首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This integrated study on the pressure–temperature–deformation‐time record of the Goszów light quartzites from the Młynowiec–Stronie Group (Sudety Mts., SW Poland) provides new data that improve our understanding of the structure and geodynamic development of the Orlica–Śnieżnik Dome (OSD) as a Gondwana‐derived unit involved in the formation of the Variscan orogen. The structural and metamorphic record of the Goszów light quartzites, when compared to the under‐ and overlying rock formations, indicates that the whole Młynowiec–Stronie Group in the eastern part of the Saxothuringian terrane functioned as a single, integral lithotectonic unit with no visible structural or metamorphic discontinuities. The sequence of structures and thermodynamic modelling indicate that the light quartzites underwent the same polyphase tectonometamorphic evolution as the adjacent rocks belonging to the Młynowiec–Stronie Group. The development of tight, N–S‐trending folds and axial penetrative metamorphic foliation was related to metamorphic progression from 500 °C to 640 °C at 6–7 kbar. Subsequently, under the retrogressive conditions below 540 °C, the foliation was reactivated as a result of subsequent N–S‐directed ductile shearing and extension. Therefore, the study of the light quartzites exemplifies the penetrative structures in the OSD, and the metamorphic foliation and N–S‐trending lineation are composite structures. The monazite metamorphic ages of ca. 364 Ma and 335 Ma may be related to the approximately E–W‐ and N–S‐oriented tectonic movements, respectively, which occurred during the amalgamation of the Saxothuringian terrane with Brunovistulia. In contrast, the previously unknown early Palaeozoic monazite age of ca. 494 Ma is interpreted as the protolith age of the light quartzites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
In the north-western Gawler Craton of South Australia, the Karari Shear Zone defines a boundary between late-Archean to earliest Paleoproterozoic rocks, which have remained largely undisturbed since the earliest Paleoproterozoic, and younger Paleoproterozoic rocks that have been reworked through multiple late Paleoproterozoic and Mesoproterozoic metamorphic and deformation events. The history of movement across the Karari Shear Zone has been investigated via new U–Pb and 40Ar/39Ar geochronology, in combination with pre-existing geochronological and metamorphic constraints, as well as the structural geometry revealed by a recently acquired reflection seismic transect. The available data suggest a complex history of shear-zone movement in at least four stages, with contrasting sense of motion at different times. The first period of movement across the Karari Shear Zone is inferred to have been a period of extension at ca 1750–1720 Ma. This was likely closely followed by reactivation during the Kimban Orogeny between ca 1720 and 1680 Ma, although the sense of movement during this period is unclear. Further reactivation, in a thrust sense, occurred between ca 1580 and 1560 Ma, resulting in significant exhumation of marginal domains of the Gawler Craton to the north of the Karari Shear Zone. A final episode of largely strike-slip shear-zone movement occurred at ca 1450 Ma.  相似文献   

3.
Abstract

The Charters Towers Province, of the northern Thomson Orogen, records conversion from a Neoproterozoic passive margin to a Cambrian active margin, as characteristic of the Tasmanides. The passive margin succession includes a thick metasedimentary unit derived from Mesoproterozoic rocks. The Cambrian active margin is represented by upper Cambrian–Lower Ordovician (500–460?Ma) basinal development (Seventy Mile Range Group), plutonism and metamorphism resulting from an enduring episode of arc–backarc crustal extension. Detrital zircon age spectra indicate that parts of the metamorphic basement of the Charters Towers Province (elements of the Argentine Metamorphics and Charters Towers Metamorphics) overlap in protolith age with the basal part of the Seventy Mile Range Group and thus were associated with extensional basin development. Detrital zircon age data from the extensional basin succession indicate it was derived from a far-field (Pacific-Gondwana) primary source. However, a young cluster (<510?Ma) is interpreted as reflecting a local igneous source related to active margin tectonism. Relict zircon in a tonalite phase of the Fat Hen Creek Complex suggests that active margin plutonism may have extended back to ca 530?Ma. Syntectonic plutonism in the western Charters Towers Province is dated at ca 485–480?Ma, close to timing of metamorphism (477–467?Ma) and plutonism more generally (508–455?Ma). The dominant structures in the metamorphic basement formed with gentle to subhorizontal dips and are inferred to have formed by extensional ductile deformation, while normal faulting developed at shallower depths, associated with heat advection by plutonism. Lower Silurian (Benambran) shortening, which affected metamorphic basement and extensional basin units, resulted in the dominant east–west-structural trends of the province. We consider that these trends reflect localised north–south shortening rather than rotation of the province as is consistent with the north–south paleogeographic alignment of extensional basin successions.
  1. KEY POINTS
  2. Northern Tasmanide transition from passive to active margin tectonic mode had occurred by ca 510?Ma, perhaps as early as ca 530?Ma.

  3. Cambro-Ordovician active margin tectonism of the Charters Towers Province (northern Thomson Orogen) was characterised by crustal extension.

  4. Crustal extension resulted in the development of coeval (500–460?Ma) basin fill, granitic plutonism and metamorphism with rock assemblages as exposed across the Charters Towers Province developed at a wide range of crustal levels and expressing heterogeneous exhumation.

  5. Protoliths of metasedimentary assemblages of the Charters Towers Province include both Proterozoic passive margin successions and those emplaced as Cambrian extensional basin fill.

  相似文献   

4.
Field relationships and LA-ICP-MS U–Pb geochronology from the Yundurbungu Hills (Aileron Province, central Australia) reveal a record of 1808–1770 Ma bimodal magmatism, sedimentation, high-temperature deformation and metamorphism. Specifically, the data presented here provide the first unequivocal evidence for ca 1774 Ma high-temperature deformation and metamorphism during the 1790–1770 Ma Yambah Event in the southern part of the North Australian Craton. Granitic lithologies were synkinematically emplaced between 1808 and 1770 Ma, with early phases recording D1 deformation and the youngest phase postdating D1 deformation. The protolith to a D1 deformed metasedimentary unit was deposited between 1792 and 1774 Ma, followed by the intrusion and deformation of a composite mafic–felsic magmatic association at ca 1774 Ma. An S1 migmatitic fabric in the composite mafic–felsic gneiss is truncated by the youngest (ca 1770 Ma) phase of granitic magmatism, constraining the timing of S1 deformation. A second period of sedimentation appears to post-date D1 deformation, with deposition occurring sometime after ca 1774 Ma. Subsequent overprinting during the 1590–1550 Ma Chewings Event is recorded by the growth of metamorphic monazite and zircon. This event deformed the ca 1774 Ma S1 gneissic fabric, producing a composite S1/S2 gneissic fabric in early metasedimentary and magmatic lithologies and a simple S2-only fabric in lithologies that were intruded or deposited after ca 1774 Ma. Consistent with previous work, we suggest that localised high-temperature deformation and bimodal magmatism at ca 1774 Ma in the Yundurbungu Hills is consistent with a back-arc setting linked to prolonged north-directed subduction.  相似文献   

5.
Abstract

Acropolis is an Fe-oxide–copper–gold prospect ~20?km from Olympic Dam, South Australia, and marked by near-coincident gravity and magnetic anomalies. Prospective Fe-oxide–apatite?±?sulfide veins occur in Mesoproterozoic and Paleoproterozoic volcanic and granitoid host units beneath unmineralised sedimentary formations. We have produced a geological map and history of the prospect using data from 16 diamond drill holes, including LA-ICPMS and high-precision CA-TIMS ages. The oldest unit is megacrystic granite of the Donington Suite (ca 1850?Ma). A non-conformity spanning ca 250 My separates the Donington Suite and felsic lavas and ignimbrites of the Gawler Range Volcanics (GRV; 1594.03?±?0.68?Ma). The GRV were intruded by granite of the Hiltaba Suite (1594.88?±?0.50?Ma) and felsic dykes (1593.88?±?0.56?Ma; same age as the Roxby Downs Granite at Olympic Dam). The felsic dykes are weakly altered and lack Fe-oxide–apatite–sulfide veins, suggesting that they post-date the main hydrothermal event. If correct, this relationship implies that the main hydrothermal event at Acropolis was ca 1594?Ma and pre-dated the main hydrothermal event at Olympic Dam. The GRV at Acropolis are the same age as the GRV at Olympic Dam and ca 3–7 My older than the GRV exposed in the Gawler Ranges. The gravity and magnetic anomalies coincide with sections through the GRV, Hiltaba Suite and Donington Suite that contain abundant, wide, Fe-oxide veins. The GRV, Hiltaba Suite and Donington Suite are unconformably overlain by the Mesoproterozoic Pandurra Formation or Neoproterozoic Stuart Shelf sedimentary formations. The Pandurra Formation shows marked lateral variations in thickness related to paleotopography on the underlying units and post-Pandurra Formation pre-Neoproterozoic faults. The Stuart Shelf sedimentary formations have uniform thicknesses.
  1. KEY POINTS
  2. Fe-oxide–apatite?±?sulfide veins are hosted by the Gawler Range Volcanics (1594.03?±?0.68?Ma), the Hiltaba Suite granite (1594.88?±?0.50?Ma) and Donington Suite granite (ca 1850?Ma).

  3. The age of felsic dykes (1593.88?±?0.56?Ma) interpreted to be post-mineralisation implies that the main hydrothermal event at Acropolis was ca 1594?Ma.

  4. The Gawler Range Volcanics at Acropolis are the same age as the Gawler Range Volcanics at Olympic Dam and ca 3 to 7 My older than the Gawler Range Volcanics exposed in the Gawler Ranges.

  相似文献   

6.
South Percy Island is located approximately 50 km off the central Queensland coast and comprises a disrupted ophiolite mass alongside a diverse array of metamorphosed felsic and mafic rocks that record several episodes of magmatism, volcanism and deformation from the Permian to Early Cretaceous. This paper aims to constrain the age, affinity and deformation history of these units, as well as to establish the tectonic significance of the terrane. The trace-element compositions of mafic and felsic meta-igneous rocks record a change from MORB-like prior to ca 277 Ma to subduction-related by ca 258 Ma. Overprinting relationships between intrusive phases and deformation features reveal a relative chronology for the tectonothermal evolution of the area, while U–Pb and 40Ar/39Ar geochronology provides absolute age constraints. Deformation is localised around a NNE-striking tectonic contact that separates serpentinised ultramafic rocks from metamorphosed pillow lavas. Early formed ductile fabrics associated with the main episode of deformation (D1) preserve bulk flattening strains at greenschist-facies conditions. Emplacement and post-kinematic cooling ages of a pre-D1 quartz-monzonite dyke constrain the age of D1/M1 deformation and metamorphism to the period between ca 258 and ca 248 Ma. Minor brittle deformation (D2) occurred at ca 230 Ma, based on U–Pb dating of a syn-D2 diorite dyke (ca 231 ± 10 Ma) and several ca 230 Ma 40Ar/39Ar cooling ages. The deformation, metamorphism, and supra-subduction zone magmatism preserved on South Percy Island is correlated with the nearby Marlborough Terrane and more broadly with the second pulse of the Hunter–Bowen Orogeny, which affected much of the central and northern parts of eastern Australia in the late Permian and Early Triassic. Our results support previous suggestions that the second pulse of the Hunter–Bowen Orogeny involved coeval thrust systems in both the inboard and outboard parts of the orogen.  相似文献   

7.
The Bogong High Plains of eastern Victoria occur as plateau remnants in a highly dissected region of the Australian Alps. Results from apatite fission track analyses indicate that the Bogong region experienced multiple episodes of rapid low‐temperature cooling, most of which can be tentatively linked to a tectonic cause. Early episodes of cooling occurred during the Middle to Late Devonian (ca 400–370 Ma) and Late Carboniferous to Early Permian (ca 310–290 Ma), presumably during different stages of deformation associated with the development of the Lachlan Fold Belt and glacial erosion. Rapid cooling occurred during the Late Permian to Early Triassic (ca 260–240 Ma), presumably in response to the Hunter‐Bowen orogenic event along the eastern Australian continental margin. Since the Triassic, two major episodes of fault reactivation have further displaced fission track ages between sample groups on different structural blocks. The first episode occurred during the middle Cretaceous at ca 110–90 Ma, probably in response to initial extension and denudation along the eastern Australian passive margin prior to breakup. Subsequently during the Early to mid‐Tertiary at ca 65–45 Ma, large‐scale fault reactivation occurred along the Kiewa Fault, possibly in response to changes in intraplate stresses which occurred during the middle Tertiary.  相似文献   

8.
Abstract

Combined in situ monazite dating, mineral equilibria modelling and zircon U–Pb detrital zircon analysis provide insight into the pressure–temperature–time (PTt) evolution of the western Gawler Craton. In the Nawa Domain, pelitic and quartzo-feldspathic gneisses were deposited after ca 1760?Ma and record high-grade metamorphic conditions of ~7.5?kbar and 850?°C at ca 1730?Ma. Post-peak microstructures, including partial plagioclase coronae and late biotite around garnet, and subtle retrograde garnet compositional zoning, suggest that these rocks cooled along a shallow down-pressure trajectory across an elevated dry solidus. In the northwest Fowler Domain (Colona Block), monazite grains from pelitic gneisses record two stages of growth/recrystallisation interpreted to represent discrete parts of the P–T path: (1) ca 1710?Ma monazite growth during prograde to peak conditions, and (2) ca 1690?Ma Y-enriched monazite growth/recrystallisation during partial garnet breakdown and cooling towards the solidus. Relict prograde growth zoning in garnet suggests rocks underwent a steep up-P path to peak conditions of ~8?kbar at 800?°C. The new P–T–t results suggest basement rocks of the southwestern Nawa and northwestern Fowler were buried to depths of 20–25?km during the Kimban Orogeny, ca 10 Myrs after the sedimentary precursors were deposited. The P–T path for the Kimban Orogeny is broadly anti-clockwise, suggesting that at least the early phase of this event was associated with extension. Exhumation of rocks from both the southwestern Nawa and northwestern Fowler domains may have occurred during the waning stages of the Kimban Orogeny (<ca 1690?Ma). The limited low-grade overprint in these rocks may be explained by a mid-to-upper crustal position for these rocks during the subsequent Kararan Orogeny. Aluminous quartz-feldspathic gneiss of the Nundroo Block in the eastern Fowler Domain records peak conditions of ~7?kbar at 800?°C. Monazite grains from the Nundroo Block are dominated by an age peak at ca 1590?Ma, although the presence of some older ages up to ca 1690?Ma, possibly reflect partial resetting of older monazite domains. The PTt conditions suggest these rocks were buried to 20–25?km at ca 1590?Ma during the Kararan Orogeny. This high-grade metamorphism in the Nundroo Block is a mid-crustal expression of the same thermal anomaly that caused magmatism in the central-eastern Gawler Craton. Juxtaposition of rocks affected by the Kimban and Kararan orogenic events in the western Gawler Craton was controlled by lithospheric-scale shear zones, some of which have facilitated ~20 kilometres of exhumation.  相似文献   

9.
K-feldspar from the late Miocene Capoas Granite on Palawan in The Philippines appears to contain highly retentive diffusion domains that are closed to argon diffusion at near-solidus temperatures during cooling of this ~7 km-diameter pluton. This is an important result, for K-feldspar is commonly considered not retentive in terms of its ability to retain argon. Closure temperatures for argon diffusion in K-feldspars are routinely claimed to be in the range ~150–400°C but the release of 39Ar from irradiated K-feldspar during furnace step-heating experiments in vacuo yields Arrhenius data that imply the existence of highly retentive core domains, with inferred closure temperatures that can exceed ~500–700°C. These high closure temperatures from the Capoas Granite K-feldspar are consistent with the coincidence of 40Ar/39Ar ages with U–Pb zircon ages at ca 13.5 ± 0.2 Ma. The cooling rate then accelerated, but the rate of change had considerably slowed by ca 12 Ma. Low-temperature (U–Th)/He thermochronology shows that the cooling rate once again accelerated at ca 11 Ma, perhaps owing to renewed tectonic activity.  相似文献   

10.
The Halls Creek Orogen in northern Australia records the Palaeoproterozoic collision of the Kimberley Craton with the North Australian Craton. Integrated structural, metamorphic and geochronological studies of the Tickalara Metamorphics show that this involved a protracted episode of high‐temperature, low‐pressure metamorphism associated with intense and prolonged mafic and felsic intrusive activity in the interval ca 1850–1820 Ma. Tectonothermal development of the region commenced with an inferred mantle perturbation event, probably at ca 1880 Ma. This resulted in the generation of mafic magmas in the upper mantle or lower crust, while upper crustal extension preceded the rapid deposition of the Tickalara sedimentary protoliths. An older age limit for these rocks is provided by a psammopelitic gneiss from the Tickalara Metamorphics, which yield a 207Pb/206Pb SHRIMP age of 1867 ± 4 Ma for the youngest detrital zircon suite. Voluminous layered mafic intrusives were emplaced in the middle crust at ca 1860–1855 Ma, prior to the attainment of lower granulite facies peak metamorphic conditions in the middle crust. Locally preserved layer‐parallel D1 foliations that were developed during prograde metamorphism were pervasively overprinted by the dominant regional S2 gneissosity coincident with peak metamorphism. Overgrowths on zircons record a metamorphic 207Pb/206Pb age of 1845 ± 4 Ma. The S2 fabric is folded around tight folds and cut by ductile shear zones associated with D3 (ca 1830 Ma), and all pre‐existing structures are folded around large‐scale, open F4 folds (ca 1820 Ma). Construction of a temperature‐time path for the mid‐crustal section exposed in the central Halls Creek Orogen, based on detailed SHRIMP zircon data, key field relationships and petrological evidence, suggests the existence of one protracted thermal event (>400–500°C for 25–30 million years) encompassing two deformation phases. Protoliths to the Tickalara Metamorphics were relatively cold (~350°C) when intruded by the Fletcher Creek Granite at ca 1850 Ma, but were subsequently heated rapidly to 700–800°C during peak metamorphism at ca 1845 Ma. Repeated injection of mafic magmas caused multiple remelting of the metasedimentary wall rocks, with mappable increases in leucosome volume that show a strong spatial relationship to these intrusives. This mafic igneous activity prolonged the elevated geotherm and ensured that the rocks remained very hot (≥650°C) for at least 10 million years. The Mabel Downs Tonalite was emplaced during amphibolite facies metamorphism, with intrusion commencing at ca 1835 Ma. Its compositional heterogeneity, and the presence of mutual cross‐cutting relations between ductile shear zones and multiple injections of mingled magma suggest that it was emplaced syn‐D3. Broad‐scale folding attributable to F4 was accompanied by widespread intrusion of granitoids, and F4 fold limbs are truncated by large, mostly brittle retrograde S4 shear zones.  相似文献   

11.
Detrital zircon from two basement blocks (Kubor and Bena Bena) in the central Highlands of Papua New Guinea has an age signature that strongly suggests a northern Australian provenance. Samples of the Omung Metamorphics, southeastern Kubor Block, together yield principal zircon populations with ages of ca 1.8 Ga (~10% of the total), ca 1.55 Ga (~10%), 470–440 Ma (~15%), ca 340 Ma (~10%) and 290–260 Ma (~40%).Two tonalite stocks of the Kubor Intrusive Complex, which intrude the Omung Metamorphics, yield indistinguishable ages of 244.8 ± 4.9 Ma and 239.1 ± 4.2 Ma.Therefore, the deposition and subsequent deformation of the Omung Metamorphics is Late Permian to Early Triassic. A sample of Goroka Formation (Bena Bena Block) contains detrital zircon of similar ages to the Omung Metamorphics, ca 1.8 Ga (5%), ca 1.55 Ga (~45%), ca 430 Ma (~5%) and ca 310 Ma (~40%), suggesting that the Goroka Formation has a similar provenance and might be correlative. In contrast, a metapsammite from the Bena Bena Formation yielded only ages of 290–280 Ma (85%) and ca 240 Ma (15%). A tuff interbedded in the Bena Bena Formation yielded only igneous zircon with a Late Triassic age of 221 ± 3 Ma. Contrary to previous interpretations, the Bena Bena Formation is probably younger than the Goroka Formation. Ages of New Guinea detrital zircon closely match those of igneous and detrital zircon from the Coen Inlier, northeastern Queensland, but contrast with the ages of zircon from terranes further south, east and west. The Kubor and Bena Bena Blocks are not suspect terranes, but rather form part of the Australian craton. The craton margin, modified by rifting during the Mesozoic, was re‐inverted during Cenozoic compression. The Australian craton, in the eastern Highlands of Papua New Guinea, extends at least as far north as the Markham Valley, the northern edge of the Bena Bena terrane.  相似文献   

12.
Abstract

The turbidite-filled, Lower Devonian Cobar Basin is characterised through a detrital zircon study. Uranium–Pb age data for six samples were combined with published data to show the basin has a unique age spectrum characterised by a subordinate Middle Ordovician (ca 470?Ma) peak superimposed on a dominant ca 500?Ma peak. Maximum depositional ages for 3 samples were ca 425?Ma, close to the published Lower Devonian (Lochkovian 419–411?Ma) biostratigraphic ages. A minor ca 1000?Ma zircon population was also identified. The major source of the 500?Ma zircons was probably the local Ordovician metasedimentary basement, which was folded, thickened and presumably exposed during the ca 440?Ma Benambran Orogeny. The ca 470?Ma age peak reflects derivation from Middle Ordovician (Phase 2) rocks of the Macquarie Arc to the east. The I-type Florida Volcanics, located ~50?km eastward from the Cobar Basin, contains distinctive Middle and Late Ordovician zircon populations, considered to be derived from deeply underthrust Macquarie Arc crust. Protracted silicic magmatism occurred before, during and after Cobar Basin deposition, indicating that the basin formed by subduction-related processes in a back-arc setting, rather than as a continental rift.  相似文献   

13.
Detrital zircon from the Carboniferous Girrakool Beds in the central Tablelands Complex of the southern New England Orogen, Australia, is dominated by ca 350–320 Ma grains with a peak at ca 330 Ma; there are very few Proterozoic or Archean grains. A maximum deposition age for the Girrakool Beds of ca 309 Ma is identified. These data overlap the age of the Carboniferous Keepit arc, a continental volcanic arc along the western margin of the Tamworth Belt. Zircon trace-element and isotopic compositions support petrographic evidence of a volcanic arc provenance for sedimentary and metasedimentary rocks of the central Tablelands Complex. Zircon Hf isotope data for ca 350–320 Ma detrital grains become less radiogenic over the 30 million-year record. This pattern is observed with maturation of continental volcanic arcs but is opposite to the longer-term pattern documented in extensional accretionary orogens, such as the New England Orogen. Volcanic activity in the Keepit arc is inferred to decrease rapidly at ca 320 Ma, based on a major change in the detrital zircon age distribution. Although subduction continues, this decrease is inferred to coincide with the onset of trench retreat, slab rollback and the eastward migration of the magmatic arc that led to the Late Carboniferous to early Permian period of extension, S-type granite production and intrusion into the forearc basin, high-temperature–low-pressure metamorphism, and development of rift basins such as the Sydney–Gunnedah–Bowen system.  相似文献   

14.
The Tabletop Domain of the Rudall Province has been long thought an exotic entity to the West Australian Craton. Recent re-evaluation of this interpretation suggests otherwise, but is founded on limited data. This study presents the first comprehensive, integrated U–Pb geochronology and Hf-isotope analysis of igneous and metasedimentary rocks from the Tabletop Domain of the eastern Rudall Province. Field observations, geochronology and isotope results confirm an endemic relationship between the Tabletop Domain and the West Australian Craton (WAC), and show that the Tabletop Domain underwent a similar Archean–Paleoproterozoic history to the western Rudall Province. The central Tabletop Domain comprises Archean–Paleoproterozoic gneissic rocks with three main age components. Paleo–Neoarchean (ca 3400–2800 Ma) detritus is observed in metasedimentary rocks and was likely sourced from the East Pilbara Craton. Protoliths to mafic gneiss and metasedimentary rocks are interpreted to have been emplaced and deposited during the early Paleoproterozoic (ca 2400–2300 Ma), and exhibit age and isotopic affinities to the Capricorn Orogen basement (Glenburgh Terrane). Mid–late Paleoproterozoic mafic and felsic magmatism (ca 1880–1750 Ma) is assigned to the Kalkan Supersuite, which is exposed in the western Rudall Province. The Kalkan Supersuite provided the main source of detritus for mid–late Paleoproterozoic metasedimentary rocks in the Tabletop Domain. Similarities in the age and Hf-isotope compositions of detrital zircon from these metasedimentary rocks and Capricorn Orogeny basin sediments suggests that a regionally extensive, linked basin system may have spanned the northern WAC at this time. The Tabletop Domain records evidence for two metamorphic events. Mid–late Paleoproterozoic deformation (ca 1770–1750 Ma) was high-grade, regional and involved the development of gneissic fabrics. In contrast, early Mesoproterozoic (ca 1580 Ma) high-grade deformation was localised and associated with more widespread, late-stage, greenschist facies alteration. These new findings highlight that the Tabletop Domain experienced a much higher grade of deformation than previously assumed, with a Paleoproterozoic metamorphic history similar to that of the western Rudall Province.  相似文献   

15.
Abstract

During the past 50 years, many geological and ore-deposit investigations have led to the discovery of the Fe–P–(Ti)-oxide deposits associated with mafic–ultramafic–carbonatite complexes in the Kuluketage block, northeastern Tarim Craton. In this paper, we discuss the genetic and ore-forming ages, tectonic setting, and the genesis of these deposits (Kawuliuke, Qieganbulake and Duosike). LA-ICP-MS zircon U–Pb dating yielded a weighted mean 206Pb/238U ages of 811?±?5?Ma, 811?±?4?Ma, and 840?±?5?Ma for Kawuliuke ore-bearing pyroxenite, Qieganbulake gabbro and Duosike ore-bearing pyroxenite, respectively. The CL images of the Kawuliuke apatite grains show core–rim structure, suggesting multi-phase crystallisation, whereas the apatite grains from Qieganbulake and Dusike deposits do not show any core–rim texture, suggesting a single-stage crystallisation. LA-ICP-MS apatite 207Pb-corrected U–Pb dating provided weighted mean 206Pb/238U ages of 814?±?21?Ma and 771?±?8?Ma for the Kawuliuke ores, and 810?±?7?Ma and 841?±?7?Ma for Qieganbulake and Duosike ores, respectively. The core–rim texture in apatite by CL imaging as well as two different ore-forming ages in the core and rim of the apatite indicate two metallogenic events for the Kawuliuke deposit. The first metallogenic period was magmatic in origin, and the second period was hydrothermal in origin. The initial ore-forming age of the Kawuliuke Fe–P–Ti mineralisation was ca 814?Ma and the second one was ca 771?Ma. On the other hand, the ore-forming ages of the Qieganbulake and Duosike deposits were ca 810?Ma and ca 841?Ma, respectively. Qieganbulake and Duosike deposits were of magmatic origin. Combined with previous geochronological data and the research on the tectonic background, we infer that the Kawuliuke, Qieganbulake and Duosike Fe–P–(Ti)-oxide deposits were formed in a subduction-related tectonic setting and were the product of subduction-related magmatism.  相似文献   

16.
The Anakie Metamorphic Group is a complexly deformed, dominantly metasedimentary succession in central Queensland. Metamorphic cooling is constrained to ca 500 Ma by previously published K–Ar ages. Detrital‐zircon SHRIMP U–Pb ages from three samples of greenschist facies quartz‐rich psammites (Bathampton Metamorphics), west of Clermont, are predominantly in the age range 1300–1000 Ma (65–75%). They show that a Grenville‐aged orogenic belt must have existed in northeastern Australia, which is consistent with the discovery of a potential Grenville source farther north. The youngest detrital zircons in these samples are ca 580 Ma, indicating that deposition may have been as old as latest Neoproterozoic. Two samples have been analysed from amphibolite facies pelitic schist from the western part of the inlier (Wynyard Metamorphics). One sample contains detrital monazite with two age components of ca 580–570 Ma and ca 540 Ma. The other sample only has detrital zircons with the youngest component between 510 Ma and 700 Ma (Pacific‐Gondwana component), which is consistent with a Middle Cambrian age for these rocks. These zircons were probably derived from igneous activity associated with rifting events along the Gondwanan passive margin. These constraints confirm correlation of the Anakie Metamorphic Group with latest Neoproterozoic ‐ Cambrian units in the Adelaide Fold Belt of South Australia and the Wonominta Block of western New South Wales.  相似文献   

17.
Abstract

Two north–south-trending belts of high-temperature–low-pressure (HTLP) sub-regional metamorphism have been identified in the New England Orogen of eastern Australia. Metamorphic complexes in the ~1300?km long Early-Permian Inland belt have ages ca 300–290?Ma, and those of the ~400?km long Mid-Permian Coastal belt ca 275–270?Ma. These periods correspond to the beginning and end of an extended (early–mid Permian) phase of subduction rollback and crustal thinning in eastern Australia. This paper describes and incorporates recent work on the Wongwibinda Metamorphic Complex in the southern New England Orogen as a basis for comparison with thirteen other HTLP sub-regional occurrences within the orogen. These are described in as much detail as is currently available. Some outcrops of HTLP rocks in difficult terrain have been subject to limited study and only conditional comparisons can be made. However, a significant number of characteristics shared between the complexes including: their location at the higher-temperature end of broad areas of very low-grade to greenschist facies metamorphic rocks, indicative of tilted crustal blocks; their association with major shear zones; the presence of migmatite at the high-temperature end of a steep metamorphic field gradient; the presence of two-mica granite formed by the melting of the local sedimentary pile; and temporal association with S-type granites; imply a common extension-related mechanism of formation for these HTLP belts. The connection with major faults and shear zones suggests the belts trace major crustal-scale extensional structures that migrated eastwards from ca 300 to 270?Ma.
  1. KEY POINTS
  2. Two previously undocumented belts of HTLP subregional metamorphism are identified within the NEO.

  3. Available dating indicates that metamorphism occurred along the belts at the beginning and end of a major early–mid Permian extensional phase in eastern Gondwana/Australia.

  4. The characteristics of the HTLP complexes including their association with shear zones indicates they may delineate major loci of extension.

  相似文献   

18.
Abstract

The Gangdese batholith, Tibet, records the opening and closing of the Neo-Tethyan ocean and the resultant collision between the Indian and Eurasian plates. The Mesozoic magmatic rocks play a crucial role in understanding the formation and evolution of the Neo-Tethyan tectonic realm. This study focuses on Jurassic intrusive rocks in the Xietongmen area of the southern margin of the Lhasa terrane adjacent to the Yarlung–Tsangpo suture. Zircon U–Pb dating yielded Middle Jurassic dates for ca 170?Ma hornblende gabbro and ca 173?Ma granodiorite intrusions. All of the samples are medium- to high-K calc-alkaline, and the majority are metaluminous and enriched in the large ion lithophile elements and depleted in the high-field-strength elements. This indicates the magma was generated in a subduction-related tectonic setting. The intrusive rocks have high and positive εHf(t) values (hornblende gabbro: 13.3–18.7; granodiorite: 14.2–17.6) that yield Hf model ages younger than 312?Ma. These new data, combined with the results of previous research, suggest that the Jurassic igneous rocks were derived from a metasomatised region of an asthenospheric mantle wedge. Extremely depleted Sr–Nd–Pb–Hf isotope compositions are similar to the Yarlung ophiolite and igneous rocks within other intra-oceanic island arcs. Together with the existence of sandstone that is identified as the product of the oceanic island arc environment, we suggest formation in an intra-oceanic island arc.
  1. The new zircon U–Pb dating has yielded Middle Jurassic ages for the ca 170?Ma hornblende gabbro and ca 173?Ma granodiorite phases of the Xietongmen intrusion.

  2. Jurassic igneous rocks formed from a metasomatised asthenospheric mantle wedge by northward subduction of the Neo-Tethys oceanic crust beneath the southern margin of the Lhasa terrane.

  3. Late Triassic–Jurassic igneous rocks, which are characterised by highly depleted isotopic compositions within the Southern Lhasa sub-terrane, record residual intra-oceanic island arcs in the eastern Tethyan belt.

  相似文献   

19.
Geochemical and Sm‐Nd isotopic data, and 19 ion‐microprobe U‐Pb zircon dates are reported for gneiss and granite from the eastern part of the Albany‐Fraser Orogen. The orogen is dominated by granitic rocks derived from sources containing both Late Archaean and mantle‐derived components. Four major plutonic episodes have been identified at ca 2630 Ma, 1700–1600 Ma, ca 1300 Ma and ca 1160 Ma. Orthogneiss, largely derived from ca 2630 Ma and 1700–1600 Ma granitic precursors, forms a belt along the southeastern margin of the Yilgarn Craton. These rocks, together with gabbro of the Fraser Complex, were intruded by granitic magmas and metamorphosed in the granulite facies at ca 1300 Ma. They were then rapidly uplifted and transported westward along low‐angle thrust faults over the southeastern margin of the Yilgarn Craton. Between ca 1190 and 1130 Ma, granitic magmas were intruded throughout the eastern part of the orogen. These new data are integrated into a review of the geological evolution of the Albany‐Fraser Orogen and adjacent margin of eastern Antarctica, and possibly related rocks in the Musgrave Complex and Gawler Craton.  相似文献   

20.
A partial record of the positions of Australia during Middle to Late Neoproterozoic time is provided by palaeomagnetic results for samples from the Lancer 1 stratigraphic drillhole in Western Australia. Lancer 1 was drilled vertically to 1501 m, through essentially horizontal Neoproterozoic strata of the western Officer Basin. We studied 123 samples from 28 intervals of drillcore which were oriented by matching features (fractures, cross-beds, etc.) in the core with oriented acoustic scanner images of the drillhole walls. Three new palaeopoles are reported for red mudstones and sandstones (redbeds) of the Browne (44.5°N, 141.7°E, dp = 5.1°, dm = 9.0°), Hussar (62.2°N, 85.8°E, dp = 7.3°, dm = 14.6°), and Kanpa (74.0°N, 128.8°E, dp = 7.7°, dm = 14.8°) Formations of the ca 830 – 720 Ma Buldya Group (Supersequence 1), which exhibit stable, two-polarity magnetisations carried by fine-grained hematite and magnetite. The overlying ca 610 – 590 Ma Wahlgu Formation glaciogenic diamictite (Supersequence 3) yielded dispersed directions and an imprecise palaeopole that overlaps results from the glaciogenic Elatina Formation and other Late Neoproterozoic rock units. The results help to elaborate the Middle to Late Neoproterozoic apparent polar wander path for Australia and indicate, in agreement with palaeoclimatic data and previous palaeomagnetic studies, that the continent was slow-moving and occupied low latitudes at this time. Assuming that Australia and Laurentia were still joined at ca 780 Ma, comparison of the new Hussar Formation palaeopole with coeval Laurentian data favours AUSMEX, rather than SWEAT or AUSWUS, as the most likely configuration of these two continents in Rodinia. This preliminary study of Lancer 1 demonstrates the utility of acoustic scanner logs for orienting drillcores, as well as the scope for additional sampling and palaeomagnetic studies of Lancer 1, and other oriented drillcores, to yield a more continuous record of Australia's past motions and to provide magnetostratigraphic data for enhancing inter-basin correlations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号