首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

The diverse geological and geophysical data sets compiled, interrogated and interpreted for the largely undercover southern Thomson Orogen region reveal a Paleozoic terrane dominated by deformed metasedimentary rocks intruded by S- and I-type granites. An interpretive basement geology map and synthesis of geochronological constraints allow definition of several stratigraphic packages. The oldest and most widespread comprises upper Cambrian to Lower Ordovician metasedimentary rocks deposited during the vast extensional Larapinta Event with maximum depositional ages of ca 520 to ca 496 Ma. These units correlate with elements of the northern Thomson Orogen, Warburton Basin and Amadeus Basin. The degree of deformation and metamorphism of these rocks varies across the region. A second major package includes Lower to Middle Devonian volcanic and sedimentary units, some of which correlate with components of the Lachlan Orogen. The region also includes a Middle to Upper Ordovician package of metasedimentary rocks and a Devonian or younger package of intermediate volcaniclastic rocks of restricted extent. Intrusive units range from diatremes and relatively small layered mafic bodies to batholithic-scale suites of granite and granodiorite. S-type and I-type intrusions are both present, and ages range from Ordovician to Triassic, but late Silurian intrusions are the most abundant. Two broad belts of intrusions are recognised. In the east, the Scalby Belt comprises relatively young (Upper Devonian) intrusions, while in the west, the Ella Belt is dominated by intrusions of late Silurian age within a curvilinear, broadly east–west trend. The stratigraphic distributions, characteristics and constraints defined by this interpretive basement mapping provide a basic framework for ongoing research and mineral exploration.  相似文献   

2.
Abstract

Zircon U–Pb ages, εHf(t), and δ18O isotopic data together with geochemistry and limited Sm–Nd results from magmatic rocks sampled in deep-basement drill cores from undercover parts of the Thomson Orogen provide strong temporal links with outcropping regions of the orogen and important clues to its evolution and relationship with the Lachlan Orogen. SHRIMP U–Pb zircon ages show that magmatism of Early Ordovician age is widespread across the central, undercover regions of the Thomson Orogen and occurred in a narrow time-window between 480 and 470?Ma. These rocks have evolved εHf(t)zrn (?12.18 to ?6.26) and εNd (?11.3 to ?7.1), and supracrustal δ18Ozrn (7.01–8.50‰), which is in stark contrast to Early Ordovician magmatic rocks in the Lachlan Orogen that are isotopically juvenile. Two samples have late Silurian ages (425–420?Ma), and four have Devonian ages (408–382?Ma). The late Silurian rocks have evolved εHf(t)zrn (?6.42 to ?4.62) and supracrustal δ18Ozrn (9.26–10.29‰) values, while the younger Devonian rocks show a shift toward more juvenile εHf(t)zrn, a trend that is also seen in rocks of this age in the Lachlan Orogen. Interestingly, two early Late Devonian samples have juvenile εHf(t)zrn (0.01–1.92) but supracrustal δ18Ozrn (7.45–8.77‰) indicating rapid recycling of juvenile material. Two distinct Hf–O isotopic mixing trends are observed for magmatic rocks of the Thomson Orogen. One trend appears to have incorporated a more evolved supracrustal component and is defined by samples from the northern two-thirds of the Thomson Orogen, while the other trend is generally less evolved and from samples in the southern third of the Thomson Orogen and matches the isotopic character of rocks from the Lachlan Orogen. The spatial association of the Early Ordovician magmatism with the more evolved metasedimentary signature suggests that at least the northern part of the Thomson Orogen is underlain by older pre-Delamerian metasedimentary rocks.  相似文献   

3.
Abstract

The turbidite-filled, Lower Devonian Cobar Basin is characterised through a detrital zircon study. Uranium–Pb age data for six samples were combined with published data to show the basin has a unique age spectrum characterised by a subordinate Middle Ordovician (ca 470?Ma) peak superimposed on a dominant ca 500?Ma peak. Maximum depositional ages for 3 samples were ca 425?Ma, close to the published Lower Devonian (Lochkovian 419–411?Ma) biostratigraphic ages. A minor ca 1000?Ma zircon population was also identified. The major source of the 500?Ma zircons was probably the local Ordovician metasedimentary basement, which was folded, thickened and presumably exposed during the ca 440?Ma Benambran Orogeny. The ca 470?Ma age peak reflects derivation from Middle Ordovician (Phase 2) rocks of the Macquarie Arc to the east. The I-type Florida Volcanics, located ~50?km eastward from the Cobar Basin, contains distinctive Middle and Late Ordovician zircon populations, considered to be derived from deeply underthrust Macquarie Arc crust. Protracted silicic magmatism occurred before, during and after Cobar Basin deposition, indicating that the basin formed by subduction-related processes in a back-arc setting, rather than as a continental rift.  相似文献   

4.
南秦岭旬阳盆地的钠长岩此前被认为是热水沉积或热液交代作用的产物。本文对南秦岭旬阳盆地东端黄石板地区侵入于下志留统梅子亚组浅变质岩中的钠长岩体进行了地球化学和锆石U-Pb LA-ICP-MS年代学研究,结果表明钠长岩具有富钠贫钾、铝不饱和、亏损大离子亲石元素K和Rb、高场强元素(Nb、Ta、Th、Hf)显著富集的地球化学特点,主体属于钙碱性系列岩石,反映幔源成因的特征。钠长岩中获得最年轻的锆石U-Pb年龄为364~376Ma,该年龄代表岩体的形成年龄,反映晚泥盆世时南秦岭旬阳盆地处于强烈的伸展构造环境。此项研究结果表明,在旬阳盆地的志留系中,岩浆成因与热水沉积成因的钠长岩可能是共存的。黄石板岩浆成因钠长岩岩体中含有大量前寒武纪和早古生代的捕获锆石,在捕获锆石中测得迄今为止在研究区及其邻区获得的最古老的锆石U-Pb年龄(3291Ma)。这些捕获锆石的测年数据说明,研究区所在的南秦岭地区可能从古太古代开始就与扬子地块具有明显的亲缘性。  相似文献   

5.
Abstract

Re-evaluation of geochemical and geophysical datasets, and analysis of magmatic and detrital zircons from drill-core samples extracted from the Louth region of the southern Thomson Orogen (STO), augmented by limited field samples, has shown that two temporally and compositionally distinct igneous groups exist. The older Lower Devonian, calc-alkaline group corresponds to complexly folded, high-intensity curvilinear magnetic anomalies in the Louth region (Louth Volcanics) and are probable equivalents to Lower Devonian volcanics in the northern Lachlan Orogen. A younger Permo-Triassic alkaline assemblage forms part of an E–W corridor of diatremes that appears to relate to focussed lithospheric extension associated with the later stages of the Hunter–Bowen Orogeny in the New England Orogen. The alkaline group includes gabbros previously considered as Neoproterozoic, but all magmatic rocks, including alkaline basalts, contain an unusual number of xenocrystic zircons. The age spectra of the xenocrystic zircons mimic detrital zircons from Cobar Basin sedimentary rocks and/or underlying Ordovician turbidites, suggesting incorporation of upper crustal zircons into the alkaline basaltic magmas. A distinct difference of detrital zircon age spectra from central Thomson Orogen metasediments indicates the STO metasediments have greater affinities to the Lachlan Orogen, but both orogens probably began in the Early Ordovician during widespread backarc extension and deposition of turbidites in the Tasmanides. A surprising result is that Ordovician, Devonian and Permo-Triassic basaltic rocks from the STO and elsewhere in the Tasmanides, all yield the same Nd-model ages of ca 960–830 Ma, suggesting that Neoproterozoic subcontinental lithospheric mantle persisted throughout the evolution of the Tasmanide orogenic system.  相似文献   

6.
龙江盆地是松辽盆地外围西部重要的火山断陷盆地之一,盆地内自下而上依次发育龙江组、光华组和甘河组火山岩。本文对龙江盆地火山岩进行了详细的锆石U-Pb年代学研究,结果显示:龙江组流纹岩、辉石英安岩、安山岩锆石U-Pb年龄分别为(129.7±2.4)、(129.0±2.3)和(125.6±1.3)Ma;光华组3个流纹岩锆石U-Pb年龄分别为(122.5±1.4)、(119.9±1.1)和(116.7±1.5)Ma;甘河组最年轻的锆石年龄为(114.3±2.9)Ma;显示盆地内火山岩浆活动的时限为129.7~114.3 Ma,火山岩均为早白垩世岩浆活动的产物。同时在甘河组玄武质粗面安山岩中测到多组捕获锆石年龄,反映出晚二叠世(254 Ma)、晚石炭世(302 Ma)、晚泥盆世(367 Ma)、早志留世(433 Ma)、古元古代(2 395 Ma)、新太古代(2 523 Ma)岩浆事件记录,这在一定程度上为龙江盆地存在古老结晶基底提供了证据。  相似文献   

7.
The Thomson Orogen forms the northwestern segment of the Tasman Orogenic Zone. It was a tectonically active area with several episodes of deposition, deformation and plutonism from Cambrian to Carboniferous time.Only the northeastern part of the orogen is exposed; the remainder is covered by gently folded Permian and Mesozoic sediments of the Galilee, Cooper and Great Artesian Basins. Information on the concealed Thomson Orogen is available from geophysical surveys and petroleum exploration wells which have penetrated the Permian and Mesozoic cover.The boundaries of the Thomson Orogen with other tectonic units are concealed, but discordant trends suggest that they are abrupt. To the west, the orogen is bordered by Proterozoic structural blocks which form basement west of the northeast-trending Diamantina River Lineament. The most appropriate boundary with the Lachlan and Kanmantoo Orogens to the south is an arcuate line marking a distinct change in the direction of gravity trends. The north-northwest orientation of the northern part of the New England Orogen to the east cuts strongly across the dominant northeast trend of the Thomson Orogen.The Thomson Orogen developed as a tectonic entity in latest Proterozoic or Early Cambrian time when the former northern extension of the Adelaide Orogen * was truncated along the Muloorinna Ridge. Early Palaeozoic deposition was dominated by finegrained, quartz-rich clastic sediments. Cambrian carbonates accumulated in the southwest and a Cambro-Ordovician island arc was active in the north. Along the western margin of the orogen, sediments were probably laid down on downfaulted blocks of deformed Proterozoic rocks, with oceanic crust further to the east.A mid- to Late Ordovician orogeny which affected the whole of the Thomson Orogen marked the climax of its precratonic (orogenic) stage. The northeast structural trend of the orogen (parallel to its western boundary with the Precambrian craton) was imposed at this time and has controlled the orientation of later folding and faulting. Up to three generations of folding have been recognized and fine-grained metasediments exhibit a prominent slaty cleavage. Metamorphism was to the greenschist and amphibolite facies, the highest grade rocks being associated with synorogenic granodiorite batholiths in the north. Following deposition of Late Ordovician marine sediments at the eastern margin, emplacement of post-tectonic Late Silurian or Early Devonian batholiths ended the precratonic history of the Thomson Orogen.The subsequent transitional tectonic regime was characterized by deposition of Devonian to Early Carboniferous shallow marine and continental sediments including widespread red-beds and andesitic volcanics. The maximum marine transgression occurred in the early Middle Devonian. Localized folding affected the easternmost part of the Thomson Orogen at the end of Middle Devonian time and was followed by intrusion of Devono-Carboniferous granitic plutons. However, the terminal orogeny which deformed all Devonian to Early Carboniferous rocks of the orogen was of mid-Carboniferous age. It produced northeast-trending open folds and normal and high-angle reverse faults which are considered to reflect basement structures. The cratonization of the Thomson Orogen was completed with the emplacement of Late Carboniferous granites and the eruption of comagmatic volcanics in the northeast, permian and Mesozoic sediments accumulated in broad, relatively shallow down warps which covered most of the former orogen.  相似文献   

8.
塔里木盆地北部志留系碎屑锆石测年及其地质意义   总被引:3,自引:0,他引:3  
志留系是塔里木盆地第一套砂岩储层广泛分布的沉积盖层,其沉积来源与成因对志留纪构造演化及周边造山带的研究具有重要意义。塔里木盆地北部地区2个志留系代表性样品的碎屑锆石LA-ICP-MS U-Pb定年研究表明,志留系具有比较集中的三期物源年龄:中元古代早期1500~1600Ma、新元古代早期750~900Ma、奥陶纪450~500Ma。碎屑锆石定龄表明东部地区志留系物源主要来自阿尔金地区奥陶纪火成岩,而西部塔北地区志留系物源主要来自北部古隆起前寒武纪基底。前寒武纪锆石年龄揭示塔里木板块在新元古代时期与Rodinia超大陆具有相似的聚合与裂解演化史,塔里木北部地区在中元古代存在与Columbia超大陆裂解时间一致的构造-热事件。  相似文献   

9.
对松辽盆地北部黑富地3井所钻遇的侵入岩进行同位素U-Pb年代学分析,以探讨其形成期次和构造演化特征,并对所侵入的地层进行时代约束.测试分析结果显示,锆石206Pb/238U年龄的加权平均值为245.5±1.9 Ma,表明侵入岩的结晶年龄为早中三叠世,指示松辽盆地北部发育早中三叠世岩浆热事件.同时存在两组捕获的锆石年龄,一组介于269~295 Ma,年龄的加权平均值为289.0±6 Ma;另一组为313~353 Ma,年龄的加权平均值为338.0±3 Ma.捕获的锆石年龄指示松辽盆地北部基底或深部至少还经历了石炭纪和早-中二叠世等火山活动及岩浆侵位等事件.导致岩浆热事件的构造机制应与古亚洲洋的碰撞拼合及碰撞后的伸展体制有关.脉岩的结晶侵位年龄限制了地层的沉积时代上限,即碎屑岩地层是在245.5±1.9 Ma之前固结成岩.综合其他地质依据,证明碎屑岩层系为晚二叠世林西组.  相似文献   

10.
李向民  余吉远  王国强  武鹏  周志强 《地质通报》2011,30(10):1501-1507
对甘肃北山红柳园地区三个井组下部玄武岩和墩墩山群安山质火山岩进行了LA-ICP-MS锆石U-Pb年龄测定,三个井组火山岩形成于420Ma±15Ma,相当于晚志留世;墩墩山群火山岩形成于367Ma±10Ma,相当于晚泥盆世。测年结果表明,晚志留世北山古生代洋盆已经俯冲消亡,并开始碰撞造山,而晚泥盆世墩墩山群火山岩则是北山早古生代洋盆碰撞造山后裂谷拉伸作用的产物,标志北山及相邻地区晚泥盆世进入到新的构造演化阶段 ——晚古生代板内伸展阶段。  相似文献   

11.
哀牢山古特提斯洋的打开时限及其缝合带的具体位置对理解哀牢山古特提斯洋构造演化具有非常重要的意义。本文采用碎屑锆石年代学方法,分析了哀牢山构造带及其两侧不同时期沉积物源的特征及其变化,解译了其物源差别所指示的哀牢山古特提斯洋盆打开时限以及缝合带的构造位置。碎屑锆石年代学显示,哀牢山构造带两侧上志留统碎屑锆石都记录一个~450 Ma的最年轻的峰值和一个格林威尔期造山事件的年龄群(1100~800 Ma),以及一个2600~2400 Ma的次峰;不同于上志留统,构造带东侧下泥盆统碎屑锆石并未出现年轻的~450 Ma峰值年龄信息,西侧U-Pb年龄分布模式与上志留统一致,记录~450 Ma峰值年龄信息,而且构造带两侧下泥盆统碎屑锆石的2600~2400 Ma的峰值明显要强于上志留统。区域上发表的碎屑锆石年代学资料,也揭示相同的年龄峰值。因此,综合区域上的其他地质资料,我们认为哀牢山古特提斯洋盆的打开时限应该在晚志留世-早泥盆世,哀牢山断裂带代表了哀牢山洋盆闭合的位置。  相似文献   

12.
对甘肃北山红柳园地区三个井组下部玄武岩和墩墩山群安山质火山岩进行了LA-ICP-MS锆石U-Pb年龄测定,三个井组火山岩形成于420Ma±15Ma,相当于晚志留世;墩墩山群火山岩形成于367Ma±10Ma,相当于晚泥盆世。测年结果表明,晚志留世北山古生代洋盆已经俯冲消亡,并开始碰撞造山,而晚泥盆世墩墩山群火山岩则是北山早古生代洋盆碰撞造山后裂谷拉伸作用的产物,标志北山及相邻地区晚泥盆世进入到新的构造演化阶段——晚古生代板内伸展阶段。  相似文献   

13.
Abstract

The Charters Towers Province, of the northern Thomson Orogen, records conversion from a Neoproterozoic passive margin to a Cambrian active margin, as characteristic of the Tasmanides. The passive margin succession includes a thick metasedimentary unit derived from Mesoproterozoic rocks. The Cambrian active margin is represented by upper Cambrian–Lower Ordovician (500–460?Ma) basinal development (Seventy Mile Range Group), plutonism and metamorphism resulting from an enduring episode of arc–backarc crustal extension. Detrital zircon age spectra indicate that parts of the metamorphic basement of the Charters Towers Province (elements of the Argentine Metamorphics and Charters Towers Metamorphics) overlap in protolith age with the basal part of the Seventy Mile Range Group and thus were associated with extensional basin development. Detrital zircon age data from the extensional basin succession indicate it was derived from a far-field (Pacific-Gondwana) primary source. However, a young cluster (<510?Ma) is interpreted as reflecting a local igneous source related to active margin tectonism. Relict zircon in a tonalite phase of the Fat Hen Creek Complex suggests that active margin plutonism may have extended back to ca 530?Ma. Syntectonic plutonism in the western Charters Towers Province is dated at ca 485–480?Ma, close to timing of metamorphism (477–467?Ma) and plutonism more generally (508–455?Ma). The dominant structures in the metamorphic basement formed with gentle to subhorizontal dips and are inferred to have formed by extensional ductile deformation, while normal faulting developed at shallower depths, associated with heat advection by plutonism. Lower Silurian (Benambran) shortening, which affected metamorphic basement and extensional basin units, resulted in the dominant east–west-structural trends of the province. We consider that these trends reflect localised north–south shortening rather than rotation of the province as is consistent with the north–south paleogeographic alignment of extensional basin successions.
  1. KEY POINTS
  2. Northern Tasmanide transition from passive to active margin tectonic mode had occurred by ca 510?Ma, perhaps as early as ca 530?Ma.

  3. Cambro-Ordovician active margin tectonism of the Charters Towers Province (northern Thomson Orogen) was characterised by crustal extension.

  4. Crustal extension resulted in the development of coeval (500–460?Ma) basin fill, granitic plutonism and metamorphism with rock assemblages as exposed across the Charters Towers Province developed at a wide range of crustal levels and expressing heterogeneous exhumation.

  5. Protoliths of metasedimentary assemblages of the Charters Towers Province include both Proterozoic passive margin successions and those emplaced as Cambrian extensional basin fill.

  相似文献   

14.
《International Geology Review》2012,54(13):1666-1689
ABSTRACT

The Wulonggou area in the Eastern Kunlun Orogen (EKO) in Northwest China is characterized by extensive granitic magmatism, ductile faulting, and orogenic gold mineralizations. The Shidonggou granite is located in the central part of the Wulonggou area. This study investigated the major as well as trace-element compositions, zircon U–Pb dates, and zircon Hf isotopic compositions of the Shidonggou granite. Three Shidonggou granite samples yielded an average U–Pb zircon age of 416 Ma (Late Silurian). The Late Silurian Shidonggou granite is peraluminous, with high alkali contents, high Ga/Al ratios, high (K2O + Na2O)/CaO ratios, and high Fe2O3T/MgO ratios, suggesting an A-type granite. The Shidonggou granite samples have zircon εHf(t) values ranging from ?7.1 to +4.4. The Hf isotopic data suggest that the Late Silurian granite was derived from the partial melting of Palaeo- to Mesoproterozoic juvenile mantle-derived mafic lower crust. Detailed geochronological and geochemical data suggest that the Late Silurian granite was emplaced in a post-collisional environment following the closure of the Proto-Tethys Ocean. Combining data of other A-type granitic rocks with ages of Late Early Silurian to Middle Devonian, such post-collisional setting related to the Proto-Tethys Ocean commenced at least as early as ~430 Ma (Late Early Silurian), and sustained up to ~389 Ma (Middle Devonian) in the EKO.  相似文献   

15.

Laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of zircons confirm a Late Devonian to Early Carboniferous age (ca 360–350 Ma) for silicic volcanic rocks of the Campwyn Volcanics and Yarrol terrane of the northern New England Fold Belt (Queensland). These rocks are coeval with silicic volcanism recorded elsewhere in the fold belt at this time (Connors Arch, Drummond Basin). The new U–Pb zircon ages, in combination with those from previous studies, show that silicic magmatism was both widespread across the northern New England Fold Belt (>250 000 km2 and ≥500 km inboard of plate margin) and protracted, occurring over a period of ~15 million years. Zircon inheritance is commonplace in the Late Devonian — Early Carboniferous volcanics, reflecting anatectic melting and considerable reworking of continental crust. Inherited zircon components range from ca 370 to ca 2050 Ma, with Middle Devonian (385–370 Ma) zircons being common to almost all dated units. Precambrian zircon components record either Precambrian crystalline crust or sedimentary accumulations that were present above or within the zone of magma formation. This contrasts with a lack of significant zircon inheritance in younger Permo‐Carboniferous igneous rocks intruded through, and emplaced on top of, the Devonian‐Carboniferous successions. The inheritance data and location of these volcanic rocks at the eastern margins of the northern New England Fold Belt, coupled with Sr–Nd, Pb isotopic data and depleted mantle model ages for Late Palaeozoic and Mesozoic magmatism, imply that Precambrian mafic and felsic crustal materials (potentially as old as 2050 Ma), or at the very least Lower Palaeozoic rocks derived from the reworking of Precambrian rocks, comprise basement to the eastern parts of the fold belt. This crustal basement architecture may be a relict from the Late Proterozoic breakup of the Rodinian supercontinent.  相似文献   

16.
Abstract

Cambrian deformation associated with the Delamerian Orogeny is most evident in the Delamerian Orogen (southwestern Tasmanides) but has also been documented in the Thomson Orogen (northern Tasmanides). The tectonic evolution of the Thomson Orogen in the context of the Delamerian Orogeny is poorly understood. In particular, tectonostratigraphic relationships between the different parts of the Thomson Orogen (Anakie Inlier, Nebine Ridge, and southern Thomson Orogen) are still unclear. New detrital zircon data from the Nebine Ridge revealed an age spectrum that is consistent with published geochronological data from the Anakie Inlier. These results, in conjunction with petrographic observations and the interpretation of geophysical data, suggest that along the eastern part of the Thomson Orogen, the?~?NNE-trending Nebine Ridge represents the southward continuation of the?~?N–S-trending Anakie Inlier. New detrital zircon geochronological data are also presented for metasedimentary rocks from both sides of the Thomson–Lachlan boundary. The results constrain the maximum age of deposition (Ordovician–Devonian), and show that both sides of the Thomson–Lachlan boundary received detritus from a similar provenance. This might suggest that the Thomson–Lachlan boundary did not play a major role as a crustal-scale boundary prior to the Devonian. We speculate that transpressional deformation along this?~?E–W boundary, during the Early Devonian, was responsible for disrupting the original belt that connected the Delamerian Orogen (Koonenberry Belt) with the eastern Thomson Orogen (Nebine Ridge and Anakie Inlier).
  1. Highlights
  2. The Nebine Ridge is the southward continuation of the Anakie Inlier.

  3. The Anakie Inlier and Nebine Ridge represent a northern segment of the Cambrian Delamerian–Thomson Belt.

  4. ~E–W-trending crustal-scale structures at the southern Thomson Orogen were active during Devonian.

  相似文献   

17.
西准噶尔塔尔巴哈台-谢米斯台地区研究和找矿勘探工作十分薄弱,近年来随着谢米斯台铜矿的发现,本项目组陆续发现了喀因德、乌兰浩特、阿依德、巴汗等铜矿点,指示该区具有与火山热液活动有关的铜成矿作用有的潜力。本文对这些矿床(点)开展了地质特征、年代学和地球化学研究显示,区内发育的阿尔木强、谢米斯台铜矿床以及喀因德、乌兰浩特、阿依德、巴汗等铜矿点与火山岩地层密切相关,矿化主要表现为黄铁矿化、孔雀石化,发育绿帘石化、绿泥石化、硅化、碳酸岩化等蚀变,具有火山热液型铜矿特点。锆石LA-ICP-MS U-Pb测年获得喀因德铜矿点火山岩年龄为455.1±5.4Ma,乌兰浩特铜矿点火山岩年龄为428.6±4.6Ma,阿依德铜矿点火山岩年龄为428.8±7.2Ma,谢米斯台铜矿床火山岩年龄为424.3±4.3Ma,阿尔木强铜矿床火山岩年龄为426.7Ma,巴汗铜矿点火山岩年龄为411.7±4.7Ma,可分为晚奥陶世、中志留世、早泥盆世三个阶段,以中志留世为主。地球化学特征显示晚奥陶世、中志留世、早泥盆世三个阶段的火山岩均形成于岛弧环境;且具有类似的岩浆源区和演化过程;岩浆在上升侵位过程中没有明显的受到外来物质混染。综合地质、年代学和地球化学特征显示,塔尔巴哈台-谢米斯台地区与火山热液有关的铜矿床(点)主要受控于构造背景、地层组合、岩石类型、蚀变、控矿构造等因素,其中中志留世中基性火山岩、与火山机构相关的深部可能存在的次火山岩或浅成侵入岩分布区具有较好的找矿潜力。  相似文献   

18.
Abstract

Magmatic-textured zircon from medium- to high-K calc-alkaline Warraweena Volcanics (WV) in two drill holes have yielded concordant U–Pb dates of 417?±?3.5 and 414?±?4.0?Ma and are interpreted as maximum emplacement ages. The Warraweena volcanics were previously considered to be either Neoproterozoic or Macquarie arc equivalents. Whole-rock εNdt values of these volcanics are +4.5 and +4.8. Along strike of the drill holes, Devonian zircon U–Pb ages (411?±?5.5?Ma) were obtained from coherent S-type rhyolite flows that have highly negative εNdt values (–7.9 and –7.8). These are a component of the Oxley volcanics. The ages of the Warraweena and Oxley volcanics are identical within uncertainty.

The Oxley volcanics (OV) are interbedded with predominantly fine- to medium-grained metasedimentary and so imply a Lower Devonian deposition age for these host rocks. Based on their geophysical characteristics, the metasediments are widely distributed. These metasedimentary rocks yield a wide range of maximum depositional ages, from Early Devonian to earliest Ordovician–latest Cambrian, similar to the Cobar Basin. The absence of complex fabric development typical of Ordovician supracrustal rocks in the region, and conformity with the OV where observable suggest the widespread sedimentation was synchronous with rift-related volcanism in the Early Devonian.

Regionally, the WV is temporally, geochemically and isotopically (εNd values) similar to the calc-alkaline Louth Volcanics located over 100?km to the southwest of the WV. Louth Volcanics define a complexly folded belt in geophysical data. Other potentially correlative Early Devonian igneous rocks occur in the nearby Cobar Superbasin and elsewhere in the eastern Lachlan Orogen and are considered to represent the products of a post-orogenic, nascent continental back-arc rift system.  相似文献   

19.
大兴安岭位于中亚造山带的东段,自北向南划分为额尔古纳地块、兴安地块和松嫩地块。倭勒根群主体分布于额尔古纳地块,前人将其归属为新元古代-早寒武世。对新林地区倭勒根群大网子组的上部变火山岩段和下部变沉积岩段进行了锆石LA-ICP-MS U-Pb定年。测试结果显示:上部变火山岩的形成年龄为(430.7±4.1)Ma,属早志留世;下部变沉积岩中碎屑锆石的最小峰值年龄为(480.1±2.9) Ma,指示其沉积时间不早于早奥陶世。综合文献资料确定:新林地区倭勒根群浅变质岩系是一套时间跨距从寒武纪到早志留世的岩石地层组合,而非新元古代-早寒武世;新林蛇绿岩的构造侵位时间不早于早奥陶世;新林地区的大网子组、兴隆沟地区的早奥陶世沉积与多宝山-伊尔施早奥陶世火山弧构成了大兴安岭北部地区的早奥陶世弧-盆体系。  相似文献   

20.
为了解富锦隆起的构造演化,研究了佳木斯地块东北部富锦隆起地区一套含砾粗砂岩-石英砂与花岗片麻岩不整合面。LA-ICP-MS锆石U-Pb年代学结果表明,花岗片麻岩的加权平均年龄为495±5 Ma,石英砂岩中的碎屑锆石年龄均480 Ma,其中以480~520 Ma的年龄组为主体,并含有少量年龄800 Ma的锆石。角度不整合及年代学证据充分表明,富锦隆起是佳木斯地块的组成部分。鉴于佳木斯地块缺失奥陶纪—志留纪沉积,推测这套含砾粗砂岩-石英砂岩的形成时代为泥盆纪。结合区域资料,认为佳木斯地块的变质结晶基底形成后,经历了长期的隆升剥蚀,到早泥盆世,其东部整体转为被动大陆边缘。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号