulted from Early—Middle Carboniferous granitic plutonism in the eastern part of the Lachlan Fold Belt. In the Middle Devonian epithermal Au was associated with rifting and bimodal volcanism in the extreme eastern part of the Lachlan Fold Belt.In the New England Fold Belt pre-accretionary deposits comprise stratabound Cu and Mn deposits (pre-Early Devonian): stratabound Cu and Mn and ?exhalite Au deposits (Late Devonian to Early Carboniferous); and stratabound Cu, exhalite Au, and quartz—magnetite (?Late Carboniferous). S-type magmatism in the Late Carboniferous—Early Permian was responsible for vein Sn and possibly Au---As---Ag---Sb deposits. Volcanogenic base metals, when compared with the Lachlan Fold Belt, are only poorly represented, and were formed in the Early Permian. The metallogenesis of the New England Fold Belt is dominated by granitoid-related mineralization of Middle Permian to Triassic age, including Sn---W, Mo---W, and Au---Ag---As Sb deposits. Also in the Middle Permian epithermal Au---Ag mineralization was developed. During the above period of post-orogenic magmatism sizeable metahydrothermal Sb---Au(---W) and Au deposits were emplaced in major fracture and shear zones in central and eastern New England. The occurrence of antimony provides an additional distinguishing factor between the New England and Lachlan Fold Belts. In the New England Fold Belt antimony deposits are abundant whereas they are rare in the Lachlan Fold Belt. This may suggest fundamental crustal differences.  相似文献   

4.

Laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of zircons confirm a Late Devonian to Early Carboniferous age (ca 360–350 Ma) for silicic volcanic rocks of the Campwyn Volcanics and Yarrol terrane of the northern New England Fold Belt (Queensland). These rocks are coeval with silicic volcanism recorded elsewhere in the fold belt at this time (Connors Arch, Drummond Basin). The new U–Pb zircon ages, in combination with those from previous studies, show that silicic magmatism was both widespread across the northern New England Fold Belt (>250 000 km2 and ≥500 km inboard of plate margin) and protracted, occurring over a period of ~15 million years. Zircon inheritance is commonplace in the Late Devonian — Early Carboniferous volcanics, reflecting anatectic melting and considerable reworking of continental crust. Inherited zircon components range from ca 370 to ca 2050 Ma, with Middle Devonian (385–370 Ma) zircons being common to almost all dated units. Precambrian zircon components record either Precambrian crystalline crust or sedimentary accumulations that were present above or within the zone of magma formation. This contrasts with a lack of significant zircon inheritance in younger Permo‐Carboniferous igneous rocks intruded through, and emplaced on top of, the Devonian‐Carboniferous successions. The inheritance data and location of these volcanic rocks at the eastern margins of the northern New England Fold Belt, coupled with Sr–Nd, Pb isotopic data and depleted mantle model ages for Late Palaeozoic and Mesozoic magmatism, imply that Precambrian mafic and felsic crustal materials (potentially as old as 2050 Ma), or at the very least Lower Palaeozoic rocks derived from the reworking of Precambrian rocks, comprise basement to the eastern parts of the fold belt. This crustal basement architecture may be a relict from the Late Proterozoic breakup of the Rodinian supercontinent.  相似文献   

5.

The Middle Devonian to Early Carboniferous Campwyn Volcanics of coastal central Queensland form part of the fore‐arc basin and eastern flank of the volcanic arc of the northern New England Fold Belt. They consist of a complex association of pyroclastic, hyaloclastic and resedimented, texturally immature volcaniclastic facies associated with shallow intrusions, lavas and minor limestone, non‐volcanic siliciclastics and ignimbrite. Primary igneous rocks indicate a predominantly mafic‐intermediate parentage. Mafic to intermediate pyroclastic rocks within the unit formed from both subaerial and ?submarine to emergent strombolian and phreatomagmatic eruptions. Quench‐fragmented hyaloclastite breccias are widespread and abundant. Shallow marine conditions for much of the succession are indicated by fossil assemblages and intercalated limestone and epiclastic sandstone and conglomerate facies. Volcanism and associated intrusions were widely dispersed in the Campwyn depositional basin in both space and time. The minor component of silicic volcanic products is thought to have been less proximal and derived from eruptive centres to the west, inboard of the basin.  相似文献   

6.

Devonian and Carboniferous (Yarrol terrane) rocks, Early Permian strata, and Permian‐(?)Triassic plutons outcrop in the Stanage Bay region of the northern New England Fold Belt. The Early‐(?)Middle Devonian Mt Holly Formation consists mainly of coarse volcaniclastic rocks of intermediate‐silicic provenance, and mafic, intermediate and silicic volcanics. Limestone is abundant in the Duke Island, along with a significant component of quartz sandstone on Hunter Island. Most Carboniferous rocks can be placed in two units, the late Tournaisian‐Namurian Campwyn Volcanics, composed of coarse volcaniclastic sedimentary rocks, silicic ash flow tuff and widespread oolitic limestone, and the conformably overlying Neerkol Formation dominated by volcaniclastic sandstone and siltstone with uncommon pebble conglomerate and scattered silicic ash fall tuff. Strata of uncertain stratigraphic affinity are mapped as ‘undifferentiated Carboniferous’. The Early Permian Youlambie Conglomerate unconformably overlies Carboniferous rocks. It consists of mudstone, sandstone and conglomerate, the last containing clasts of Carboniferous sedimentary rocks, diverse volcanics and rare granitic rocks. Intrusive bodies include the altered and variably strained Tynemouth Diorite of possible Devonian age, and a quartz monzonite mass of likely Late Permian or Triassic age.

The rocks of the Yarrol terrane accumulated in shallow (Mt Holly, Campwyn) and deeper (Neerkol) marine conditions proximal to an active magmatic arc which was probably of continental margin type. The Youlambie Conglomerate was deposited unconformably above the Yarrol terrane in a rift basin. Late Permian regional deformation, which involved east‐west horizontal shortening achieved by folding, cleavage formation and east‐over‐west thrusting, increases in intensity towards the east.  相似文献   

7.
In a 60 Ma interval between the Late Carboniferous and the Late Permian, the magmatic arc associated with the cordilleran-type New England Fold Belt in northeast New South Wales shifted eastward and changed in trend from north–northwest to north. The eastern margin of the earlier (Devonian–Late Carboniferous) arc is marked by a sequence of calcalkaline lava flows, tuffs and coarse volcaniclastic sedimentary rocks preserved in the west of the Fold Belt. The younger arc (Late Permian–Triassic) is marked by I-type calcalkaline granitoids and comagmatic volcanic rocks emplaced mostly in the earlier forearc, but extending into the southern Sydney Basin, in the former backarc region. The growth of the younger arc was accompanied by widespread compressional deformation that stabilised the New England Fold Belt. During the transitional interval, two suites of S-type granitoids were emplaced, the Hillgrove Suite at about 305 Ma during an episode of compressive deformation and regional metamorphism, and the Bundarra Suite at about 280 Ma, during the later stages of an extensional episode. Isotopic and REE data indicate that both suites resulted from the partial melting of young silicic sedimentary rocks, probably part of the Carboniferous accretionary subduction complex, with heat supplied by the rise of asthenospheric material. Both mafic and silicic volcanic activity were widespread within and behind the Fold Belt from the onset of rifting (ca. 295 Ma) until the reestablishment of the arc. These volcanic rocks range in composition from MORB-like to calcalkaline and alkaline. The termination of the earlier arc, and the subsequent widespread and diverse igneous activity are considered to have resulted from the shallow breakoff of the downgoing plate, which allowed the rise of asthenosphere through a widening lithospheric gap. In this setting, division of the igneous rocks into pre-, syn-, and post-collisional groups is of limited value.  相似文献   

8.
The eastern part of the Tasman Orogenic Zone (or Fold Belt System) comprises the Hodgkinson—Broken River Orogen (or Fold Belt) in the north and the New England Orogen (or Fold Belt) in the centre and south. The two orogens are separated by the northern part of the Thomson Orogen.The Hodgkinson—Broken River Orogen contains Ordovician to Early Carboniferous sequences of volcaniclastic flysch with subordinate shelf carbonate facies sediments. Two provinces are recognized, the Hodgkinson Province in the north and the Broken River Province in the south. Unlike the New England Orogen where no Precambrian is known, rocks of the Hodgkinson—Broken River Orogen were deposited immediately east of and in part on, Precambrian crust.The evolution of the New England Orogen spans the time range Silurian to Triassic. The orogen is orientated at an acute angle to the mainly older Thomson and Lachlan Orogens to the west, but the relationships between all three orogens are obscured by the Permian—Triassic Bowen and Sydney Basins and younger Mesozoic cover. Three provinces are recognized, the Yarrol Province in the north, the Gympie Province in the east and the New England Province in the south.Both the Yarrol and New England Provinces are divisible into two zones, western and eastern, that are now separated by major Alpine-type ultramafic belts. The western zones developed at least in part on early Palaeozoic continental crust. They comprise Late Silurian to Early Permian volcanic-arc deposits (both island-arc and terrestrial Andean types) and volcaniclastic sediments laid down on unstable continental shelves. The eastern zones probably developed on oceanic crust and comprise pelagic sediments, thick flysch sequences and ophiolite suite rocks of Silurian (or older?) to Early Permian age. The Gympie Province comprises Permian to Early Triassic volcanics and shallow marine and minor paralic sediments which are now separated from the Yarrol Province by a discontinuous serpentinite belt.In morphotectonic terms, a Pacific-type continental margin with a three-part arrangement of calcalkaline volcanic arc in the west, unstable volcaniclastic continental shelf in the centre and continental slope and oceanic basin in the east, appears to have existed in the New England Orogen and probably in the Hodgkinson—Broken River Orogen as well, through much of mid- to late Palaeozoic time. However, the easternmost part of the New England Orogen, the Gympie Province, does not fit this pattern since it lies east of deepwater flysch deposits of the Yarrol Province.  相似文献   

9.
The Devonian mafic rocks from the Folly Basalt, northeast New South Wales, were emplaced in the forearc section of the Devonian‐Carboniferous magmatic arc preserved in the western part of the New England Fold Belt. Trace‐element abundances in fractionated metadolerites (maximum concentration of Ni = 85 ppm) from the Folly Basalt outcropping near Nundle demonstrate that these rocks have MORB affinity. Chondrite‐normalised rare‐earth element patterns are smooth and quasi‐horizontal; Ce/Yb ratios are 3.34–7.98; (La/Yb)N ratios range from 0.69 to 2.23; (La/Sm)N ratios of the rocks range from 0.63 to 1.55. The data are compatible with an origin of the melts from large degrees (>15%) of partial melting of mantle peridotite. A plausible mechanism for the production and emplacement of depleted magmas in the forearc zone of the Middle Palaeozoic eastern Australian magmatic arc involves the subduction of a hot oceanic spreading centre, which could cause the presence of a region of asthenospheric temperatures below the upper plate. It is also suggested that sustained high‐temperature conditions may have prevailed in the eastern Australian mantle for at least the last 400 million years.  相似文献   

10.

The Petroi Metabasalt comprises approximately 2000 m of massive and pillowed metabasalt flows, breccias, and metadolerite sills that overlie and are intercalated with Early Permian epiclastic rocks of the Nambucca Slate Belt. Both the basaltic rocks and associated sedimentary material were multiply deformed and metamorphosed to pumpellyite‐actinolite facies grade at about 255 Ma. Metamorphism and earlier sea‐floor alteration of these mafic rocks have led to hydration, carbonation and oxidation and considerable redistribution of the major elements and the more labile traces, notably Rb, Ba and Sr. However, abundances of TiO2, the high field strength trace elements, Ni, Cr and V, the light rare earths and yttrium are interpretable as being the largely unmodified magmatic abundances of mildly alkaline within‐plate basalts. This interpretation is supported by the composition of relic Ca‐rich pyroxenes in the metadolerites which fall in the fields of mildly alkaline basalts. The field relationships, age and composition of these rocks suggest either eruption on oceanic crust covered by a thick sequence of epiclastic rocks and subsequent incorporation into an accretionary subduction complex, or generation during rifting of the eastern part of the New England Fold Belt and accumulation, together with the associated sedimentary rocks, in a graben. The chemical and mineral characteristics of the igneous rocks indicate that the volcanism was not related to magmatic arc activity, and their presence demonstrates the rocks of the Nambucca Slate Belt are neither fore‐arc basin nor slope‐basin deposits.  相似文献   

11.
Geochemical studies of volcanic rocks in the Gamilaroi terrane and Calliope Volcanic Assemblage, New England Fold Belt, eastern Australia, indicate that the setting in which these rocks formed changed in both space and time. The Upper Silurian to Middle Devonian basalts of the Gamilaroi terrane show flat to slightly light rare‐earth element (LREE) depleted chondrite normalised patterns, depletion of high field strength elements (HFSE) relative to N‐MORB, low Ti/V and high Ti/Zr ratios, high Ni, Cr and large‐ion lithophile element (LILE) contents, features characteristic of intra‐oceanic island arc basaltic magmas. They are associated with low‐K, less mafic volcanics, showing moderate LREE enrichment, low Nb and Y contents and Rb/Zr ratios. The depletion of HFSE in the basalts indicates that the magmas were derived from a refractory source in a supra‐subduction zone setting. The presence of such a zone implies that the arc was associated with a backarc basin, the location of which was to the west where a wide backarc region existed from the Middle Silurian. This polarity of arc and backarc basin suggests that the subduction zone dipped to the west. In contrast to their older counterparts, Middle to Upper Devonian basalts of the Gamilaroi terrane have MORB‐like chondrite normalised patterns and higher Ti and lower LILE contents. Moreover, they have low Ti/Zr ratios and MORB‐like Ti/V ratios and HFSE contents, features typical of backarc basins. Dolerites of the Gamilaroi terrane also have predominantly backarc basin signatures. These features suggest that both the basalts and dolerites have been emplaced in an extensional environment produced during the rifting of the intra‐oceanic island arc lithosphere. A progressive increase in Ti/V ratios, and TiO2 and Fe2O3 contents at constant MgO, of stratigraphically equivalent basalts, towards the north‐northwest part of the belt, is consistent with either greater extension to the north or melting of a more fertile magma source. By contrast, basalts in the southeast part of the terrane have moderately high Ti/Zr and low Ti/V ratios and in some samples, exhibit depletion of HFSE, compositional features transitional between island arc and backarc basin basalts. The Lower to Middle Devonian mafic rocks in the Calliope Volcanic Assemblage show both LREE enriched and depleted chondrite normalised REE patterns. Further, the majority have high Ti/Zr ratios and low Zr contents as well as relatively high Th contents relative to MORB. These features are common to rocks of Middle Devonian age as well as those of Early Devonian age and are suggestive of eruption in an arc setting. Thus, the data from this study provide new evidence for the evolution of the New England Fold Belt from the Late Silurian to the Late Devonian and reveal a history more complicated than previously reported.  相似文献   

12.
Petrological, geochemical and radiogenic isotopic data on ophiolitic‐type rocks from the Marlborough terrane, the largest (~700 km2) ultramafic‐mafic rock association in eastern Australia, argue strongly for a sea‐floor spreading centre origin. Chromium spinel from partially serpentinised mantle harzburgite record average Cr/(Cr + Al) = 0.4 with associated mafic rocks displaying depleted MORB‐like trace‐element characteristics. A Sm/Nd isochron defined by whole‐rock mafic samples yields a crystallisation age of 562 ± 22 Ma (2σ). These rocks are thus amongst the oldest rocks so far identified in the New England Fold Belt and suggest the presence of a late Neoproterozoic ocean basin to the east of the Tasman Line. The next oldest ultramafic rock association dated from the New England Fold Belt is ca530 Ma and is interpreted as backarc in origin. These data suggest that the New England Fold Belt may have developed on oceanic crust, following an oceanward migration of the subduction zone at ca540 Ma as recorded by deformation and metamorphism in the Anakie Inlier. Fragments of late Neoproterozoic oceanic lithosphere were accreted during progressive cratonisation of the east Australian margin.  相似文献   

13.
The ultramafic‐mafic complex in the Marlborough terrane of the northern New England Fold Belt is dominated by members of a Neoproterozoic (ca 560 Ma) ophiolite (V1). The ophiolite has been intruded by the products of three Palaeozoic tectonomagmatic episodes (V2, V3 and V4). The V2 magmatic episode is represented by tholeiitic and calc‐alkaline basalts and gabbros of island‐arc affinities. Sm/Nd isotopes give a whole‐rock isochron age of 380 ± 19 Ma (2σ) to this episode, some 180 million years younger than the V1 ophiolitic rocks. The V3 magmatic episode includes tholeiitic and alkali basalts with enriched geochemical signatures characteristic of intraplate volcanism. A whole‐rock Sm/Nd isochron age of 293 ± 35 Ma is obtained for this event. A fourth magmatic event (V4) is represented by basaltic andesites and siliceous intrusives with geochemical features similar to modern adakites. This event has its type locality in the Percy Isles. These data provide tectonic and geochronological constraints for the previously enigmatic Marlborough terrane and as such contribute to the ever‐evolving understanding of New England Fold Belt development.  相似文献   

14.
One of the most significant, but poorly understood, tectonic events in the east Lachlan Fold Belt is that which caused the shift from mafic, mantle‐derived calc‐alkaline/shoshonitic volcanism in the Late Ordovician to silicic (S‐type) plutonism and volcanism in the late Early Silurian. We suggest that this chemical/isotopic shift required major changes in crustal architecture, but not tectonic setting, and simply involved ongoing subduction‐related magmatism following burial of the pre‐existing, active intraoceanic arc by overthrusting Ordovician sediments during Late Ordovician — Early Silurian (pre‐Benambran) deformation, associated with regional northeast‐southwest shortening. A review of ‘type’ Benambran deformation from the type area (central Lachlan Fold Belt) shows that it is constrained to a north‐northwest‐trending belt at ca 430 Ma (late Early Silurian), associated with high‐grade metamorphism and S‐type granite generation. Similar features were associated with ca 430 Ma deformation in east Lachlan Fold Belt, highlighted by the Cooma Complex, and formed within a separate north‐trending belt that included the S‐type Kosciuszko, Murrumbidgee, Young and Wyangala Batholiths. As Ordovician turbidites were partially melted at ca 430 Ma, they must have been buried already to ~20 km before the ‘type’ Benambran deformation. We suggest that this burial occurred during earlier northeast‐southwest shortening associated with regional oblique folds and thrusts, loosely referred to previously as latitudinal or east‐west structures. This event also caused the earliest Silurian uplift in the central Lachlan Fold Belt (Benambran highlands), which pre‐dated the ‘type’ Benambran deformation and is constrained as latest Ordovician — earliest Silurian (ca 450–440 Ma) in age. The south‐ to southwest‐verging, earliest Silurian folds and thrusts in the Tabberabbera Zone are considered to be associated with these early oblique structures, although similar deformation in that zone probably continued into the Devonian. We term these ‘pre’‐ and ‘type’‐Benambran events as ‘early’ and ‘late’ for historical reasons, although we do not consider that they are necessarily related. Heat‐flow modelling suggests that burial of ‘average’ Ordovician turbidites during early Benambran deformation at 450–440 Ma, to form a 30 km‐thick crustal pile, cannot provide sufficient heat to induce mid‐crustal melting at ca 430 Ma by internal heat generation alone. An external, mantle heat source is required, best illustrated by the mafic ca 430 Ma, Micalong Swamp Igneous Complex in the S‐type Young Batholith. Modern heat‐flow constraints also indicate that the lower crust cannot be felsic and, along with petrological evidence, appears to preclude older continental ‘basement terranes’ as sources for the S‐type granites. Restriction of the S‐type batholiths into two discrete, oblique, linear belts in the central and east Lachlan Fold Belt supports a model of separate magmatic arc/subduction zone complexes, consistent with the existence of adjacent, structurally imbricated turbidite zones with opposite tectonic vergence, inferred by other workers to be independent accretionary prisms. Arc magmas associated with this ‘double convergent’ subduction system in the east Lachlan Fold Belt were heavily contaminated by Ordovician sediment, recently buried during the early Benambran deformation, causing the shift from mafic to silicic (S‐type) magmatism. In contrast, the central Lachlan Fold Belt magmatic arc, represented by the Wagga‐Omeo Zone, only began in the Early Silurian in response to subduction associated with the early Benambran northeast‐southwest shortening. The model requires that the S‐type and subsequent I‐type (Late Silurian — Devonian) granites of the Lachlan Fold Belt were associated with ongoing, subduction‐related tectonic activity.  相似文献   

15.
Devonian rocks occur in northeastern Australia within the ‘Tasman Geosyncline’ in three major tectonic divisions—(a) a very broad mobile platform related to the last stages of stabilisation of the Lachlan Geosyncline, marginal to which is found, (b) the volcanic‐rich New England Geosyncline, and (c) a contrasting region in northern Queensland where complex marine to continental sedimentation occurred on cratonic blocks while non‐volcanic flysch‐like sedimentation occurred in the marginal Hodgkinson Basin.

The tectonic setting was governed by differences in the nature of the continental margin, so that the New England Geosyncline and Hodgkinson Basin, which developed along the eastern margin of the continent from the earliest Devonian to the late Palaeozoic, show correspondingly different sedimentation and deformation histories.

An integrated account of the Devonian geology of these regions is given, leading to.an interpretation of the environments of the Devonian in terms of plate‐tectonic movements, generally from the east.

Postulated tectonic zones within the New England Geosyncline region include pre‐Devonian deep ocean deposits with mild high‐pressure low‐temperature meta‐morphism, and Devonian volcanic arc and marginal sea volcanic‐derived deposits. Within the mobile platform to the west, variable marine and continental deposits are associated with volcanicity in the zone transitional to the New England Geosyncline. In the northern region, rifting of the craton and development of an Atlantic‐type margin was followed by subduction with folding and metamorphism at the end of the Devonian.

The Devonian rocks are strongly affected by intense late Palaeozoic tectonic and igneous activity in the eastern marginal regions, but only minor effects are seen to the west.  相似文献   

16.
Ultramafic‐intermediate rocks exposed on the South Island of the Percy Isles have been previously grouped into the ophiolitic Marlborough terrane of the northern New England Fold Belt. However, petrological, geochemical and geochronological data all suggest a different origin for the South Island rocks and a new terrane, the South Island terrane, is proposed. The South Island terrane rocks differ from ultramafic‐mafic rocks of the Marlborough terrane not only in lithological association, but also in geochemical features and age. These data demonstrate that the South Island terrane is genetically unrelated to the Marlborough terrane but developed in a supra‐subduction zone environment probably associated with an Early Permian oceanic arc. There is, however, a correlation between the South Island terrane rocks and intrusive units of the Marlborough ophiolite. This indicates that the two terranes were in relative proximity to one another during Early Permian times. A K/Ar age of 277 ± 7 Ma on a cumulative amphibole‐rich diorite from the South Island terrane suggests possible affinities with the Gympie and Berserker terranes of the northern New England Fold Belt.  相似文献   

17.
The Eastern Junggar terrane of the Central Asian Orogenic Belt includes a Late Paleozoic assemblage of volcanic rocks of mixed oceanic and arc affinity, located in a structurally complex belt between the Siberian plate, the Kazakhstan block, and the Tianshan Range. The early history of these rocks is not well constrained, but the Junggar terrane was part of a Cordilleran-style accreted arc assemblage by the Late Carboniferous. Late Paleozoic volcanic rocks of the northern part of the east Junggar terrane are divided, from base to top, into the Early Devonian Tuoranggekuduke Formation (Fm.), Middle Devonian Beitashan Fm., Middle Devonian Yundukala Fm., Late Devonian Jiangzierkuduke Fm., Early Carboniferous Nanmingshui Fm. and Late Carboniferous Batamayineishan Fm. We present major element, trace element and Sr–Nd isotopic analyses of 64 (ultra)mafic to intermediate volcanic rock samples of these formations. All Devonian volcanic rocks exhibit remarkably negative Nb, Ta and Ti anomalies on the primitive mantle-normalized trace element diagrams, and are enriched in more highly incompatible elements relative to moderately incompatible ones. Furthermore, they have subchondritic Nb/Ta ratios, and their Zr/Nb and Sm/Nd ratios resemble those of MORBs, characteristics of arc-related volcanic rocks. The Early Devonian Tuoranggekuduke Fm., Middle Devonian Beitashan Fm., and Middle Devonian Yundukala Fm. are characterized by tholeiitic and calc-alkaline affinities. In contrast, the Late Devonian Jiangzierkuduke Fm. contains a large amount of tuff and sandstone, and its volcanic rocks have dominantly calc-alkaline affinities. We therefore propose that the Jiangzierkuduke Fm. formed in a mature island arc setting, and other Devonian Fms. formed in an immature island arc setting. The basalts from the Nanmingshui Fm. have geochemical signatures between N-MORB and island arcs, indicating that they formed in a back-arc setting. In contrast, the volcanic rocks from the Batamayineishan Fm. display geochemical characteristics of continental intraplate volcanic rocks formed in an extensional setting after collision. Thus, we propose a model that involves a volcanic arc formed by northward subduction of the ancient Junggar ocean and amalgamation of different terranes during the Late Paleozoic to interpret the formation of the Late Paleozoic volcanic rocks in the Eastern Junggar terrane, and the Altai and Junggar terranes fully amalgamated into a Cordilleran-type orogen during the end of Early Carboniferous to the Middle–Late Carboniferous.  相似文献   

18.
Abstract

Eight sets of stratigraphic layers and igneous rocks are the basis for the recognition of eight tectonic periods, TP1‐TP8, in the history of the New England and Yarrol Orogens from the Devonian to the opening of the Tasman Sea in the Late Cretaceous. The opening of the Tasman Sea caused the removal of an eastern section of the New England Orogen to form parts of the Lord Howe Rise and Norfolk Ridge. The Gwydir‐Calliope and Kuttung volcanic arc systems of TP1 and TP2 in the Devonian and Carboniferous were possibly W‐facing, and probably formed far to the NE of their present positions relative to the Lachlan Orogen. They moved SW as they developed, and in the latest Carboniferous or earliest Permian were cut obliquely by the Mooki Fault on which there was a dextral strike‐slip of about 500 km before the Kuttung volcanic arc became extinct. In the Late Carboniferous a narrow region on the E side of the Peel Fault was elevated to form the Campbell High which was intruded by the Bundarra Plutonic Suite and has probably remained elevated since then. Plutons of similar ages were intruded into a high to the E of the Bowen Basin (and the northern part of the Mooki Fault). The two highs and the intrusives in them divided the Yarrol Belt of the Yarrol Orogen from the Tamworth Belt of the New England Orogen, and the two belts have developed in different ways since the Visean. In Latest Carboniferous to Early Permian there was a major tectonic change and the Gympie‐Brook Street volcanic arc developed. The New England Orogen was in a back arc setting and broke into a mosaic of microplates, the relative motions between them being accompanied by deposition of diamictites, by metamorphism, by folding on W to NW trending axes, and by the intrusion of the Hillgrove Plutonic Suite. Further W, sediments of the Sydney, Gunnedah and Bowen basins were deposited above the Mooki Fault System and above the two segments of the Kuttung arc system that had been displaced along the Mooki Fault System.  相似文献   

19.
New gravity data along five profiles across the western side of the southern New England Fold Belt and the adjoining Gunnedah Basin show the Namoi Gravity High over the Tamworth Belt and the Meandarra Gravity Ridge over the Gunnedah Basin. Forward modelling of gravity anomalies, combined with previous geological mapping and a seismic-reflection transect acquired by Geoscience Australia, has led to iterative testing of models of the crustal structure of the southern New England Fold Belt, which indicates that the gravity anomalies can generally be explained using the densities of the presently exposed rock units. The Namoi Gravity High over the Tamworth Belt results from the high density of the rocks of this belt that reflects the mafic volcanic source of the older sedimentary rocks in the Tamworth Belt, the burial metamorphism of the pre-Permian units and the presence of some mafic volcanic units. Modelling shows that the Woolomin Association, present immediately east of the Peel Fault and constituting the most western part of the Tablelands Complex, also has a relatively high density of 2.72 – 2.75 t/m3, and this unit also contributes to the Namoi Gravity High. The Tamworth Belt can be modelled with a configuration where the Tablelands Complex has been thrust over the Tamworth Belt along the Peel Fault that dips steeply to the east. The Tamworth Belt is thrust westward over the Sydney – Gunnedah Basin for 15 – 30 km on the Mooki Fault, which has a shallow dip (~25°) to the east. The Meandarra Gravity Ridge in the Gunnedah Basin was modelled as a high-density volcanic rock unit with a density contrast of 0.25 t/m3 relative to the underlying rocks of the Lachlan Fold Belt. The modelled volcanic rock unit has a steep western margin, a gently tapering eastern margin and a thickness range of 4.5 – 6 km. These volcanic rocks are assumed to be Lower Permian and to be the western extension of the Permian Werrie Basalts that outcrop on the western edge of the Tamworth Belt and which have been argued to have formed in an extensional basin. Blind granitic plutons are inferred to occur near the Peel Fault along the central and the southern profiles.  相似文献   

20.
The Wyangala Batholith, in the Lachlan Fold Belt of New South Wales, is pre‐tectonic with respect to the deformation that caused the foliation in the granite, and was emplaced during a major thermal event, perhaps associated with dextral shearing, during the Late Silurian to Early Devonian Bowning Orogeny. This followed the first episode of folding in the enclosing Ordovician country rocks. Intrusion was facilitated by upward displacement of fault blocks, with local stoping. Weak magmatic flow fabrics are present. After crystallization of the granite, a swarm of mafic dykes intruded both the granite and country rock, possibly being derived from the same tectonic regime responsible for emplacement of the Wyangala Batholith. A contact aureole surrounding the granite contains cordierite‐biotite and cordierite‐andalusite assemblages. Slaty cleavage produced in the first deformation was largely obliterated by recrystallization in the contact aureole.

Postdating granite emplacement and basic dyke intrusion, a second regional deformation was accompanied by regional metamorphism ranging from lower greenschist to albite‐epidote‐amphibolite facies, and produced tectonic foliations, termed S and C, in the granite, and a foliation, S2, in the country rocks. Contact metamorphic rocks underwent retrogressive regional metamorphism at this time. S formed under east‐west shortening and vertical extension, concurrently with S2. C surfaces probably formed concurrently with S and indicate reverse fault motion on west‐dipping ductile shear surfaces. The second deformation may be related to Devonian or Early Carboniferous movement on the Copperhannia Thrust east of the Wyangala Batholith.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号