首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
三维构造建模是构造研究的前沿手段和发展方向,具有实用性、精确性、可视性等多种优势,在国内外应用越来越广泛,但目前主要以局部油藏和断块为研究对象,针对全盆地尺度的三维构造建模比较少。尼日尔Termit盆地在早白垩世和古近纪发育两期裂谷,导致盆地断裂发育,构造复杂,构造研究的难度大。本文通过摸索和研究,利用大量二维和三维地震以及100余口井资料,将Termit盆地(约30 000 km2)作为一个整体进行三维构造建模,克服断层多、构造复杂、数据量庞大等难题,采用层位模拟、断层三角网格剖分、断层自动命名、断面交切关系处理、闭合边界自动生成等技术,在Termit盆地实现了盆地级三维构造建模,该模型可提取全盆地任意方向、任意层位的构造剖面以及任意连井剖面,同时可以任意提取每个区带及局部构造的三维立体模型,以便进行更精细的构造分析。该建模技术为大范围工区精细构造研究提供了新的技术手段,可应用于构造单元的划分、区带评价、目标优选及井位论证等许多方面。Termit盆地三维地质构造模型显示该盆地具有断坳叠置、下大上小的盆地结构,早期晚白垩世坳陷期海相烃源岩广泛分布,后期古近纪叠置裂谷坐落在晚白垩世坳陷期海相烃源岩之上,有利于后期古近纪叠置裂谷聚集油气。基于建立的盆地构造模型,进一步明确了该盆地各区带的构造特征及成藏潜力。研究认为Fana低凸起位于Moul凹陷和Dinga凹陷之间,断裂较为发育,有利于油气的运移、聚集和成藏,是盆地最有利的勘探区带;Dinga断阶带紧邻Dinga凹陷,断裂最发育,也是有利的勘探区带;Araga地堑断裂发育,成藏条件较好;而Moul凹陷和Dinga凹陷虽然油源条件好,但构造活动较弱,断裂不发育或较弱,不利于油气的向上运移,勘探潜力较差。此外,基于盆地构造模型可以对两期叠置裂谷形成的构造样式及断裂进行精细分析,研究其对油气聚集成藏的控制作用,从而优选出有利的目标,为井位部署提供决策建议。该成果和认识在Termit盆地的勘探中取得了很好的应用效果,进一步促进了古近系上组合和白垩系下组合的勘探突破。  相似文献   

3.
The Transbrasiliano Lineament (TBL), a NE-SW trending strike slip system at least 2700 km long, is one of the main structures of the South American Platform. This lineament, along with other structures, influenced greatly the installation and depositional history of the Paraná and Parnaíba sedimentary basins. The Água Bonita Basin (ABB) occurs at an intermediate position between both basins. This work aims to provide information on the origin and evolution of the Água Bonita Basin, considered a Silurian-Devonian basin, as well as its relationship with the Transbrasiliano Lineament.Geological, aero and ground geophysics data were used to determine a structural geological model for the ABB located in the Brasilia Fold Belt in the Tocantins tectonic province. The airborne geophysical magnetic data used in the study were acquired in the 1970s by the existing 147 ground gravity stations in addition to the 498 new ground gravity and geodetic stations that were added to the existing ones.The analysis of the outcrops allowed identifying the sedimentary facies associations providing new information on the depositional environments. The compilation of existing data, satellite images analysis, geological maps and shaded relief provided an integrated model for the study area.A geological model was proposed for the ABB based on the interpretation, integration, depth analysis and 2D gravity forward modeling according to a theoretical model for an extensional duplex in a strike slip system with flower structures. We observed several segmented gravity anomalies, which were interpreted as steps/faults. This interpretation is consistent with a pull apart basin. According to the depth data estimated by this model, the maximum thickness of the Água Bonita Formation is 1.6 km and 2.4 km for the precursor rift. The basin has two dextral faults on each border, whose main fault of the TBL strike slip system and the master fault controlling the ABB are observed on the east border of the rift phase. Lineaments perpendicular to the west edge, in addition to those crossing the ABB in the N65E, delineate peculiar magnetic, gravity and geological signatures in the northern part of the basin. The basin is located in the weak region of the TBL and its main eastern fault is dipping sub-vertically to the west. This fault modeled up to the 8 km depth using the gravity data, was also observed in the Tilt Angle of the Total Horizontal Gradient (TAHG) matched filter grid result at approximately 8 km, however this may not be this fault maximum depth.Three main sedimentary-tectonic stages were observed, (i) a Pre-Devonian precursor rift present in the Água Bonita Basin and Jaibaras Group; (ii) the sag stage developed during the Devonian, when the Paleozoic basins of Paraná, Parnaíba and Água Bonita Basin were connected evidenced by the sedimentary facies and similar thicknesses; and (iii) the Pos-devonian rocks that are probably not preserved in the Água Bonita Basin.  相似文献   

4.
Sivas Basin is the easternmost and third largest basin of the Central Anatolian Basins. In this study, gravity, aeromagnetic and seismic data are used to investigate the deep structure of the Sivas Basin, together with the well seismic velocity data, geological observations from the surface and the borehole data of the Celalli-1 well. Basement depth is modeled three-dimensionally (3D) using the gravity anomalies, and 2D gravity and magnetic models were constructed along with a N–S trending profile. Densities of the rock samples were obtained from the distinct parts of the basin surface and in-situ susceptibilities were also measured and evaluated in comparison with the other geophysical and geological data. Additionally, seismic sections, in spite of their low resolution, were used to define the velocity variation in the basin in order to compare depth values and geological cross-section obtained from the modeling studies. Deepest parts of the basin (12–13 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Geometry, extension and wideness of the basin, together with the thickness and lithologies of the sedimentary units are reasonably appropriate for further hydrocarbon exploration in the Sivas Basin that is still an unexplored area with the limited number of seismic lines and only one borehole.  相似文献   

5.
2D and 3D modeling of the geothermal field was carried out along seven extended geotraverses in the Barents Sea compiled on the basis of CMP profiling and results of deep drilling. Depths of the zone characterized by catagenetic transformation of organic matter were calculated for different areas of the sedimentary basin. The minimal depth is confined to the South Barents Basin with the highest hydrocarbon resource potential established by geological exploration. In 3D models, this area is distinguished by a thermal dome recognized for the first time.  相似文献   

6.
李志强  杨波  韩自军  黄振  吴庆勋 《地球科学》2022,47(5):1652-1668
基于Advanced McKenzie地球动力学模型和Easy%RoDL化学动力学模型,建立了南黄海中-新生代(K13-Q)裂谷盆地的构造-热演化史,结合盆地深部壳幔结构、梳理周缘中-新生代板块汇聚与离散过程,讨论了该盆地低地热状态成因、成盆机制和烃源岩热演化.盆地地壳伸展系数约为1.22,岩石圈地幔伸展系数约为1.06;由裂陷期(K13-E2)至今,最高热流值仅由约76 mW/m2降低至约66 mW/m2,最高地温梯度仅由约37 ℃/km降低至约30 ℃/km,首次揭示低地热状态贯穿整个裂谷盆地发育阶段.低岩石圈地幔伸展系数、深部非镜像莫霍面分布、盆地发育阶段仅处于弧后远场拉张应力环境,均指示成盆过程中深部伸展上涌强度低,是导致其持续低地热状态的根本原因,深部热应力不是其主要成盆动力来源;依据高地壳伸展系数和控盆拆离断层演化,认为印支-燕山期先存逆冲断裂复活形成壳间拆离体系,并以简单剪切变形方式控制裂谷盆地发育,是其根本成盆机制;南、北部坳陷烃源岩主排烃期为三垛组二段沉积时期,自渐新世构造反转后热演化终止,古埋深和古地温场条件共同控制现今南、北部坳陷相同深度烃源岩热成熟度差异.   相似文献   

7.
《International Geology Review》2012,54(11):1315-1331
The Gulf of California is an excellent example of how new ocean basins form. Tectonically, the northern Gulf of California is an incipient ocean basin and studies on it have defined acoustic basement and reveal the presence of new oceanic crust and intrusive bodies. Some recent studies report fundamental differences between the basins of the northern and southern Gulf of California: that the latter have well-developed oceanic crust beneath a thin cover of sediments, whereas the northern basins show proto-ocean basins, which may reflect thermal insulation of the thick sedimentary cover, the presence of low-angle faults, and more diffuse and distributed deformation. During the 1970s, Petróleos Mexicanos (PEMEX) undertook a 2D seismic reflection survey in the northern Gulf of California, over many active rift basins, including the Consag Basin. Through the processing and interpretation of these data, we describe the structural characteristics of the Consag Basin beyond 2 km depths. Using seismic reflection data, we identified an intrusion in the central part of this basin that may represent new oceanic crust buried by more than 4 km of sediments.  相似文献   

8.
INTRODUCTIONInhighlyextendedregions(β>1.5-2)suchastheBasinandRangeProvinceandpasivemargins,extensionaltectonicsystemischaract...  相似文献   

9.
On the basis of reprocessing 34 new two-dimensional spliced long sections(20,191 km) in the Tarim Basin, the deep structure features of the Tarim Basin were analyzed through interpreting 30,451 km of two-dimensional seismic data and compiling basic maps. Seismic interpretation and geological analysis conclude that the Nanhua-Sinian strata are a set of rift-depression depositional systems according to their tectonic and depositional features. The rift valley formed in the Nanhua Period, and the transformation became weaker during the late Sinian Period, which eventually turned into depression. From bottom to top, the deposited strata include mafic igneous, tillite, mudstone, and dolomite. Three major depocenters developed inside this basin during the rift stage and are distributed in the eastern Tarim Basin, the Awati area, and the southwestern Tarim Basin. Among them, the rift in the eastern Tarim Basin strikes in the near east-west direction on the plane and coincides with the aeromagnetic anomaly belt. This represents a strong magnetic zone formed by upwelling basic volcanic rock along high, steep normal faults of the Nanhua Period. Controlled by the tectonic background, two types of sedimentary systems were developed in the rift stage and depression stage, showing two types of sequence features in the Sinian depositional stage. The Nanhua System appears as a wedge-shaped formation, with its bottom in unconformable contact with the base. The rifting event has a strong influence on the current tectonic units in the Tarim Basin, and affects the distribution of source rock in the Yuertus Formation and reservoir beds in the Xiaoerbulake Formation in Lower Cambrian, as well as the gypseous cap rock in Middle Cambrian. The distribution features of the rifts have important and realistic significance for determining the direction of oil and gas exploration in the deep strata of the Tarim Basin. Comprehensive analysis suggests that the Tazhong region is the most favorable zone, and the Kalpin-Bachu region is the optimal potential zone for exploring sub-salt oil and gas in deep Cambrian strata.  相似文献   

10.
《China Geology》2018,1(3):331-345
The Gonghe Basin, a Cenozoic down-warped basin, is located in the northeastern part of the Qinghai-Xizang (Tibetan) Plateau, and spread over important nodes of the transfer of multiple blocks in the central orogenic belt in the NWW direction. It is also called “Qin Kun Fork” and “Gonghe Gap”. The basin has a high heat flow value and obvious thermal anomaly. The geothermal resources are mainly hot dry rock and underground hot water. In recent years, the mechanism of geothermal formation within the basin has been controversial. On the basis of understanding the knowledge of predecessors, this paper proposes the geothermal formation mechanism of the “heat source–heat transfer–heat reservoir and caprock–thermal system” of the Gonghe Basin from the perspective of a geological background through data integration-integrated research-expert, discussion-graph, compilation-field verification and other processes: (1) Heat source: geophysical exploration and radioisotope calculations show that the heat source of heat in the basin has both the contribution of mantle and the participation of the earth’s crust, but mainly the contribution of the deep mantle. (2) Heat transfer: The petrological properties of the basin and the exposed structure position of the surface hot springs show that one transfer mode is the material of the mantle source upwells and invades from the bottom, directly injecting heat; the other is that the deep fault conducts the deep heat of the basin to the middle and lower parts of the earth’s crust, then the secondary fracture transfers the heat to the shallow part. (3) Heat reservoir and caprock: First, the convective strip-shaped heat reservoir exposed by the hot springs on the peripheral fault zone of the basin; second, the underlying hot dry rock layered heat reservoir and the upper new generation heat reservoir and caprock in the basin revealed by drilling data. (4) Thermal system: Based on the characteristics of the “heat source-heat transfer-heat reservoir and caprock”, it is preliminarily believed that the Gonghe Basin belongs to the non-magmatic heat source hydrothermal geothermal system (type II21) and the dry heat geothermal system (type II22). Its favorable structural position and special geological evolutionary history have given birth to a unique environment for the formation of the geothermal system. There may be a cumulative effect of heat accumulation in the eastern part of the basin, which is expected to become a favorable exploration area for hot dry rocks.  相似文献   

11.
Melut盆地为中非地区重要的含油气裂谷盆地,具被动裂谷成盆特征,处于区域构造勘探向"三新领域"勘探的转型阶段,油气富集规律尚不十分清楚,通过开展Melut盆地与我国东部主动裂谷盆地的类比分析,有助于深化盆地成藏认识,推进勘探转型.研究表明,Melut盆地北部具被动裂谷成盆特征,发育大型富油凹陷,形成以古近系跨时代成藏组合为主,近源白垩系成藏组合为辅的油气富集特点,古近系Yabus组上段跨时代岩性油藏与近源白垩系Galhak组断块油藏是北部深化勘探的重要领域;盆地中南部具被动裂谷与主动裂谷的叠加演化过程,与海拉尔盆地相似,具小型断陷沉积充填与成藏特征,近源成藏组合是有利的勘探对象,继承性洼槽内低凸起、凹陷间断裂隆起带及缓坡断层坡折带是有利的成藏构造带.该研究深化了Melut盆地成藏认识,明确了盆地南北具有不同的成盆机制与成藏特征,对推动北部成熟探区深化勘探与中南部低探区勘探突破具有重要意义.  相似文献   

12.
哈尔滨-尚志MT阵列剖面研究   总被引:1,自引:1,他引:0  
根据哈尔滨-尚志连续电磁剖面测深结果,研究了松辽盆地东缘盆山结合部的地质结构特征,尤其是对深层的地质结构取得了重要的认识.盆山结合部划分出3个基本单元:松辽盆地、滨东隆起区和张广才岭隆起区.盆地一侧的盖层具有双重结构.盆地具双重基底,即浅变质岩的褶皱基底与侵入岩的结晶基底.莫霍面在盆地一侧隆起,向张广才岭变深,隆起幅度4km.断裂主要为岩石圈与壳断裂,对构造单元起控制作用.  相似文献   

13.
苏北盆地属于中、新生代“断陷型”盆地,发育前震旦系变质基底及古生代海相台地沉积,经历燕山期大规模岩浆-火山-构造活动,之后连续断陷沉降并沉积了厚度巨大的新生代地层;新生代苏北盆地处于持续活跃的洋陆构造带内,其特殊的构造位置使区内拥有相对高的大地热流值和较大的地温梯度,具有巨大的地热资源潜力。基于区域地热地质综合研究,本文针对苏北盆地地质构造特征、地温数据、地球物理信息等系统分析,初步证实了盆地内不仅存在浅部中低温地热资源,而且推断出盆地深部拥有温度较高的干热岩资源,其热源主要来源于深部的地幔,是本地区新生代区域伸展裂陷、地幔上涌、岩石圈减薄等作用的结果。根据干热岩选区的科学准则,盆地内优势前景区拥有丰富的动态热源、导热效果极佳的热通道、规模巨大的优势热储、良好保温作用的热盖层,并依据此初步建立成因模型,为进一步勘探与开发提供参考依据。  相似文献   

14.
为了解准噶尔盆地深部构造特征,综合利用“深部探测技术与试验研究(SinoProbe)”项目在准噶尔盆地45°N 88°E处建立的大地电磁标准点实测资料,应用非线性共轭梯度法(NLCG)对该测站两条短剖面进行二维反演,结合新疆准噶尔盆地区域地质资料,对该地区地层电性结构进行了初步分析,发现准噶尔盆地中东部地区地下结构具有很好的电性分层.与现有地质资料相结合,分析发现其电性分层与地壳分层具有较好的对应.根据岩石层电导性推断:研究区域莫霍面埋深在46 km附近,岩石圈厚度在100 km左右.研究结果对准噶尔中东部地区深部地壳结构的认识具有一定的参考价值.   相似文献   

15.
塔里木盆地西南部南华纪裂谷体系的发现及意义   总被引:2,自引:1,他引:1  
通过系统的地震资料解释,首次在塔西南地区发现南华纪裂谷体系。该裂谷平面上呈NW-SE走向的长条状,长约450km,宽约70~110km。剖面上为一箕状盆地,西南边界为一大型正断层,是裂谷沉积的同沉积断层,裂谷沉积向西南逐渐加厚,向东北逐渐减薄,沉积中心靠近裂谷的西南边界,构成一大型半地堑构造。其中,南华系是一套典型的生长地层,是裂谷沉积的主体;震旦系为裂谷晚期-后裂谷期沉积。塔西南南华纪裂谷是罗迪尼亚超大陆裂解过程中形成的,其油气勘探价值非常值得期待。  相似文献   

16.
This study explores the siliciclastic Granite Wash Unit in northwestern Alberta as a potential geothermal reservoir. The approach covers regional 3D structural geological modelling of a 90 km × 70 km area based on well log and legacy 2D seismic data. The fault strike was interpreted from lineaments, which were identified with the refined trend surface analysis method. The stress state of the Granite Wash reservoirs was determined by an integrated approach of 3D fault modelling, stress ratio definition based on frictional constraints, and slip tendency analysis. The results show that the best site for a geothermal application is located in the southwestern study area, where the highest temperatures (above 70 °C) coincide with the largest thickness (above 20 m) and zones of elevated porosity and permeability. The integrated stress analysis indicates an in situ stress regime from normal to strike-slip faulting maintaining a non-critically stressed reservoir or faults therein, assuming a friction coefficient of 0.7. The granite wash reservoirs could be used for heating of greenhouses, domestic warm water provision and district heating.  相似文献   

17.
Deep Earth dynamics impact so strongly on surface geological processes that we can use sediment palaeo‐markers as a window into the deeper Earth. Derived from climatic and tectonic erosive actions on the continents, and related to eustasy, subsidence and isostasy, the sediment in a deep basin is the main recorder of these processes. Nevertheless, defining and quantifying the relative roles of parameters that interact to give the final sedimentary architecture is not a simple task. Using a 3D‐grid of seismic and wide‐angle data, boreholes and numerical stratigraphic modelling, we propose here a quantification of post‐rift vertical movements in the Provençal Basin (West Mediterranean) involving three domains of subsidence: seaward tilting on the platform and the slope and purely vertical subsidence in the deep basin. These domains fit the deeper crustal domains highlighted by previous geophysical data. Post‐break‐up sedimentary markers may therefore be used to identify the initial hinge lines of the rifting phase and the subsidence laws.  相似文献   

18.
通化地区是松辽盆地东部外围的油气调查新区,油气勘探程度极低,关键问题是沉积地层展布形态、盆地深部结构等关键基础地质问题未知。笔者通过高精度重力、磁力和大地电磁等地球物理方法,获取了通化地区岩石地球物理和重磁异常变化特征,揭示了通化地区深部地球物理结构形态;认为通化地区存在4条Ⅰ级断裂和46条次级断裂,主要断裂控制着研究区的基本构造格架;首次圈定出红庙子、桓仁、沙尖子、拐磨子和木齐盆地5个断陷盆地,查明了盆地规模、中生界底面最大埋深和中侏罗统侯家屯组地层的展布形态等深部结构特征;并进一步对桓仁盆地和拐磨子盆地进行构造单元的划分。该研究成果为下一步油气勘探提供重要基础地质信息,亦对松辽盆地东部外围新区的油气勘探部署提供重要的指导意义。  相似文献   

19.
The resource of the gas from coal and coal measures deep in Songliao Basin hasbeen drawing more and more attention to.It is necessary to find out the evolution regulari-ty of the geothermal field of the basin in addition to a series of geological studies in orderto predict its resources because the ancient geothermal field of the basin is one of themain factors controlling the generation,evolution and disappearance of oil and gas.Inthe recent twenty years,it is generally believed that vitrinite reflectance is the best quanti-tative marker for the ancient geothermal field.In the present paper,a systematic studyof the vitrinite reflectance value of Songliao Basin and its influence factors is made by mul-tiple statistical analysis so as to reconstruct the evolutional process of the Moho and thecorresponding geothermal field.Then,an overall prediction is made of the vitrinitereflectance and the distribution of J_3-K_1 fault basin group at the bottom of SongliaoBasin,which provides the evidence for the furth  相似文献   

20.
The gravity map of the Aveiro Basin, North West Portugal was produced in 2000/2001 and some limited two dimensional (2D) interpretation was carried out. It is intended in this article to advance the interpretation and modelling of the original Aveiro basin gravity data. Thus, the data were processed and the horizontal gradient, the second vertical derivative and downward continued field computed. The corresponding maps have been processed and a new interpretation of the basin tectonic features has been proposed. This is compared with the previous geological and tectonic information obtained from former surveys and local boreholes. As the next step a more detailed modelling of the Aveiro Basin took place. Bearing the interpretation of the basin tectonic features in mind, several north–south and east–west gravity profiles were established and modelled. The proposed models were presented and discussed. As a result, a comprehensive mass distribution model for the basin was proposed. Finally, comparison was made between the new gravity model and the previously published tectonic features map. This modelling is particularly useful for groundwater protection, exploration and exploitation and also for the dimensioning of drilling operations. Bearing in mind the geomorphology of the basin the gravity method is a very economical tool for the investigation of basin structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号